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1. INTRODUCTION 

Concrete dams respond with some delays to external solicitations. This may be the 

temperature within the dam concrete as a response to the external one, drainage 

flow as a response to reservoir level, uplift forces as a response to reservoir level, 

and so on. These internal states in turn influence dam behaviour, the continuous 

assessment of which is part of every dam surveillance concept (in particular the 

comparison between the actual behaviour – say deformation - and the expected 

one). 
 

In practice, instantaneous relationships between external solicitations and internal 

ones or between external solicitations and dam behaviour are often used. This is 

consistent with the theory of elasticity, which assumes an instantaneous response 

of a structure to the loads. The delays due to viscosity, diffusion of water pressure 

in rock masses, porosity of the materials and so on are thus neglected. Experience 

however shows that their account is sometimes necessary to obtain a meaningful 

assessment of dam behaviour or dam internal state. 
 

The aim of the paper is to present a simple algorithm for the calculation of de-

layed responses. A first application is made to the calculation of the internal tem-

perature field in a concrete dam, for which the algorithm was originally devel-

oped. Further applications include the calculation of drainage flows and uplift 

pressures, as well as the deformation resulting from the latter. These applications 

demonstrate the versatility of the algorithm and its wide range of applicability. 
 

At this point, it may already be mentioned that delayed responses are often also 

damped (as compared to a hypothetical instantaneous elastic response). In some 

cases though, the delayed response may be amplified, for example when dealing 

with viscosity. 
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2. DEVELOPMENT OF THE ALGORITHM 

2.1 Basic formulation 

The fundamental idea is to recognise that the response at a time t is not only re-

lated to the values of external variables at the same time t, but also to their val-

ues at earlier times τ. This relation is assumed to be described by an appropriate 

weighting function chosen by analogy to Laplace transforms /1/. This results in 

the following fundamental expression  
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Where F(t) is the (delayed) response at time t, ϕ(τ) are the (past) values of exter-

nal variables at times τ and 0
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is the weighting function whose shape is il-

lustrated in Figure 1. The decay of the weighting function with time is controlled 

by the value of the characteristic time T0. This is the only controlling parameter of 

the algorithm. It will have to be selected according to the problem at hand as will 

be illustrated later. For the sake of simplicity, F(t) will be called the weighted 

function and ϕ(τ) the original function. 

Figure 1: Shape of weighting function for different values of characteristic time T0 .

Applying equation 1 leads to a response that is smoother than the original func-

tion. This “smoothing effect” depends on T0 (smoother for larger values of T0) as 

illustrated in Figure 2 
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Figure 2: Original function ϕ(t) and weighted function F(t). 

Three distinct ways of numerically integrating equation 1 are shown hereafter. 

 

2.2 Time-stepping algorithm 

2.2.1 Case 1: Discrete integration at regular time steps 

It is postulated that the original function ϕ(t) is known at regular time steps ∆t

apart (e.g. 1 day or 1 week). As a first approximation, the integral of equation [1] 

is written as the sum of discrete values as follows 
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Similarly, the same weighted function takes the following value one time step ear-

lier 
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Substituting equation [3] in equation [2] results in the following, simple recursive 

formula 
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Thus, the value of the delayed function at time t is a linear combination of its 

value at time t-∆t and of the value of the original function at time t.

Note that if the time interval ∆t is very small with respect to T0 (let say 

∆t<0.1⋅T0), then 

0
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T
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e T
t
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−≅=

∆
−

α [5] 

and equation [4] simplifies to  
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2.2.2 Case 2: Linear integration at regular time steps 

It is again postulated that the original function ϕ(t) is known at regular time steps 

∆t apart. Equation [1] is now calculated based on a linear interpolation of these 

discrete values. This results in 
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with 
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and 

0T
t∆=β [9] 

 

In this more precise integration, the value of the delayed function at time t now 

also depends on the value of the original function at time t-∆t. 
 

