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We propose some similarity measures between two triangular fuzzy numbers (TFNs) based on the vector similarity measures in
vector space, which can be used to aggregate the decision information with TFNs. A methodology for multiple criteria group
decision-making (MCGDM) problems with triangular fuzzy information is proposed; the criteria values take the form of linguistic
values, which can be converts to TFNs.According to theweighted similaritymeasures between each alternative and ideal alternative,
it is easy to rank alternatives and select the most desirable alternative. Finally, we apply the proposed methods to an illustrative
example of MCGDM; the numerical results show that our method is effective and practical. For comparison, we also apply our
similarity measures method to solve the fuzzy decision-making problem in Wei (2011); our method has simpler computation and
gets the same results more rapidly than the FLOWHMmethod.

1. Introduction

Fuzzy multiple criteria decision-making (FMCDM) is the
process of ranking the feasible alternatives and selecting
the best one by considering multiple criteria, in which the
alternatives and criteria values are carried by fuzzy sets [1],
intuitionistic fuzzy set [2, 3], triangular fuzzy number [4],
triangular intuitionistic fuzzy number [5], interval-valued
triangular fuzzy number [6], trapezoidal fuzzy number [7,
8], intuitionistic trapezoidal fuzzy number [9], internal-
valued trapezoidal fuzzy number [10], and so on. As an
important part of the modern decision science, some related
methods have been successfully applied to fuzzy decision-
making problems, for example, orderedweighted aggregation
operators [11], weighted geometric aggregation operators
[10], TOPSIS method [12–14], analytic hierarchy process
method [15], grey relational analysis method [16, 17], and
similaritymeasures [3, 18], and so forth.Over the last decades,
many studies have been done on the concepts of similarity
measures between two intuitionistic fuzzy sets. On the one
hand, the similarity measures were defined based on distance

models, such as the Hamming distance similarity method
[19], the Hausdorff distance similarity measure [20], and the
Euclidean distance similaritymeasure [3]. On the other hand,
the intuitionistic fuzzy set was seen as a vector containing
some elements, by using the vector similarity measures to
define the similarity measures between two intuitionistic
fuzzy sets, for example, the cosine similarity measures [21]
and so forth. However, as an effective method and a wide
range of application in various fields, very few researchers
worked on similarity measures between two triangular fuzzy
numbers and applied them to triangular fuzzy multiple
criteria group decision-making.

Because the triangular fuzzy number (TFN) is intuitive,
easy to use, computationally simple, and useful in promoting
representation and information processing in a fuzzy envi-
ronment, it was usefully applied to solve FMCDM problems,
in which the criteria values are carried by the TFNs. Many
methodologys have been proposed to solve FMCDM with
TFNs in the literature; Fu [22] presented a fuzzy optimization
method based on the concept of ideal and anti-ideal points
to solve FMCDM problems with TFNs. A case study of
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Figure 1: Membership functions of TFNs.

reservoir flood control operation was given to demonstrate
the proposed method’s effectiveness. Wei [23] proposed
fuzzy induced ordered weighted harmonic mean operator
to solve fuzzy group decision-making problems. In [24],
Wei et al. investigated the multiple attribute decision-making
problemswith triangular fuzzy information anddeveloped an
generalized triangular fuzzy correlated averaging operator;
numerical results showed the method was applicable. The
above literatures mainly focus on the group decision-making
with unknown information on criterion weight and on
group member weight. However, in some actual decision-
making process, the information about criterion weight and
on group member weight are important. Therefore, with
the defects of the methods in the literatures, we develop
some similarity measures to solve FMCGDM problems
with known information on criterion weight and on group
member weight. In order to do so, the rest of this paper is
set out as follows. In the next section, we introduce some
basic concepts and operational laws of TFNs; three similarity
measures between twoTFNs are also defined. In Section 3, we
present a triangular FMCGDM method based on similarity
measures. Section 4 gives two illustrated examples to verify
the developed approach; all numerical results show that
our method is feasible and applicable. The paper ends with
conclusion in Section 5.

2. Preliminaries

We consider the following well-know description of a trian-
gular fuzzy number 𝛼.

