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Abstract

We prove that the generator of the renormalization group of Potts models on
hierarchical lattices can be represented by a rational map acting on a finite-
dimensional product of complex projective spaces. In this framework, we can
also consider models with an applied external magnetic field and multiple-
spin interactions. We use recent results regarding iteration of rational maps in
several complex variables to show that, for some class of hierarchical lattices,
Lee–Yang and Fisher zeros belong to the unstable set of the renormalization
map.

PACS numbers: 64.60.A−, 64.60.ae, 64.60.al

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Potts models on hierarchical lattices have been introduced in 1979 by Berker and Ostlund [1]
as an interpretation of Migdal–Kadanoff models, defined in 1975 [2–4] in order to approximate
classical spin models on Z

d . Later, in 1981, Griffiths and Kaufman [5–7] provided a rigorous
definition of hierarchical lattices and studied some examples in detail. One of such examples,
the diamond hierarchical lattice, was later considered in a paper by Derrida et al [8], who
showed that the generator of the renormalization group (see, e.g., [9, 10]) could be written as
a rational map acting on the Riemann sphere Ĉ; as a consequence, the Fisher set of the model
coincides with the Julia (i.e., unstable) set of the renormalization group map. Later, similar
results were established to study other specific lattices (e.g., [11, 12]) or to introduce coupling
with an external magnetic field in a similar dynamical framework (e.g., [13]).

In this paper, we generalize the result of [8] to all hierarchical lattices, i.e. we prove
that the generator of the renormalization group of a Potts model on a hierarchical lattice can
be represented by a rational map acting on the complex multiprojective space of Boltzmann
weights (sections 2 and 3). The general approach that we introduce, not only allows us to
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V = {v1, v2 , v3, v4 , v5, v6, v7}
E(1,1) = {(v1), (v2)} rank 1 type 1
E(2,1) = {(v2, v4), (v3, v4)} rank 2 type 1
E(2,2) = {(v5, v7)} rank 2 type 2
E(3,1) = {(v1, v2, v3)} rank 3 type 1
E(4,1) = {(v4, v5, v6, v7)} rank 4 type 1

Γ = {V, E = E(1,1) E(2,1) E(2,2) E(3,1) E(4,1)}

Figure 1. An example of non-uniform structured hypergraph (p = 5).

describe all models on hierarchical lattices that have already been studied, but it also provides
an extremely natural way to deal with an external magnetic field (section 4). The study of
the dynamics obtained by iteration of a rational map in several complex variables is a quite
recent research subject and, as such, it is still quite incomplete. Nevertheless, recent results
by Dinh–Sibony [14] allow us to prove that, at least for some class of hierarchical lattices,
Lee–Yang and Fisher sets are a subset of the Julia set of the renormalization map (section 5).
We would also like to mention that some work on rational maps acting on Boltzmann weights
of statistical mechanical models already appeared, and it was applied to the analysis of
integrability (see, e.g., [15, 16]). This paper features two technical appendices that give
the basic mathematical background needed to understand the statements in the main part
and provide references for the interested reader. A number of examples of Potts models on
hierarchical lattices are presented in [17], where it is shown how to obtain both exact and
numerical results by using the general methods developed in this paper.

2. Potts models on hierarchical lattices

In order to state our result in full generality, we need to provide formal definitions and notation
for the objects we will use in the paper. In spite of the technical nature of such definitions,
they are indeed quite natural and, most importantly, they will lead to a very simple proof of
the result.

2.1. Hypergraphs and hierarchical lattices

Hierarchical lattices (in short HLs) are lattices that are left invariant by a given coarse-graining
operation. The most famous example is provided by the diamond hierarchical lattice [1, 6, 8]
which is obtained by iterating the substitution which replaces an edge with four edges linking
the original vertices with two new (internal) vertices (see, e.g. [6], figure 1 or [17], figure 1).
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Our goal is to extend this procedure so as to be able to consider more general cases such
as models on the Sierpinski gasket, on the spiderweb (a lattice also known as Apollonian
network), and other examples, as presented in [17]. For this purpose, we are going to define
hierarchical lattices as limits of sequences of finite objects obtained by iterating a decoration
procedure, which is going to be dual to the coarse-graining operation. The finite objects
we consider are a generalization of graph called hypergraph (see, e.g., [18]); hypergraphs
have been briefly considered in [6] (see section V) under the name of ‘generalized graphs’
and they were used for defining hierarchical lattices with multiple spin interactions. In fact,
hypergraphs differ from graphs in the sense that edges (sometimes also called hyperedges or
links) are allowed to connect an arbitrary number of vertices. Hereby follows the standard
definition.