Note that if ∆t is very small with respect to T0 and thus the approximation of 

equation [5] applies, then equation [7] simplifies to 

 

( ) ( ) ( )ttttFtF ∆−⋅−+∆−⋅≅ ϕαα )1( [10] 
 

That is, the delayed response at time t depends now on the values of the response 

and of the original function at time t-∆t.



FUNCTIONAL DELAYS IN THE BEHAVIOUR OF CONCRETE DAMS - Developing a simple useful algorithm 

Lombardi Ldt. - 5 - April-August 2006 
102.2-R-165C – Lo/AF/wet 

2.2.3 Case 3: Linear integration at irregular time steps 

For values of the origin function ϕ(t) known at irregular time steps, equation [7] 

or [10] (together with equations [8] and [9]) still apply, whereby ∆t is now the last 

time step considered, i.e. the time lapse between the discrete time t and the pre-

vious discrete time. 

 

3. TEMPERATURE IN CONCRETE DAMS 

3.1 General 

When analysing the behaviour of a concrete dam, it is generally sufficient to as-

sume an instantaneous response of the dam to the temperature field measured at 

a number of discrete locations in the dam and outside. Concrete dams are however 

known to “respond” primarily to changes to the average temperatures across the 

sections and to the first thermal moments. In an analysis, it is thus preferable to 

first calculate these averages and moments from the individual temperature val-

ues. They obviously vary less than the temperatures at the surface or near to it 

(“damped” response) and also with some delay with respect to them.  
 

The equations governing the temperature distribution in a body subjected to tem-

perature changes at its boundaries are known. They can be solved precisely either 

with the help of Fourier transforms in the frequency domain or directly in the time 

domain through convolution integrals. Then, obtaining the average temperature 

and the thermal moments across a section is fairly straightforward.  Still, this is 

not done in every day practice because of the complexity of the associated proce-

dures. The proposed time-stepping algorithm was originally developed to overcome 

this complexity. This is presented here. The theoretical basis and solution of the 

temperature problem are recalled in the following Section, followed by applica-

tions of the proposed algorithm. 
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3.2 One dimensional thermal problem 

For « thin » structures without internal heat sources and with a fairly uniform spa-

tial distribution of the surface temperatures, it can often be assumed that the in-

ternal temperature distribution is governed by the one-dimensional heat-

conduction equation in which the spatial variable is the position across the thick-

ness of the structure. The aforementioned conditions hold true for concrete arch 

dams. The governing differential equation is then (T being the temperature, t the 

time and x the abscissa) 

( ) ( )
2

2

x
t,xT

a
t

t,xT
∂

∂=
∂

∂
(a: coefficient of thermal diffusivity) [11] 

 

3.3 Analytical solution by way of a convolution integral 

Only the analytical solution in the time domain is presented here, because of its 

similitude with the proposed method.  
 

Equation [11] can, in principle, be directly solved by way of a convolution inte-

gral. For the case of a semi-infinite body, the solution simplifies to 

( ) ( ) ( )∫
∞−

⋅=⋅−=
t

dxTtxgtxT τττ ,0,, [12] 

i.e. the temperature T at any location x and instant t depends on the temperature 

at the wall surface (x=0) at the past instants τ. The analytical expression for the 

impulse response function g is (Carslaw, /2/) 

( ) 5.1

at4
x

t
e

a2
x

t,xg

2

−

⋅
π

= [13] 

Physically, solving the governing equation in the time domain corresponds to de-

composing the given temperature history at x=0 in a series of heat impulses, with 

the associated temperature development across the section being calculated for 

each one of them. The actual temperature distribution follows by superposition. 

This way of proceeding is however extremely challenging and hardly a practical 

option. 
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Equation [12] can be viewed as the expression of the internal temperature at any 

location x and time t as a weighted average of the temperature at the surface 

T(x=0) at past times τ, with g(x,t) being the weighting function. This is quite simi-

lar to the basic formulation of the delay algorithm of equation [1], where the 

weighting function, identified as l in Figure 3, is 

( ) 0

0

1
, T

t

e
T

txl
−

⋅= [14] 

The comparison of both weighting functions is shown in Figure 3. 

