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Life in the balance: a signaling network controlling survival of
flooding
Julia Bailey-Serres1,4 and Laurentius ACJ Voesenek2,3,4
Recent reports on responses to flooding, submergence, and

low-oxygen stress have connected components in an essential

regulatory network that underlies plasticity in growth and

metabolism essential for the survival of distinct flooding regimes.

Here, we discuss growth under severe oxygen-limited

conditions (anaerobic growth) and less oxygen-deficient

underwater conditions (ethylene-driven underwater growth).

Low-oxygen stress causes an energy and carbohydrate crisis

that must be controlled through regulated consumption of

carbohydrates and energy reserves. In rice (Oryza sativa L.), low-

oxygen stress, energy homeostasis and growth are connected

by a calcineurin B-like interacting binding kinase (CIPK) in seeds

germinated under water. In shoots, two opposing adaptive

strategies to submergence, elongation (escape) and inhibition of

elongation (quiescence), are controlled by related ethylene

response factor (ERF) DNA binding proteins thatactdownstream

of ethylene and modulate gibberellin-mediated shoot growth.

Increased resolution of the flooding signaling network will require

more precise investigation of the interactions between oxygen

tension and cellular energy status in regulation of anaerobic

metabolism and ethylene-driven growth, both essential to

survival in variable flooding environments.
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Introduction
Global warming is associated with increased flooding

events adversarial to most plant species and thus affects

both crop yield and plant distribution in natural ecosys-

tems [1]. There is an urgent need to increase crop
www.sciencedirect.com
production, particularly rice, in flood-prone regions.

Major steps toward breeding tolerant varieties have been

made through the characterization of two multigenic loci

that control the capacity to endure complete submerg-

ence (SUBMERGENCE 1, SUB1) or rapid outgrowth of

adverse partial submergence (SNORKEL, SK) [2��,3��,
4��,5��]. New SUB1 rice varieties, produced by marker-

assisted breeding, are high yielding even following two

weeks of complete submergence [6�,7]. Similarly, better

yields of deepwater rice are anticipated, with other

improvements to follow [8]. For example, rice and some

other species have the remarkable capacity to germinate

and elongate coleoptiles and stems under severe oxygen

constraints [9,10] (i.e. under anoxia, See glossary). The

recognition of rice CIPK15 as a regulator of underwater

germination and early shoot elongation [11��] provides a

critical link between sugar sensing, starch utilization and

coleoptile elongation under anoxia. The identification

CIPK15 and other genes that regulate underwater seed

establishment may enable breeding to reduce the practice

of seedling transplantation and overall herbicide use.

These findings in rice complement data from other gen-

era (i.e. Arabidopsis, Lotus, Poplar, Potamogeton, and

Rumex) suggesting there exists a conserved flooding

response network in plants that includes ethylene-trig-

gered alterations in gene expression leading to growth and

stress-induced catabolism of stored or soluble carbo-

hydrates for energy-efficient production and utilization

of ATP. A key challenge is to decipher the interplay

between hormones (i.e. ethylene, abscisic acid (ABA),

and gibberellic acids (GA)), oxygen availability, and

specific metabolites (i.e. ATP, sugars, and pyruvate) that

drives a dynamic network balancing growth and quies-

cence to facilitate survival (Figure 1).

Ethylene-controlled growth
Recently, a quantitative trait locus was discovered encod-

ing two genes that trigger rapid internode elongation in

rice varieties when cultivated under partially submerged

‘deepwater’ conditions. These genes, SNORKEL1 (SK1)

and SNORKEL2 (SK2) encode nuclear-localized DNA

binding proteins with a single APETALA2/ethylene

response factor (ERF) domain [2��,12]. The SKs are

absent in non-deepwater varieties, including all japonicas;
however when backcrossed into a japonica, 30% of the

internode elongation capacity of the deepwater variety

was transferred. Moreover, constitutive overexpression of

SK1 or SK2 in a japonica increases the number of

elongated internodes, even under non-submerged
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Glossary

anaerobic growth: growth in the absence of oxygen

underwater growth: growth of tissues under water, often under

conditions of reduced oxygen availability

normoxia: oxygen levels at 1 atm, typically 20.6%

anoxia: no oxygen available

hypoxia: oxygen levels below the critical oxygen pressure for

mitochondrial oxidative phosphorylation for the cell (or organ)
conditions. The evaluation of the SK locus in Oryza
species with a range of deepwater elongation capabilities,