Definition 2.1. A hypergraph � is defined by a set V of vertices and a set E of edges that are
finite-ordered non-empty subsets of V ; the same vertex cannot appear more than once in an
edge. Given an edge e, we define rank of e its cardinality |e| as a subset of V . If all edges
have the same rank r, the hypergraph is said to be r-uniform and r is said to be the order of
the hypergraph.

Given a hypergraph � = {V,E}, a partial hypergraph �′ = {V ′, E′} ⊂ � is defined as
a hypergraph such that V ′ = V and E′ ⊂ E.

From the physical point of view, edges will connect spins that are coupled to each other;
note that the definition only takes into account edges of finite rank as we do not consider
interactions of infinite range. We do not assume that either V or E are finite.

So far, edges of a given rank are all equivalent, i.e. they cannot carry different couplings.
It is indeed quite natural (and sometimes even necessary) to be able to make a distinction
between edges of the same rank (e.g., horizontal and vertical edges in an anisotropic square
lattice). To this extent, we will associate with each edge of given rank an element of a (at most)
countable index set I (the set of types); this set will be common among all hypergraphs. The
notion of structured hypergraph will take into account this additional piece of information. In
order to give the definition, we first need to introduce the notion of partition of a hypergraph
� = {V,E} into uniform partial hypergraphs �(r,i), where the rank r ∈ N and the type i ∈ I
have been fixed. This partition is obtained as follows: we define E(r,i) to be the set of all edges
of � with rank equal to r and type equal to i. One of course has

E(r,i) ∩ E(s,j) = ∅ if r �= s or i �= j.

The edge set E of the original hypergraph will be the disjoint union

E =
⊔

E(r,i)

and, denoting with �(r,i) the uniform partial hypergraph �(r,i) = {V,E(r,i)}, we have

� =
⋃

(r,i)∈N×I
�(r,i).

Note that since each �(r,i) is r-uniform, each element of E(r,i) is an ordered r-tuple of vertices.
The space of all pairs (rank, type) is called A � N × I and we denote its elements by Greek
letters, e.g. α = (r, i).

We can now define a structured hypergraph Γ as a hypergraph � along with a partition
into uniform partial hypergraphs. The sets Eα will be called partial edge sets of Γ. We define
the multiorder of Γ to be the set α � {α ∈ A s.t. Eα �= ∅}. When α = {α1, . . . , αp} is finite,
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V = {(v1, v2, v3) v4}}
E(3,1) = {(v1, v4, v3), (v2, v4, v1), (v3, v4, v2)}

Γ= {V,E =E(3,1)}

Figure 2. An example of uniform decorated edge of rank 3. External vertices are circled.

then Γ is said to be a finitely structured hypergraph; if α = {α} has only one element (i.e.,
p = 1), then Γ is said to be α-uniform and α will be called order of the structured hypergraph.
Given a structured hypergraph Γ = ⋃

α �α , it is convenient to consider each uniform partial
hypergraph �α also as a α-uniform structured hypergraph Γα , so that we can write Γ = ⋃

α Γα .
Each Γα can be physically regarded as the hypergraph we obtain by ‘turning off’ all couplings
that are not associated with α = (r, i). It is perhaps worthwhile to remark that one could
associate many different structured hypergraphs with a given hypergraph; this non-uniqueness
reflects the fact that one has many different ways to associate couplings with edges (e.g.,
isotropic or anisotropic couplings on a square lattice). However, once we additionally provide
this coupling structure, there exists a unique (minimal) structured hypergraph associated with
the given hypergraph.

For convenience of notation, in the remainder of this section we will consider only finitely
structured hypergraphs; all the statements can easily be generalized to the infinite case.

Let Γ be a structured hypergraph Γ = {V,E = Eα1 � · · · � Eαp
} and let f be a map f

from the set V to another set W such that the restriction of f on every edge e ∈ E is injective;
we call such an f a locally injective map. Given a locally injective map f , for all α = (r, i)

we can induce a map f∗ from each Eα to the set of ordered r-tuples of W as follows:

f∗(e = (v1, . . . , vr )) = (f (v1), . . . , f (vr)).