Figure 3: Comparison between the impulse response function (g(t-τ)), the weighting function 
of the delay algorithm (l(t-τ)) and a possible sliding average. The integral of each 
of these functions equals unity. 

The idea is now to use the form of equation [14] rather than that of equation [13] 

in the convolution integral of equation [12] as 

( ) 0

0

, T
t

e
T
B

txl
−

⋅= [15] 

Where B is a constant to be defined. 

This obviously leads to an approximate solution of the temperature problem at 

hand. As has been illustrated in Section 2, this is however also a very simple inte-

gration procedure! To what extent the resulting solution is acceptable is investi-

gated in Section 3.4 for a harmonic temperature. 

 

3.4 Harmonic temperature variation 

The exact temperature distribution inside a concrete body of semi-infinite extent 

subjected to a harmonic variation of the surface temperature of frequency ω is 
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It can be shown that this exact analytical solution is recovered form the proposed 

algorithm when T0 and B are selected as follows  
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and 

γ⋅
λ=

c
a (a=coefficient of thermal diffusivity) [20] 

λ being the thermal conductivity, c the specific heat and γ the density of the con-

crete. Note that because of the factor B appearing in equation [15], equation [7] 

now becomes (similar for equation [10] as well as for [4a] and [4b]) 
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Having established the relations that reproduce the exact solution in the case of a 

harmonic temperature variation at the surface, it remains to be seen how well the 

algorithm performs for transient temperatures at the wall surface. 

 

3.5 Transient surface temperature 

It is recalled that the parameters of the recursive formula of Section 3.4 have 

been determined for a harmonic excitation of circular frequency ω. Since external 

temperature changes are in most cases nearly periodic with a period of one year, 

the circular frequency corresponding to this period of one year is selected to cal-

culate the parameters T0 and B.

A transient surface temperature however also contains higher frequencies. Keeping 

the values of the parameters T0 and B fixed (basis: period of one year), the inter-
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nal temperature field is calculated with some error by the algorithm. Table 1 

shows the decrease of the amplitude of a harmonic oscillation as a function of the 

period and the distance x for a = 0.1 m2/day. 

 
Period of harmonic 

 oscillation 
Heat propagation (“exact”) 

at x=1 m, 2 m, 3 m, 4 m 
Recursive formulae at 
x=1 m, 2 m, 3 m, 4 m 

T = 1 year  75% 56% 41% 31%  75% 56% 41% 31% 

T = 30 days  36% 13% 5% 2%  21% 8% 4% 3% 

T = 7 days  12% 1% - -  5% 2% 1% 1% 

Table 1:   Decrease in amplitude of a harmonic oscillation (100%) as a function of the dis-
tance x from the surface and the period T (with a=0.1 m2/day and ω=2π (1/year)).

It appears clearly that the higher frequencies are calculated with some impreci-

sion by way of the recursive formula. These high frequencies are however heavily 

damped so that the absolute error remains small. In addition, the amplitude of the 

higher frequencies at the surface is very often smaller than that of the reference 

yearly harmonic, whose propagation is exactly reproduced. 

 

3.6 Application to dams 

3.6.1 Wall of finite thickness 

In the presence of a wall of finite thickness, the algorithm is applied starting in-

dependently from both sides. The total temperature is obtained from 

superposition of the two components. 

Furthermore, the reflection of the thermal wave at the surface has to be consid-

ered. When the temperature within the wall due to the temperature variations on 

one of the surfaces (say the downstream one) is calculated, a temperature on the 

opposite surface is thus obtained. This calculated temperature is then introduced 

with the opposite sign together with the actual one as “surface temperature” in 

the calculation from upstream; and so on. This is illustrated in Figure 4 in which 

the upstream surface temperature is equal to the average downstream one in this 

example. 
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Figure 4:  Correction of the error resulting on the opposite face due to the reflection of the 
thermal wave. 