O. rufipogon, O. nivara, and O. glumaepatula, further sub-

stantiates the relevance of this locus in underwater

elongation. SK1 and SK2 are upregulated by the sub-
Figure 1

Overview of the submergence regulatory network in rice. The network involve

and consumption of readily available sucrose reserves. Submergence of ae

promoted cell elongation. In deepwater rice, ethylene promotes induction of

elongation and escape of leaves near the water surface [2��]. In lines toleran

promotes a rise in SLR1 and SLRL1, two transcription factors that directly in

by a quiescence strategy that limits carbohydrate consumption and elongatio

submergence promotes underwater elongation of shoots until energy reserv

responsiveness promotes expression of SUB1C, which acts upstream of a s

Submergence includes the deprivation of oxygen, which leads to a deficiency

via glycolysis coupled with NAD+ regeneration through ethanolic fermentatio

ATP production [1,41]. In seeds germinated under anoxia or submergence,

activates CIPK15, which activates the energy sensor SnRK1A, which turns-

[11��]. Genotypes that grow vigorously underwater from seed or as plants, co

maintaining cellular homeostasis for a longer period. Dashed lines indicate lim

black lines with arrowheads indicate stimulation. Aerenchyma development,

also contribute to underwater growth and survival. Abbreviations: ABA, abs

interacting binding kinase; GA, gibberillic acid; PDC, pyruvate decarboxylas

SnRK1, sucrose non-fermenting receptor kinase 1A; SUB1A-1, Submergenc

binding protein gene SUB1A; SUS, Sucrose synthase.
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mergence-induced accumulation of ethylene in inter-

nodes, consistent with the essential role of ethylene in

GA-stimulated underwater shoot elongation [13].

Although ABA [14] and auxin (i.e. indoleacetic acid)

[15] also have regulatory roles in the shoot elongation

response, they do not regulate SK1 or SK2 transcript

levels.

The presence or absence of submergence-induced shoot

elongation relates to the selection pressures of different

flooding regimes. Long lasting, relatively shallow floods

strongly favor enhanced underwater elongation, whereas

short, deep floods restrict underwater elongation and thus
s three key factors: increased cellular ethylene content, depletion of ATP

rial organs results in an accumulation of ethylene that triggers GA-

the ERF genes SK1 and SK2 and elevation of GA, driving rapid internode

t of deep submergence, ethylene activates the ERF SUB1A-1, which

hibit GA-mediated activation of gene expression. This enhances survival

n growth [3��,5��]. In japonica rice, which has neither SK1/2 nor SUB1A-1,

es are exhausted. Ethylene-triggered submergence-induced GA-

ubset of a-amylases that convert starch into glucose for ATP production.

in ATP. Under low-oxygen stress, ATP is produced at the substrate-level

n [1]. The production of alanine, GABA and succinate also contribute to

a signal transduction cascade is initiated by a depletion of sucrose that

on a transcription complex required for synthesis of a-amylase mRNA

nsume starch reserves to generate sufficient ATP for growth at the cost of

ited production or partial inhibition. Red lines indicate inhibition, whereas

underwater photosynthesis and reactive oxygen species management

cisic acid; ADH, alcohol dehydrogenase; CIPK, calcineurin B-like

e, SK, SNORKEL, an ethylene responsive factor DNA binding protein;

e 1A-1, the product of an allele of the ethylene responsive factor DNA
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conserve carbohydrates to facilitate survival under water

and re-growth when flood water subsides [16,17��]. A

major advance in understanding this growth inhibition

was the characterization of the rice SUB1 [4��]. Depend-

ing on the accession, rice contains two or three genes at

this locus (SUB1A, SUB1B, and SUB1C) belonging to the

same ERF group VII subfamily as the SKs [2��,4��,12].

Tolerance of submergence in the absence of an escape

response correlates with the presence and pronounced

submergence-induced expression of SUB1A-1, which

confers submergence tolerance when overexpressed in

an intolerant japonica [4��]. SUB1A-1 limits ethylene-

driven shoot elongation by minimizing the decline in

the GA-signaling repressor SLENDER RICE-1 (SLR1)

and the related SLR LIKE-1 (SLRL1) proteins in sub-

merged shoots [5��]. Furthermore, SUB1A-1 reduces sub-

mergence-induced synthesis of ethylene, expression of

cell wall loosening expansin mRNAs, and starch and

sucrose reserve depletion [3��]. Recent transcriptome

profiling confirms that SUB1A-1 regulates multiple path-

ways associated with growth, metabolism and stress

endurance [18�]. Altogether, this gene’s presence in

specific rice accessions minimizes energy utilization

during submergence to prolong underwater survival.