Definition 1 (see [25]). A triangular fuzzy number 𝛼 can be
defined by a triplet (𝑎

1
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2
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3
).Themembership function
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where 0 ≤ 𝑎
1
≤ 𝑎
2
≤ 𝑎
3
≤ 1, 𝑎

1
and 𝑎
3
stand for the lower and

upper values of the support of 𝛼, respectively, and 𝑎
2
stands

for the modal values. The membership functions can be seen
in Figure 1.

Let 𝛼 = (𝑎
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3
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𝛾 a positive scalar number; the basic operational laws related
to TFNs are shown as
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In the vector space, there are some similarity measures
between two vectors, which successfully apply to various
fields, such as pattern recognition, description and classi-
fication of complex structured objects, faculty recruitment,
and fuzzy assignment problems. In this section, we introduce
three important vector similarity measures.

Let 𝑋 = (𝑥
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vectors of length 𝑛, where all the coordinates are positive;
three important similarity measures are defined as
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The three parameters 𝑎
𝑖
(𝑖 = 1, 2, and 3) in TFN 𝛼 =

(𝑎
1
, 𝑎
2
, and 𝑎

3
) can be considered as one vector represen-

tation with three elements. Based on the extension of the
similarity measures in vector space, the similarity measures
between two TFNs are shown in Definition 2.

Definition 2. Let 𝛼 = (𝑎
1
, 𝑎
2
, 𝑎
3
) and 𝛽 = (𝑏

1
, 𝑏
2
, 𝑏
3
) be two
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the similarity measures between two TFNs can be defined as
follows:
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The three similarity measures between two TFNs in Def-
inition 2 satisfies the following properties, as in Theorem 3.

Theorem 3. The similarity satisfies the following properties:

(1) 0 ≤ 𝑆(𝛼, 𝛽) ≤ 1,
(2) 𝑆(𝛼, 𝛽) = 𝑆(𝛽, 𝛼),
(3) if 𝛼 = 𝛽, that is, 𝑎

𝑖
= 𝑏
𝑖
, 𝑖 = 1, 2, and 3. 𝑆(𝛼, 𝛽) =

1.

Proof. Firstly, we prove 𝑆𝐽(𝛼, 𝛽) satisfies the above properties,
as follows.

(P1) It is obvious that 𝑆𝐽(𝛼, 𝛽) ≥ 0. Thus, we only need to
prove 𝑆𝐽(𝛼, 𝛽) ≤ 1.
By using the basic mathematical equations,
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Taking (8) in (4), we get 𝑆𝐽(𝛼, 𝛽) ≤ 1.
(P2) It is obvious that the equation is true.
(P3) When 𝛼 = 𝛽, that is, 𝑎
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In the sameway,we canprove 𝑆𝐸(𝛼, 𝛽) and 𝑆𝐶(𝛼, 𝛽) satisfy
the properties in Theorem 3.

Therefore, we have finished the proofs.

3. Triangular Fuzzy Multiple Criteria
Group Decision-Making Method Based
on Similarity Measures

In this section, we present a handling method for TFNs
multiple criteria group decision-making problems.

Let 𝐶 = {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
} be a set of criteria and 𝐴 =

{𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
} a set of alternatives. Suppose we invite 𝑝

experts to make the judgement, and let 𝐺 = {𝐺
1
, 𝐺
2
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}

be a set of experts. They are expected to give the linguistic
value of TFNs (see Table 1).The vectors of alternative𝐴

𝑖
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𝑘
are represented by following TFNs:
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for 𝑖 = 1, 2, . . . , 𝑚, 𝑘 = 1, 2, . . . , 𝑝.
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1
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For the different critera 𝐶
𝑗
(𝑗 = 1, 2, . . . , 𝑛), the weight

of a criterion is a triangular fuzzy weight, which is obtained
by the decision maker, as 𝑤

𝑗
= (𝑎
𝑗1
, 𝑎
𝑗2
, 𝑎
𝑗3
) (𝑗 = 1, 2, . . . , 𝑛).