 

3.6.2 Implementation issues 

From the equations [17] and [18] it appears that the application of the recursive 

formula should remain limited to a depth of xmax<d⋅π/2 to avoid singularities 

(division by 0 or tan(90°)=∞). For a concrete body this corresponds to a maximal 

distance x from the surface of 2.5-4.0 m. For larger thicknesses, the wall can sim-

ply be divided in successive slices and the heat propagation simulated by applying 

the weighting, recursive formula in series.  
 

At the same time, the formula should be used only in situations of nearly periodic 

variations of surface temperatures. This implies that it cannot be applied to the 

average yearly temperatures, which are different on either side of a wall. These 

averages must be treated separately by a linear distribution across the wall. The 

outside temperatures to be introduced in the calculation are then the differences 

between the measured surface temperatures, corrected with the temperature 

coming from inside, and the average ones. For all practical purposes, ω will be se-

lected to correspond to a period of 1 year (i.e. ω=2π [1/year]). The recursive for-

mula will then reproduce very well the heat propagation of annual to semi-annual 

period. 
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3.7 Example 

A wall of 16 m thickness is looked at. The surface temperatures are reported in 

Figure 5. This corresponds to a real case, in which the upstream face is under wa-

ter for some periods of the year and above water for others. Temperatures have 

been measured at time intervals varying between 2 and 18 days (average of 7 

days).  

Figure 5: Readings of external temperatures.

The model and the calculation results are presented in Figure 6. The comparison 

shows a good agreement between the results obtained by way of the recursive 

formula and by way of a direct, “exact” integration. The maximum difference (as 

soon the influence of the initial conditions has disappeared) is less than 0.4°C. 

One notes some smoothening and delay with respect to the “exact” solution when-

ever sudden variations and irregularities occur, they are however of minor impor-

tance. 
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Figure 6: Comparison between results of time steps simulation and finite difference 
computation. Input according to figure 5. 

This example shows a very good agreement between the results obtained by appli-

cation of the recursive formula and the “exact” integration. The difference of 

0.4°C can be considered to be a maximum value for the error as in this example 

(selected on purpose) the surface temperatures vary strongly. In the case that 

temperatures are measured with thermometers placed at shallow depths from the 

surface, this difference will be even more reduced. The recursive formula is thus, 

for all practical purposes, equivalent to a direct integration … but much simpler to 

handle.  

 

3.8 Other applications for thermal problems 

The recursive formula is a substitute to the numerical integration of the governing 

differential equations. The associated calculation of the temperature at any loca-

tion in a wall is a very simple one. Air and water temperatures are usually taken 

as surface (or “outside”) temperatures (possibly modified for solar radiation and 
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convection). Temperatures measured at internal thermometers (for example 

placed near both surfaces) can however also be advantageously used. These ther-

mometers define in fact a fictitious wall of reduced thickness between them, on 

which the recursive formula can be applied. The advantage of placing thermome-

ters below the wall surface is that they filter out the higher frequencies (for ex-

ample the daily variations), but retains the lower ones (for example the monthly 

variations) that affect the dam behaviour. 
 

A further use of the time-step algorithm can be the interpolation of the tempera-

ture between two existing thermometers. This question may rise for example when 

an intermediate thermometer falls out of service 
 

Taking advantage of the good results obtained for the example presented here 

above, where the parameters are defined by the thermal properties of the con-

crete, the same algorithms can be integrated in a statistical model (a posteriori) 

to explain dam displacements due to the external temperatures. The algorithm 

takes care of the delay between internal and external temperature. In this case 

the parameters T0 and B need, in no way, to correspond to an annual frequency, 

but are optimised by a statistical analysis similarly as presented in Section 4.2 for 

the flow rates of drains and the uplift pressures. 

 

4. OTHER APPLICATIONS 

4.1 Viscous-elastic displacements of concrete dam 

The displacements of a concrete dam are obviously function of the water level in 

the reservoir and of the temperature field in the concrete. It is generally assumed 

that the governing relationships are linear elastic, justified by the fact that the 

stress level in a dam is moderate. This approach tends to give satisfactory results.  
 