Natural variation in ethylene-driven submergence-

induced shoot elongation is also observed in other

semi-wetland plants. In the wild species Rumex palustris,
this natural variation includes both distinctions in final

petiole length following submergence and the timing of

elongation [16]. Recently, Manzur et al. [19] presented

evidence that shoots of Lotus tenuis elongate upon partial

shoot submergence, but not when the entire shoot is

submerged; thus, both antithetical escape and quies-

cence survival strategies can exist within a single species.

This could reflect the requirement for a threshold in

ethylene or another metabolite to be reached to trigger

quiescence.

Under water shoot elongation acts synergistically with

other leaf traits such as aerenchyma development and

efficient underwater photosynthesis [14]. Pierik et al. [20]

showed that partial de-submergence leads to an increase

in biomass in R. palustris, which displays submergence

escape, but not in R. acetosa which invokes quiescence.

The drawback of extending leaves above water in R.
acetosa was associated with low petiole porosity, high-

lighting interdependency between adaptive traits.

Another collaboration between traits is observed in shoots

that elongate underwater toward better illumination and

ultimately, the water surface. Improvements in carbon

gain needed to sustain elongation growth are achieved

near the water surface where higher light levels act

synergistically with traits that improve gas exchange

(e.g. thin leaves, thin cuticles, thin cell walls, mesophyll

chloroplasts that re-orientate toward the epidermis [21],

and leaf surface gas films [22��]).
www.sciencedirect.com
Anaerobic germination and early shoot
elongation
Rice produces one of the few plant seeds that can germi-

nate under strict anoxia. This so-called anaerobic germi-

nation and early growth capacity is accomplished by

harnessing reserves to fuel shoot elongation at the

expense of root development [10]. This growth strategy

ultimately mediates oxygen diffusion via a porous coleop-

tile/stem to submerged tissues and promotes the tran-

sition to autotrophic growth. Work on several species has

shown that coleoptile elongation under anoxia or severe

hypoxia involves accelerated glycolysis (Pasteur Effect),

intensive ethanolic fermentation, limited cytoplasmic

acidification, and regulation of cell wall loosening proteins

[10,23]. Under anoxia, this elongation growth is not driven

by ethylene, which requires oxygen for its biosynthesis

[23].

Recently, rice’s capacity to germinate and extend its

coleoptile under water was shown to involve sensing of

cellular energy resources, most likely ATP or soluble

sugars [11��]. It requires SnRK1s, the plant’s Snf1/

AMP kinases, shown to sense and adjust cellular homeo-

stasis in response to limitations in cellular energy imposed

by hypoxia in mesophyll protoplasts of Arabidopsis [24��]
and CIPK15, which phosphorylates SnRK1A, thereby

activating the transcriptional activator MYBS1, which

initiates production of a-amylases responsible for starch

catabolism to glucose. Seeds with a cipk15 loss-of-function

mutation germinate in air but not underwater unless

provided sucrose. This implies that a change in energy

homeostasis, most likely depletion of sugars, drives con-

sumption of endosperm reserves for shoot growth.

Indeed, rice cultivars with early and vigorous coleoptile

underwater display higher amylase activity [25]. Impor-

tantly, CIPKs integrate calcium signaling, long con-

sidered critical in the low-oxygen-signaling network of

plants [26].

The data indicate that the catabolism of starch during

anaerobic germination and in submerged shoots of estab-

lished plants is triggered by distinct mechanisms. In the

case of anaerobic germination, an energy deficiency pro-

motes activation of a-amylase transcription. By contrast in

submerged plants, ethylene-promoted GA-responsive-

ness regulates a-amylase expression. If the signaling that

drives anaerobic germination and early shoot elongation

and SUB1A-mediated submergence tolerance are indeed

independent, then it should be feasible to combine these

traits to benefit farmers.

Adaptive energy management
The reduced efficiency in ATP synthesized per mol of

glucose during oxygen deprivation leads to a cellular energy

crisis. Plants generally respond by elevating sucrose cata-

bolism, glycolysis and ethanolic fermentation to increase

substrate-level production of ATP [1]. Transcriptomic and
Current Opinion in Plant Biology 2010, 13:489–494
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metabolomic studies of diverse angiosperms report the

elevation of mRNAs and enzymes that enable sucrose

catabolism and the fermentation of pyruvate to ethanol

as well as lactate, alanine and GABA during oxygen depri-

vation [18�,24��,27–34,35��,36��,37–40]. Anaerobic sub-

strate-level ATP production may be further augmented

though alanine metabolism to succinate via a bifurcation of

the TCA pathway [41]. Plant cells also limit ATP consump-

tion to cope with the low-oxygen energy crisis, by inducing

transcripts encoding enzymes that utilize pyrophosphate

(PPi) rather than ATP, particularly in low-oxygen-tolerant

species such as rice [42,40], and restricting translation to a

minority of cellular mRNAs [32]. Energy is also conserved

through reduced expenditure on biosynthetic processes

such as ribosome biogenesis and cell wall formation. As

in fungi and animals, plants elevate mRNAs encoding

proteins involved in metabolite transport, ROS ameliora-

tion, and chaperone activity [40], which provide adaptive

and protective functions. Together, these studies empha-

size that the hallmark response to oxygen deprivation is

increased management of ATP production and use.