The expected weight value𝑤
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(𝑗 = 1, 2, . . . , 𝑛) for a triangular

fuzzy weight is obtained by the following equation:
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Then we normalize the expected weight value 𝑤
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. . . , 𝑛) by the following formula:
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In FMCGDM environments, the concept of ideal point
has been used to determine the best alternative in the decision
set. Although the ideal alternative does not exist in real world,
it does provide a useful theoretical construct to evaluate
alternatives (Ye [26]).

Thus three weighted similarity measures between an
alternative𝐴

𝑖
and the ideal alternative𝐴

𝑃
represented by the

TFNs are defined as follows:
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(14)

The decision procedure for the proposed method can be
summarized as follows.

Step 1. Give the characteristic of each alternative and criteria
by the linguistic values of TFNs.

Step 2. Using (11), we can obtain the group preference vector
for each alternative 𝐴

𝑖
(𝑖 = 1, 2, . . . , 𝑚).
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Table 1: Linguistic values of TFNs.

Linguistic term Linguistic values of TFN
Absolutely poor (AP) (0.0, 0.0, 0.1)

Very poor (VP) (0.0, 0.1, 0.2)

Poor (P) (0.1, 0.2, 0.3)

Medium poor (MP) (0.3, 0.4, 0.5)

Medium (M) (0.4, 0.5, 0.6)

Medium good (MG) (0.5, 0.6, 0.7)

Good (G) (0.7, 0.8, 0.9)

Very good (VG) (0.8, 0.9, 1.0)

Absolutely good (AG) (0.9, 1.0, 1.0)

Step 3. Calculate the expected weight value𝑤
𝑗
for a criterion

𝐶
𝑗
(𝑗 = 1, 2, . . . , 𝑛) by using (12) and (13).

Step 4. From formula (14), we can get three weighted similar-
ity measures for an alternative 𝐴

𝑖
(𝑖 = 1, 2, . . . , 𝑚).

Step 5. Rank the alternatives, and select the best one(s) in
accordance with the weighted similarity measure.

4. Illustrative Example

4.1. Example 1: Personnel Selection. In this section, a numer-
ical example is presented to illustrate the application of
the proposed method. Suppose that the human resources
department of a company desires to hire a competent. After
initial screening, four candidates (i.e., alternatives) 𝐴

1
, 𝐴
2
,

𝐴
3
, and 𝐴

4
remain for further evaluation. In order to select

the most suitable candidate, the decision maker invite five
experts, who take into account the following five criteria: (1)
emotional steadiness (𝐶

1
); (2) oral communication skill (𝐶

2
);

(3) education experience (𝐶
3
); (4) work experience (𝐶

4
); (5)

personality and self-confidence (𝐶
5
). Assume that the five

experts provide his/her preference information on candidates
with regard to criteria by using a linguistic variable, as listed
in Table 1.

The decision procedure for the above decision-making
problem is as follows.

Step 1. Five experts provide his/her preference information
on candidates with linguistic terms; we convert the linguistic
variables to TFNs, as depicted in Table 2.

Step 2. The weight vector of five experts is 𝜆 = (0.1, 0.2,

0.3, 0.2, and 0.2), and using (11), we can obtain the group
preference vector for each alternative 𝐴

𝑖
(𝑖 = 1, 2, 3, 4), as

follows:

𝑉
1
= {⟨𝐶

1
, (0.13, 0.17, 0.22)⟩ , ⟨𝐶

2
, (0.36, 0.46, 0.56)⟩ ,

⟨𝐶
3
, (0.39, 0.54, 0.69)⟩ , ⟨𝐶

4
, (0.42, 0.50, 0.60)⟩ ,

⟨𝐶
5
, (0.52, 0.60, 0.60)⟩} ;

𝑉
2
= {⟨𝐶

1
, (0.22, 0.27, 0.32)⟩ , ⟨𝐶

2
, (0.54, 0.64, 0.74)⟩ ,

⟨𝐶
3
, (0.60, 0.75, 0.90)⟩ , ⟨𝐶

4
, (0.44, 0.54, 0.62)⟩ ,

⟨𝐶
5
, (0.18, 0.26, 0.26)⟩} ;