In a recent analysis of dam behaviour, the viscous response of a 220 m high arch 

dam to the variations of the impounding level could be clearly observed. This vis-

cous behaviour might stem both from the properties of the concrete as well as 

from the effect of the drainage of the rock foundation.  
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The total displacement of any point due to the water level is composed of an in-

stantaneous elastic part and of a delayed viscous elastic part. This is illustrated in 

Figure 7 for a sudden change of an external load. In the absence of an appropriate 

constitutive law, this viscous behaviour was accounted for by means of the pro-

posed algorithm. 
 

The displacements measured in a selected point of the dam are shown in Figure 8.

The difference between measured and computed displacements (response to both 

the variations of water level and of temperatures) is reported in Figure 9, consid-

ering no delay in the calculated displacements. 

Figure 7: Elastic-viscous behaviour of the concrete modeled by the proposed algorithm. 

 

Figure 8: Radial displacements measured in a selected point of the dam. 
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Figure 9: Case 1, elastic model without delay: difference between measured and computed 
displacements. 

The residues shown in Figure 9 seem to reflect, in some reverse way, the rapid 

changes of the water level, while the relatively slow seasonal fluctuations of the 

lake are quite well simulated. This trend is typical of a viscous behaviour. The 

simulation of the observed displacement could be improved only after introducing 

a delay in the analysis for the part of the displacements due to the water level. 

The corresponding results are presented in Figure 10. The standard deviation of 

the residues could be reduced from 2.6 mm to 1.6 mm. 

Figure 10: Case 2, elastic viscous model considering a delay: difference between measured 
and computed displacements. 

In this particular example, the analysis results indicate that the total displace-

ment due to the water pressure is composed per 80% of the instantaneous linear 

elastic part and per 20% of the delayed viscous one. The latter is calculated ac-

cording to equation [7] with a characteristic time of 60 days. 

 

4.2 Drain flow rates and uplift pressures 

The use of predictive models for the flow rate of drains and for the uplift pres-

sures is less frequent than for the deformations and displacements of a dam. One 
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reason may be that a greater importance is attached to the deformations than to 

other quantities when assessing the dam behaviour for safety purposes. An other 

reason may also be that it is difficult to set up a model for predicting, say, flow 

rates or uplift pressures. 
 

There are however situations where these variables are of decisive importance, for 

example when assessing the safety of rock abutments. It may be recalled that 

many dam accidents were due to hydraulic phenomena in the rock foundation as 

well as in the fill of embankment dams. 
 

Interstitial water pressures and drainage rates are primarily function of the water 

level in the reservoir and in some cases also of the external temperature. The sea-

son may also play a role due to external inflows. 

The influence of the impounding levels is only approximately instantaneous due to 

a number of aspects like the presence of pores and cracks or joints, which need to 

be filled or emptied before the pressure changes can be transferred to down-

stream. A larger or smaller delay will thus occur between cause and effects. Due 

to the complexity of the water circulation in rock masses, there is no hope to set 

up an "a priori deterministic model" that is able to explain the phenomena. The 

only way is to define a "statistical a posteriori model" based on historical data.  
 

The algorithm of Section 2 is used to do so. The results are illustrated in Figure 11 

for the flow rate of drains in the foundation rock of an arch dam as a function of 

the water level. A characteristic time of about 6 days was used, a value obtained 

by an optimisation process. 

Figure 11: Measured flow rate of drain from the rock foundation of an arch dam. 
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5. CONCLUSION 

An algorithm – similar in its form to the Laplace Transform – was developed in or-

der to analyse the functional delays often observed in the behaviour of concrete 

dams. It is seen to provide very accurate results in the analysis of the thermal 

field in a concrete mass, which was the primary incentive for its development.  

The analysis of the viscous behaviour of concrete dams appears to be also possi-

ble. The algorithm was successfully applied to the calculation of the flow rate of 

drains and to that of the uplift pressures both in the dam and in the foundation 

rock. Extension of its applicability to the field of fill dams would be a further in-

teresting development. 

The use of the algorithm developed may improve the quality of the interpretation 

of the data provided by dam monitoring. 
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