By local injectivity, f∗E can be regarded as an edge set on W and we can define (with a slight
abuse of notation) f∗Γ = {W,f∗E = f∗Eα1 � · · · � f∗Eαp

} as the structured hypergraph
induced by f . The decoration procedure we want to define (that will be dual to the coarse-
graining operation) will consist of gluing a fixed structured hypergraph to each edge of a given
rank and type of another structured hypergraph. In order to do so, we need to mark the vertices
which will be used in the gluing process: structured hypergraphs with marked vertices will be
called decorated edges (see, e.g., figure 2).

Definition 2.2. Let α = (r, i). A decorated α-edge E (of rank r and type i) is a structured
hypergraph Γ with r marked vertices.
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Marking vertices amounts to choosing an additional ordered r-tuple of vertices; borrowing the
terminology from [6], section V, marked vertices will be called external (or surface) vertices
and vertices that are not external will be called internal (or core) vertices,

E = {V = (v1, . . . , vr ) � V0, E = Eβ1 � · · · � Eβp
}.

A decorated α-edge is said to be uniform if the underlying hypergraph Γ is α-uniform.
Decorated edges can be physically regarded as the inner structure of an edge of a given

rank and type. Note moreover that the value of i is not taken into consideration in the
definition of a general decorated edge; it will, however, play a role in what follows. It is
easy (see appendix A) to introduce a natural notion of sum on decorated α-edges; the attempt
to define a natural multiplication operation leads to a fundamental operation on a structured
hypergraph Γ which will be called decoration. It amounts to substituting edges of rank r and
type i in a hypergraph with given decorated edges of the same rank and type.

Let α = (r, i) be fixed, Γ = {V,E = Eα} be an α-uniform structured hypergraph and
E = {W = (w1, . . . , wr) � W0, F = Fβ1 � · · · � Fβp

} be a decorated α-edge. The product
of Γ with E is the structured hypergraph given by the following procedure: each edge e ∈ E

is removed from Γ and replaced by a copy of E , with surface vertices of E identified to the
vertices of e, respecting their ordering. The partition in uniform partial hypergraphs for the
resulting hypergraph will be the one induced by the partition of E ; the resulting structured
hypergraph will be denoted by Γ × E : more formally, let Ṽ � V � E × W0. If we define the
collapsing map π as follows:

π : E × W → Ṽ ,

π (e = (v1, . . . , vr ), w) =
{

vl if w = wl for some l

(e, w) otherwise,

then the edge sets are given by

Ẽβ � π∗(E × Fβ), β ∈ β = {β1, . . . , βp},
and the resulting structured hypergraph will be

Γ × E � {Ṽ , Ẽ = Ẽβ1 � · · · � Ẽβp
}.

Given a structured hypergraph Γ, one can multiply simultaneously and independently each
α-uniform partial hypergraph of the partition Γ = ⋃

Γα with a decorated α-edge Eα .
We define the identity decorated α-edge to be the uniform decorated α-edge with r surface

vertices, no core vertices and only one α-edge (of rank r and type i) connecting the surface
vertices with the correct ordering

1α � {V = (v1, . . . , vr ) � ∅, E = Eα = {(v1, . . . , vr )}}.

Definition 2.3. We define a decoration D as a choice of decorated edges {Eα}α∈A , such that
only finitely many Eα are different from 1α . Then D acts on a structured hypergraph Γ as
follows:

D{Eα }Γ =
⋃
α

(Γα × Eα).

Note that if we choose Eα = 1α for all α ∈ A we have the identity operation D{1α }Γ = Γ.
For notational convenience we will explicitly write as subscripts of D only the non-trivial
decorated edges involved in the decoration procedure. Moreover, it is clear that any decoration
of a finitely structured hypergraph with decorated edges that are themselves finitely structured
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Figure 3. Decorating the structured hypergraph � with the decorated edge of figure 2.

will yield a finitely structured hypergraph. Note that we can define a decoration operation
in the class of decorated α-edges by applying the decoration to the underlying structured
hypergraph and keeping the same external vertices. This last remark allows us to define the
composition of decorations in the following natural way: let D1 = D{E1,...,Ek} and D2 be two
decorations, then we define the composite decoration as:

D2D1 � D{D2E1,...,D2Ek}.

Using the decoration procedure, we introduce a partial ordering in the class of structured
hypergraphs. We say that Γ1 � Γ2 if there exists a decoration procedure D such that
DΓ1 = Γ2.