𝑉
3
= {⟨𝐶

1
, (0.18, 0.23, 0.27)⟩ , ⟨𝐶

2
, (0.28, 0.36, 0.46)⟩ ,

⟨𝐶
3
, (0.69, 0.84, 0.99)⟩ , ⟨𝐶

4
, (0.16, 0.24, 0.34)⟩ ,

⟨𝐶
5
, (0.48, 0.58, 0.58)⟩} ;

𝑉
4
= {⟨𝐶

1
, (0.21, 0.26, 0.31)⟩ , ⟨𝐶

2
, (0.34, 0.42, 0.52)⟩ ,

⟨𝐶
3
, (0.57, 0.72, 0.87)⟩ , ⟨𝐶

4
, (0.28, 0.38, 0.48)⟩ ,

⟨𝐶
5
, (0.46, 0.56, 0.56)⟩} .

(15)

Step 3. The weight value of criteria 𝐶
𝑖
is represented by the

following TFNs:

𝑤
1
= ⟨𝐶
1
, (0.3, 0.4, 0.5)⟩ ,

𝑤
2
= ⟨𝐶
2
, (0.5, 0.6, 0.7)⟩ ,

𝑤
3
= ⟨𝐶
3
, (0.1, 0.2, 0.3)⟩ ,

𝑤
4
= ⟨𝐶
4
, (0.9, 1.0, 1.0)⟩ ,

𝑤
5
= ⟨𝐶
5
, (0.4, 0.5, 0.7)⟩ .

(16)

The expected weight values can be obtained by (12).
Then we normalize the expected weight value by (13) and
get the weight vector 𝑊 = (0.1481, 0.2222, 0.0741, 0.3580,

and 0.1975).

Step 4. The ideal alternative is given by the decision maker as

𝐴
𝑝
= {⟨𝐶

1
, (0.40, 0.50, 0.60)⟩ , ⟨𝐶

2
, (0.70, 0.80, 0.90)⟩ ,

⟨𝐶
3
, (0.80, 0.90, 1.00)⟩ , ⟨𝐶

4
, (0.70, 0.80, 0.90)⟩ ,

⟨𝐶
5
, (0.50, 0.60, 0.70)⟩} .

(17)

From formula (14), we can get three weighted similarity
measure for an alternative 𝐴

𝑖
(𝑖 = 1, 2, . . . , 4), as listed in

Table 3.

Step 5. From Table 3, we can see that all the proposed
method have the same decision results.The decision results of
different similarity measures demonstrate that the proposed
method for FMCGDM problem is effective.

Let us discuss the different weight 𝑊∗ = (0.2, 0.1, 0.3,

0.20, and 0.2), and using the above 4 steps, we can get the
decision results as follows.

In Table 4, it is easy to see that the three similarity
measures get the same decision results; the best alternative
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Table 2: Preference values of alternative given by 5 experts for TFNs.

𝐴 M 𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐶
5

1 (0.0, 0.0, 0.1) (0.4, 0.5, 0.6) (0.5, 0.6, 0.7) (0.8, 0.9, 1.0) (0.5, 0.6, 0.7)

2 (0.1, 0.2, 0.3) (0.3, 0.4, 0.5) (0.4, 0.5, 0.6) (0.5, 0.6, 0.7) (0.9, 1.0, 1.0)

𝐴
1

3 (0.4, 0.5, 0.6) (0.4, 0.5, 0.6) (0.1, 0.2, 0.3) (0.3, 0.4, 0.5) (0.0, 0.0, 0.1)

4 (0.3, 0.4, 0.5) (0.1, 0.2, 0.3) (0.0, 0.1, 0.2) (0.5, 0.6, 0.7) (0.7, 0.8, 0.9)

5 (0.5, 0.6, 0.7) (0.7, 0.8, 0.9) (0.2, 0.3, 0.4) (0.0, 0.0, 0.1) (0.5, 0.6, 0.7)

1 (0.4, 0.5, 0.6) (0.8, 0.9, 1.0) (0.5, 0.6, 0.7) (0.4, 0.5, 0.6) (0.0, 0.1, 0.2)

2 (0.1, 0.2, 0.3) (0.4, 0.5, 0.6) (0.5, 0.6, 0.7) (0.8, 0.9, 1.0) (0.1, 0.2, 0.3)