Oxygen availability varies in organs and cells both during

normal development and periods of external oxygen depri-

vation because of diffusion barriers and distinctions in

metabolic activities. Consistent with this, electrode

measurements have resolved oxygen gradients across roots,

tubers, and stems [43–45]. This heterogeneity within

organs raises an important question relative to the report

that respiration is dampened in an accelerated manner in

pea roots as external oxygen concentration falls below 4%

[45]. This is unexpected because it exceeds the oxygen

level necessary to saturate mitochondrial cytochrome c
oxidase (COX), which is estimated to be less than 1%

based on the Km of COX in isolated soybean mitochondria

(140 nM [.013%] O2) [46]. In cells progressively deprived of

oxygen, an accelerated decline in respiration at concen-

trations below 4% would be adaptive, as this would delay

cellular anoxia. Such an adaptive mechanism is not unpre-

cedented; the Vmax of animal COX decreases by�50% as a

result of progressive oxygen depletion [47]. But these

findings emphasize a need to further resolve interactions

between mitochondrial respiration, ATP availability and

metabolite dynamics in individual cells at oxygen levels

that do not limit COX activity. This challenge might be

met by the implementation of molecular probes, such as

modified green fluorescent proteins, that can report

dynamics in redox, specific metabolites, calcium and pH

in the cytosol or within mitochondria [48,49]. Combining

cell-based probes with genetic mutants should provide the

resolution needed to reach a consensus on whether adap-

tive energy management involves the dampening of ox-

ygen consumption to delay the onset of anoxia.

Conclusion and perspectives
The depth, duration, frequency and seasonal timing of

floods impose distinct selection pressures on adaptive
Current Opinion in Plant Biology 2010, 13:489–494
traits that enable survival of flooding [14]. Recent

advances have provided new insights regarding regulation

in three interacting networks of response: firstly, ethyl-

ene-driven shoot elongation; secondly, anaerobic seed

germination and coleoptile growth; and thirdly, maxi-

mized conservation of carbohydrates and energy when

oxidative phosphorylation is limited. Natural selection

favors traits in particular environments when benefits

outweigh costs. Shoot elongation is therefore mainly

relevant in relatively shallow but prolonged floods,

whereas mobilization of seed reserves for rapid shoot

elongation aids establishment of seeds buried in

anaerobic mud. When either of these two energy-

demanding escape strategies is too costly, such as in

environments with ephemeral and/or very deep floods,

the energy conserving quiescence strategy proves more

effective. A general network describing the key submerg-

ence-induced pathways in rice is presented in Figure 1.

We hypothesize that the essential components — hor-

mones, starch degradation enzymes, fermentation

enzymes, and growth machinery — are conserved. It is

the flooding regime that determines whether allocation of

energy to growth is selected as a survival strategy, as

exemplified by evolution within the Oryza species of ERF

subgroup VII transcription factors that either inhibit

(SUB1A) or stimulate elongation growth (SK1,2)

[2��,4��,50]. Group VII ERFs also contribute to anaerobic

gene regulation in Arabidopsis [51], leading to the hy-

pothesis that duplication and divergence of group VII

ERFs may underlie distinctions in flooding responses in

multiple species. Given that the escape versus quies-

cence strategy of rice varieties reflects alterations in

ethylene-driven GA-signaling [5��,8], it stands to reason

that variation in underwater elongation growth in other

species stems from factors that regulate the conserved

ethylene, ABA, and GA hierarchy.

Our current challenges include elucidating downstream

targets of relevant transcription factors and unraveling

essential cell to whole-plant survival strategies. Addition-

ally, it is of utmost importance to precisely link dynamics in

oxygen and ATP to metabolic adjustments and survival

strategies. The molecular characterization of genetic vari-

ation in flooding response strategies is guaranteed to

further enable the breeding of crops that can endure or

outgrow flooding, as achieved for rice [2��,4��,6�,7]. This is

not only essential for crops cultivated in flood-prone farm-

lands, but is generally relevant because hypoxia exists also

in bulky tubers, meristems, and maturing seeds.
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