We now fix a decoration operation D and a finite initial hypergraph Γ0; decorating Γ0

will yield Γ1 = DΓ0. If we iterate the action of D (see, e.g., figure 3) there can be two cases:
either at some point the decoration operation acts trivially on the obtained hypergraph because
we run out of edge to decorate, or not. The former case corresponds to finitely renormalizable
lattices; in the latter case the infinite lattice Γ∞ obtained as the inductive limit of the decoration
procedure is called a hierarchical lattice. In this setting, it is now clear that the decoration
operation is dual to the coarse-graining process that amounts to gluing the original edges back
in the place of the corresponding decorated edges. Since Γ∞ is invariant under decoration, it
will therefore be also invariant for the coarse-graining operation. Moreover, note that this is
only one particular way to construct an infinite lattice using decorations; for instance, it would
be interesting to study thermodynamical properties of an infinite lattice obtained by fixing two
(or more) decorations and then choosing one or the other at random to define the sequence Γn

(i.e., a random walk on decorations).
In all subsequent sections we will only deal with finitely structured hypergraphs, therefore,

without risk of confusion, we will drop the words ‘finitely structured’ and use just the word
‘hypergraph’.

2.2. Interactions on hierarchical lattices: Potts models

We will consider Potts models on hierarchical lattices; Hamiltonians will be obtained by
summing over all edges a local interaction that depends only on the states of the spins
belonging to the edge, i.e. a nearest-neighbor interaction. It is worthwhile to note that, since
edges of hypergraphs may connect an arbitrary number of vertices, such interactions are not
restricted to pair interactions; this flexibility turns out to be useful as, for instance, it allows
at the same time to deal with external magnetic fields (by considering edges of rank 1) or to
study the more complicated interactions that arise renormalizing a pair interaction.

Let q � 2 be the number of Potts states of the model; for a given hypergraph Γ = (V ,E),
a configuration σ is a map from V to S � {1, . . . , q}. In order to associate an energy with
each configuration we first need to fix the nearest-neighbor interactions: this amounts, for

6



J. Phys. A: Math. Theor. 42 (2009) 095001 J De Simoi and S Marmi

each edge set Eα, α = (r, i), to fixing the energy contribution of the configuration of the r
spins connected by such edges, i.e. to fixing qr complex numbers. Such numbers will be
denoted by J

α
I = J α

s1,...,sr
, where sk ∈ S and I is a multi-index ranging over Sr . The total

energy associated with a configuration σ is therefore easily expressed in terms of such J
α
I :

H Γ(σ ) =
∑
α∈α

∑
(v1···vr )∈Eα

J
α
σ(v1)···σ(vr )

.

The associated partition function is

Z Γ =
∑
σ∈SV

exp(−βH Γ(σ )),

where β = 1/kT ; define now the Boltzmann weights as:

∀α = (r, i), z
α
I � exp

(−βJ
α
I

)
, zα ∈ Wα � C

qr

.

In such coordinates, each term exp(−βH Γ(σ )) is a monomial of degree given by the number
of edges in the hypergraph. If we fix a partial edge set Eᾱ , the degree of the polynomial
in the variables z

ᾱ
I is given by the number of edges in Eᾱ . Thus, Z Γ is a homogeneous

polynomial that is separately homogeneous in z
α
I for all fixed α. As decorated edges of rank

r are hypergraphs with r marked vertices, it is natural to consider the conditional partition
functions of a decorated edge, for which we specify the r states (s1, . . . , sr ) of the external
vertices (v1, . . . , vr ) and restrict the sum to configurations satisfying the condition:

Z E
s1···sr

�
∑
σ∈SV

σ(vk)=skk=1,...,r

exp(−βH E (σ )).

Once more, these are homogeneous and separately homogeneous polynomials in z
α
I of fixed

degree, independent of the choice of the external states. It is easy to check that the identity
edge 1α gives the trivial conditional partition function Z

1α

I = z
α
I .

2.3. The renormalization map

Conditional partition functions provide a natural way to connect the partition function of a
hypergraph and the partition function of its image under decorations.

Definition 2.4. Consider a decorated α-edge E = {W = (w1, . . . , wr) � W0, F =
Fβ1 � · · · � Fβp

}. We define the renormalization map

RE : Wβ1 × · · · × Wβp → Wα,

as given in coordinates by the conditional partition functions:

(RE (zβ1 , . . . , zβp ))I = Z E
I (zβ1 , . . . , zβp ).