𝐴
2

3 (0.7, 0.8, 0.9) (0.5, 0.6, 0.7) (0.3, 0.4, 0.5) (0.1, 0.2, 0.3) (0.0, 0.1, 0.2)

4 (0.5, 0.6, 0.7) (0.7, 0.8, 0.9) (0.3, 0.4, 0.5) (0.9, 1.0, 1.0) (0.0, 0.0, 0.1)

5 (0.5, 0.6, 0.7) (0.3, 0.4, 0.5) (0.4, 0.5, 0.6) (0.0, 0.1, 0.2) (0.8, 0.9, 1.0)

1 (0.3, 0.4, 0.5) (0.1, 0.2, 0.3) (0.7, 0.8, 0.9) (0.4, 0.5, 0.6) (0.5, 0.6, 0.7)

2 (0.1, 0.2, 0.3) (0.5, 0.6, 0.7) (0.3, 0.4, 0.5) (0.0, 0.0, 0.1) (0.9, 1.0, 1.0)

𝐴
3

3 (0.9, 1.0, 1.0) (0.4, 0.5, 0.6) (0.5, 0.6, 0.7) (0.0, 0.1, 0.2) (0.3, 0.4, 0.5)

4 (0.1, 0.2, 0.3) (0.0, 0.0, 0.1) (0.5, 0.6, 0.7) (0.4, 0.5, 0.6) (0.0, 0.1, 0.2)

5 (0.4, 0.5, 0.6) (0.4, 0.5, 0.6) (0.3, 0.4, 0.5) (0.0, 0.1, 0.2) (0.7, 0.8, 0.9)

1 (0.5, 0.6, 0.7) (0.5, 0.6, 0.7) (0.4, 0.5, 0.6) (0.3, 0.4, 0.5) (0.8, 0.9, 1.0)

2 (0.4, 0.5, 0.6) (0.3, 0.4, 0.5) (0.5, 0.6, 0.7) (0.0, 0.1, 0.2) (0.4, 0.5, 0.6)

𝐴
4

3 (0.3, 0.4, 0.5) (0.3, 0.4, 0.5) (0.4, 0.5, 0.6) (0.5, 0.6, 0.7) (0.7, 0.8, 0.9)

4 (0.1, 0.2, 0.3) (0.0, 0.1, 0.2) (0.5, 0.6, 0.7) (0.3, 0.4, 0.5) (0.1, 0.2, 0.3)

5 (0.7, 0.8, 0.9) (0.4, 0.5, 0.6) (0.1, 0.2, 0.3) (0.3, 0.4, 0.5) (0.3, 0.4, 0.5)

Table 3: Decision results of three weighted similarity measures for TFNs.

𝑆
𝐽

𝑆
𝐸

𝑆
𝐶

𝐴
1

0.7869 0.8707 0.9974
𝐴
2

0.7976 0.8775 0.9988
𝐴
3

0.6367 0.7546 0.9918
𝐴
4

0.7528 0.8525 0.9964
Ranking 𝐴

2
≻ 𝐴
1
≻ 𝐴
4
≻ 𝐴
3

𝐴
2
≻ 𝐴
1
≻ 𝐴
4
≻ 𝐴
3

𝐴
2
≻ 𝐴
1
≻ 𝐴
4
≻ 𝐴
3

Best 𝐴
2

𝐴
2

𝐴
2

Table 4: Decision results for different weights in the same numerical example.

𝑆
𝐽

𝑆
𝐸

𝑆
𝐶

𝐴
1

0.7674 0.8561 0.9959
𝐴
2

0.8022 0.8793 0.9971
𝐴
3

0.7567 0.8381 0.9950
𝐴
4

0.8180 0.8928 0.9984
Ranking 𝐴

4
≻ 𝐴
2
≻ 𝐴
1
≻ 𝐴
3

𝐴
4
≻ 𝐴
2
≻ 𝐴
1
≻ 𝐴
3

𝐴
4
≻ 𝐴
2
≻ 𝐴
1
≻ 𝐴
3

Best 𝐴
4

𝐴
4

𝐴
4

is 𝐴
4
. From Tables 3 and 4, for the different weights of the

criteria, the decision results are different.

4.2. Example 2: Investment Case Selection. Using the illustra-
tive example in [23], an investment company wants to invest
a sum of money in the best option. There is a panel with
five possible alternatives to invest the money: 𝐴

1
is a car

company; 𝐴
2
is a food company; 𝐴

3
is a computer company;

𝐴
4
is an arms company; 𝐴

5
is a TV company. The three

experts (𝐺
1
, 𝐺
2
, and 𝐺

3
) must take a decision according to

the following four attributes: 𝐶
1
is the risk analysis; 𝐶

2
is the

growth analysis; 𝐶
3
is the social-political impact analysis; 𝐶

4

is the environmental impact analysis.
Using our methods in Section 3, the decision procedure

is as follows.

Step 1. The TFNs preference vector of the three experts is
shown in Table 5.

Step 2. The weight vector of three experts is 𝜆 = (0.2, 0.5,

and 0.3), and using (11), we can obtain the group preference
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Table 5: The TFNs preference vector of the three experts.

𝐴 M 𝐶
1

𝐶
2

𝐶
3

𝐶
4

1 (0.80, 0.85, 0.90) (0.72, 0.76, 0.80) (0.91, 0.93, 0.96) (0.62, 0.65, 0.68)

𝐴
1

2 (0.65, 0.70, 0.75) (0.57, 0.61, 0.65) (0.76, 0.78, 0.81) (0.47, 0.50, 0.53)

3 (0.42, 0.47, 0.52) (0.34, 0.38, 0.42) (0.53, 0.55, 0.58) (0.24, 0.27, 0.30)

1 (0.88, 0.90, 0.93) (0.67, 0.77, 0.83) (0.60, 0.67, 0.70) (0.69, 0.72, 0.75)

𝐴
2

2 (0.73, 0.75, 0.78) (0.52, 0.62, 0.68) (0.42, 0.52, 0.50) (0.54, 0.57, 0.60)

3 (0.50, 0.52, 0.55) (0.29, 0.39, 0.45) (0.22, 0.39, 0.32) (0.31, 0.34, 0.37)

1 (0.95, 0.97, 0.98) (0.90, 0.93, 0.95) (0.77, 0.79, 0.82) (0.93, 0.95, 0.96)

𝐴
3

2 (0.80, 0.82, 0.83) (0.75, 0.78, 0.80) (0.62, 0.64, 0.67) (0.78, 0.80, 0.81)

3 (0.57, 0.59, 0.60) (0.52, 0.55, 0.57) (0.39, 0.41, 0.44) (0.55, 0.57, 0.58)

1 (0.82, 0.85, 0.88) (0.97, 0.98, 1.00) (0.98, 0.99, 1.00) (0.97, 0.99, 1.00)

𝐴
4

2 (0.67, 0.70, 0.73) (0.82, 0.83, 0.85) (0.83, 0.84, 0.85) (0.82, 0.84, 0.85)

3 (0.44, 0.47, 0.50) (0.59, 0.60, 0.62) (0.60, 0.61, 0.62) (0.59, 0.61, 0.62)

1 (0.78, 0.79, 0.81) (0.78, 0.79, 0.81) (0.83, 0.85, 0.88) (0.94, 0.97, 0.99)

𝐴
5

2 (0.63, 0.64, 0.66) (0.63, 0.64, 0.60) (0.68, 0.70, 0.76) (0.79, 0.82, 0.80)

3 (0.40, 0.41, 0.43) (0.40, 0.41, 0.43) (0.45, 0.47, 0.50) (0.56, 0.59, 0.61)

Table 6: Decision results of different methods in the same numerical example.