Consider an α-uniform hypergraph Γ; the partition function of Γ is the polynomial
Z Γ : Wα → C. If we multiply Γ with E we obtain a hypergraph Γ × E whose partition
function is the polynomial Z Γ×E : Wβ1 × · · · × Wβp → C. The fundamental property of
the partition function of a product is that it is obtained by composing the original partition
function with the renormalization map, i.e. we claim that

Z Γ×E (zβ1 , . . . , zβp ) = Z Γ ◦ RE (zβ1 , . . . , zβp ).

In fact, one can rewrite the sum over configurations involved in the partition function of
Γ × E by first summing over the configurations of vertices that belong to Γ as well, then over
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configurations of all vertices that have been generated by decorating each edge of Γ. In this
way, it is straightforward to see that Z Γ×E is obtained by substituting each occurrence of zI

in Z Γ with Z E
I .

A decoration D amounts to a choice, for all α ∈ A , of a decorated α-edge Eα such
that only finitely many Eα are different from the identity. With each Eα we can associate its
renormalization map:

REα : Wβα,1 × · · · × Wβα,pα → Wα,

and finally we can define the renormalization map RD as the juxtaposition of the maps REα ,
i.e.:

RD :
∏
α∈A

Wα →
∏
α∈A

Wα πβRD = REβ ,

where πβ :
∏

α Wα → Wβ is the natural projection.
Now consider the case of general hypergraphs; let Γ = {V,E = Eα1 � · · · � Eαp

} be a
structured hypergraph; its partition function is a polynomial Z Γ : Wα1 × · · · × Wαp → C.
Let Γ′ = D{Eα }Γ; the partition function of Γ′ is a polynomial Z Γ′

: Wβ1 × · · · × Wβq → C.
Again the claim is

Z Γ′
(zβ1 , . . . , zβq ) = Z Γ ◦ RD(zβ1 , . . . , zβq ) (1)

and it follows by applying the previous argument to each element of the partition into partial
uniform hypergraphs.

The relation between the decoration operation D and the renormalization map RD is
contravariant, i.e.:

RD2D1 = RD1 ◦ RD2 .

In fact, the renormalization operation is covariant to the coarse-graining operation which in
turn is dual to the decoration procedure. Moreover, note that the domain of the renormalization
map RD is the infinite-dimensional space of all interactions; however, since D acts as the
identity on all but finitely many edge sets, RD acts non-trivially on a finite-dimensional
space only. If we have a hierarchical lattice Γ∞ generated by the iteration of decoration
procedure D , then RD can be iterated on the space of Boltzmann weights of Γ∞ and this
space will be a finite-dimensional complex vector space. As we will see later, the dynamics
of RD will reflect thermodynamical properties of the Potts model on Γ∞.

Several concrete examples of renormalization maps, along with explicit constructions of
some of them can be found by the interested reader in [17].

3. The dynamical space: symmetries and interactions

When defining the interactions J α , we can choose the zero of energy for each edge
set independently and arbitrarily. This freedom is reflected by the fact that the physics
of the system will not change if we apply the map J

α
I �→ J

α
I + �α or, equivalently,

z
α
I �→ z

α
I · exp (−β�α), for an arbitrary choice of �α . This elementary observation allows us

to establish an equivalence relation on each space of Boltzmann weights Wα i.e.:

zα,wα ∈ Wα, zα ∼ wα if ∃ λ ∈ C\{0} s.t. z
α
I = λw

α
I ∀ I ;

equivalent Boltzmann weights will give identical physical systems. If we take the quotient of
Wα = C

qr

with respect to this equivalence relation, we obtain a projective space W̃α � P
qr−1.

Thus, the quotient of the space of all Boltzmann weights with respect to all such equivalence
relations is a product of projective spaces, i.e. a multiprojective space, that will be called
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dynamical space and will be denoted by M . Given Γ = {V,E = Eα1 � · · · � Eαp
}, the

dynamical space associated with Γ will be the finite-dimensional multiprojective space:

M Γ � W̃α1 × · · · × W̃αp .

Note that, if we have an α-uniform hypergraph Γ, α = (r, i), the dynamical space M Γ is a
standard complex projective space of dimension qr − 1. Hereafter the Boltzmann weights {z}
will be considered to belong to the dynamical space and they will be denoted by [z]. Natural
coordinates on the resulting projective space are homogeneous coordinates of which we recall
the definition in appendix C.

Note that the renormalization map is a well-defined rational map on the dynamical
space, since each coordinate is given by a separately homogeneous polynomial. Moreover,
the dynamical space of a hierarchical lattice is finite dimensional and invariant under the
renormalization map. This means that at most a finite number of new interactions will be
generated by the renormalization procedure; in this sense, Potts models on hierarchical lattices
are completely renormalizable. The approach we just presented is particularly convenient
for studying the dynamics of the renormalization map, as the dynamical space has now
been compactified in a natural way. All homogeneous thermodynamical quantities (e.g.,
susceptibility) can still be defined using variables in the dynamical space, but in order to
define inhomogeneous quantities (such as free energy) we need to fix a zero of energy, i.e. to
consider variables belonging to the linear (not the projective) spaces.

We will now look for invariant (projective) subspaces of the dynamical space; studying
the dynamics of the renormalization map in such smaller subspaces is both interesting, as
they correspond to special physically symmetric configurations, and convenient, as a map on
a lower dimensional space is generally easier to study. In particular, this will allow us to more
easily study models in an external magnetic field, and in the absence of such fields.

We are going to consider two different symmetries of the dynamical space: the first one
is generated by Sq , the group of permutations of S; the second symmetry is generated by
the groups {Sα}, where each Sα is the group of permutations of vertices of edges belonging
to Eα .

The group Sq acts on the dynamical space in the following natural way:

Definition 3.1. Let U ∈ Sq; for all α we denote by U ∗ the map U ∗ : W̃α → W̃α defined as
follows:

U ∗ ([
zα
s1,...,sr

]) = [
z
α
Us1,...,Usr

]
.

With a slight abuse of notation we denote by U ∗ also the map that acts on an arbitrary product
W̃α1 × · · · × W̃αp by applying U ∗ to each factor W̃αk .

The following proposition can be regarded as a general statement about the fact that if we
perform the renormalization of a system with no external magnetic field, then the renormalized
system will have no external magnetic field. More precisely:

Proposition 3.2. For all E , the action of Sq commutes with RE .

Proof. By definition, each component of RE is a conditional partition function; let us consider
the partition function associated with the choice of a multi-index I:

Z E
I

([
z
α
J

]) =
∑

σ∈SV s.t.
σ (ext)=I

exp(−βH E (σ )).
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Given an element U ∈ Sq , we can write its action after the renormalization map:

(U ∗RE )I � Z E
UI =

∑
σ∈SV s.t

σ (ext)=UI

exp(−βH E (σ ))

=
∑

σ∈SV s.t.
U−1σ(ext)=I

exp(−βH E (σ )).

Since the sum is over all the configuration space we can as well sum over σ ′ � U−1σ , so that:

(U ∗RE )I =
∑

σ ′∈SV s.t.
σ ′(ext)=I

exp(−βH E (Uσ ′)) = Z E
I

([
z
α
UJ

])
�

(
RE U ∗)

I
.

�

In all cases of interest, we will consider the action of the following subgroups G of Sq :

• absence of external magnetic field: all states are considered equivalent, therefore we take
G = Sq ;

• simple external magnetic field: one state is special, all others are equivalent, thus we have
G = Sq−1.

Consider the subset of M of points fixed by the action of G; then, proposition 3.2 states
that this subset is invariant under RD . This subset will turn out to be a lower dimensional
multiprojective space naturally embedded in M . We will provide this embedding shortly, but
first we need to describe the action of the other symmetry group.

Each group Sα acts on the dynamical space in a natural way as well:

Definition 3.3. Let V ∈ Sα . We denote by V ∗ the map V ∗ :
[
zα
s1,...,sr

] �→ [
zα
sV 1,...,sV r

]
on the

dynamical space.

Given a decorated α-edge E ,RE does not necessarily commute with the action of Sα , since E
may have some internal structure that could break the symmetry. This amounts to saying that if
we renormalize a completely Sα-symmetric interaction we can possibly obtain a renormalized
interaction that is not Sα symmetric. In fact, given a subgroup H of Sα we say that a decorated
α-edge E is H-symmetric if RE commutes with the action of H. Most of the times, we will
consider decorations D that are completely symmetric, i.e. such that all decorated edges Eα

are Sα -symmetric. In such cases the space of interactions fixed by the action of the whole
group is again invariant under RD and we can focus on the action of the renormalization group
on this smaller submanifold that is again going to be an embedded multiprojective space.