𝑆
𝐽

𝑆
𝐸

𝑆
𝐶 FIOWHM operator

𝐴
1

0.6486 0.7141 0.7997 1.3310
𝐴
2

0.6465 0.7136 0.7988 0.6690
𝐴
3

0.7329 0.7630 0.7998 2.5000
𝐴
4

0.7730 0.7859 0.7999 4.5000
𝐴
5

0.7624 0.7803 0.7998 3.5000
Ranking 𝐴

4
≻ 𝐴
5
≻ 𝐴
3
≻ 𝐴
1
≻ 𝐴
2

𝐴
4
≻ 𝐴
5
≻ 𝐴
3
≻ 𝐴
1
≻ 𝐴
2

𝐴
4
≻ 𝐴
5
≻ 𝐴
3
≻ 𝐴
1
≻ 𝐴
2

𝐴
4
≻ 𝐴
5
≻ 𝐴
3
≻ 𝐴
1
≻ 𝐴
2

Best 𝐴
4

𝐴
4

𝐴
4

𝐴
4

vector for each alternative 𝐴
𝑖
(𝑖 = 1, 2, 3, 4, 5) as follows:

𝑉
1
= {⟨𝐶

1
, (0.611, 0.661, 0.711)⟩, ⟨𝐶

2
, (0.531, 0.571, 0.611)⟩,

⟨𝐶
3
, (0.721, 0.741, 0.771)⟩, ⟨𝐶

4
, (0.431, 0.461, 0.491)⟩};

𝑉
2
= {⟨𝐶

1
, (0.691, 0.711, 0.741)⟩, ⟨𝐶

2
, (0.481, 0.581, 0.641)⟩,

⟨𝐶
3
, (0.396, 0.511, 0.486)⟩, ⟨𝐶

4
, (0.501, 0.531, 0.561)⟩};

𝑉
3
= {⟨𝐶

1
, (0.761, 0.781, 0.791)⟩, ⟨𝐶

2
, (0.711, 0.741, 0.761)⟩,

⟨𝐶
3
, (0.581, 0.601, 0.631)⟩, ⟨𝐶

4
, (0.741, 0.761, 0.771)⟩};

𝑉
4
= {⟨𝐶

1
, (0.631, 0.661, 0.691)⟩, ⟨𝐶

2
, (0.781, 0.791, 0.811)⟩,

⟨𝐶
3
, (0.791, 0.801, 0.811)⟩, ⟨𝐶

4
, (0.781, 0.801, 0.811)⟩};

𝑉
5
= {⟨𝐶

1
, (0.591, 0.601, 0.621)⟩, ⟨𝐶

2
, (0.591, 0.601, 0.591)⟩,

⟨𝐶
3
, (0.641, 0.661, 0.706)⟩, ⟨𝐶

4
, (0.751, 0.781, 0.781)⟩}.

(18)

Step 3. From [23], theweight value of criteria vector𝐶
𝑖
is𝑊 =

(0.2, 0.1, 0.1, 0.4).

Step 4. The ideal alternative is given by the decision maker as

𝐴
𝑝
= {⟨𝐶

1
, (0.44, 0.47, 0.50)⟩ , ⟨𝐶

2
, (0.79, 0.82, 0.80)⟩ ,

⟨𝐶
3
, (0.97, 0.98, 1.00)⟩ , ⟨𝐶

4
, (0.83, 0.85, 0.88)⟩} .

(19)

From formula (14), we can get three weighted similarity
measures for an alternative 𝐴

𝑖
(𝑖 = 1, 2, . . . , 5), as listed in

Table 6. For comparison, we also list the decision results of
FIOWHM operator method in Table 6.

Step 5. From Table 6, we can see that all the proposed
methods have the same decision results, but our method has
simpler computation and gets the same results more rapidly
than the FLOWHMmethod.

The decision results of different methods demonstrate
that the proposedmethod for FMCGDMproblem is effective.

5. Conclusion

The similarity measure is an effective method to solve the
FMCDMproblem, but it rarely applies to triangular FMCDM
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problem. In this paper, we propose three similarity measures
and three weighted similarity measures between two TFNs
based on the vector similarity measures. Using the similarity
measures model, we establish a method for FMCGDM with
known information on criterion weight and group weight,
in which the alternatives and criteria are given by triangular
fuzzy information. Finally, a practical example is given to
select the most suitable candidate in human resource eval-
uation system, by the weighted similarity measures between
each alternative and ideal alternative; the ranking order of all
alternatives can be determined, and the best one(s) can be
easily identified as well. For comparison, we also apply our
method to solve the triangular FMCGDM problem in [23].
The different methods have the same decision results, which
show that our proposed method in this paper is applicable
and effective.
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