We are now going to present, for each α, a decomposition of Wα into subspaces that are
invariant under Sq ; we will then select a fixed vector in each of such subspaces and the set of
such vectors will ultimately form a basis for the linear subspace of fixed vectors, that projected
on W̃α will give an embedded projective space. The same decomposition, applied to each
factor of M , will give an embedded multiprojective space. The same idea will then be used
to find the appropriate multiprojective space in the case of Sq−1, i.e. of an external magnetic
field.

We first need to classify basic invariant subspaces; in order to do so we need to define a
variation of Young tableaux:

Definition 3.4. A Young diagram represents a way to write a natural number r as the sum
of k naturals l1 � l2 � · · · � lk > 0. It is pictured as r boxes arranged in k rows as in the

10
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following example:

7 = 4 + 2 + 1.

A (generalized) Young tableau is a Young diagram in which we fill the boxes with numbers
from 1 to r according to the rule that numbers on the same row are increasing from left to right
and numbers on the first column of rows of equal length are increasing from top to bottom, for
example:

1 5
3 4
2

is OK, but
3 4
1 5
2

is not.

This is not the usual definition of Young tableaux involved in the classification of representation
of the permutation group: in fact, for this purpose, each column would be ordered so as to be
increasing from top to bottom as well. The definition we presented is, however, exactly what
we need to classify basic invariant subspaces.

For each α = (r, i), numbers from 1 to r are associated with the corresponding spin of
each r-tuple of vertices belonging to the edge set Eα ; with each Young tableau with r boxes
and at most q rows we associate the invariant subspace given by the following constraints:
spins belonging to the same row have to be in the same state; spins belonging to different rows
have to be in different states. In the case of completely symmetric decorations we can do the
same with Young diagrams, as we can forget about the ordering of the spins. For each invariant
subspace there exists a one-dimensional space on which the permutations act trivially, that
is the subspace generated by the sum of all base vectors; such a vector will be denoted by z

with the corresponding Young tableau as a subscript; the direct sum of all such fixed spaces is
obviously fixed by the permutation groups and it projects onto a projective space on W̃α .

Example 3.5. Consider the case α = (3, i), q = 3. The complex space of Boltzmann weights
Wα is a linear space of complex dimension 27 and it will have as a basis:

e111 e121 e131 e211 e221 e231 e311 e321 e331

e112 e122 e132 e212 e222 e232 e312 e322 e332

e113 e123 e133 e213 e223 e233 e313 e323 e333.

All possible Young tableaux according to our definition, with the corresponding invariant
subspaces are

1 2 3 → 〈e111, e222, e333〉
1 2
3

→ 〈e112, e113, e221, e223, e331, e332〉

1 3
2

→ 〈e121, e131, e212, e232, e313, e323〉

2 3
1

→ 〈e211, e311, e122, e322, e133, e233〉

1
2
3

→ 〈e123, e132, e213, e231, e312, e321〉

11
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where we denote by 〈v1, . . . , vk〉 the k-dimensional complex vector subspace of C
27 obtained

by taking C-linear combinations of the vectors v1, . . . , vk . The complex one-dimensional
fixed subspace associated with each tableau is generated by the sum of the corresponding base
vectors,

e 1 2 3 � e111 + e222 + e333

e 1 2
3

� e112 + e113 + e221 + e223 + e331 + e332

e 1 3
2

� e121 + e131 + e212 + e232 + e313 + e323

e 2 3
1

� e211 + e311 + e122 + e322 + e133 + e233

e 1
2
3

� e123 + e132 + e213 + e231 + e312 + e321.

Passing to the quotient, this subspace of complex dimension 5 will therefore project down on
W̃α = P

26 as an embedded P
4.

In the completely symmetric case, we can use Young diagrams instead of Young tableaux,
obtaining a yet lower dimensional subspace, as the three subspaces corresponding to the Young
diagram are now part of the same subspace. Passing to the quotient we thus obtain an
embedded P

2.

In the case of an external magnetic field we will need to consider special Young diagrams
and tableaux with a privileged row that do not mix under permutations with the others. This
leads to even more complicated Young tableaux; in the following example we will consider
completely symmetric decorations, so we can just use marked Young diagrams:

Example 3.6. Case α = (2, i), q = 3. We will consider state 1 as the special (magnetic) one.
A natural basis for the complex space is

e11 e12 e13

e21 e22 e23

e31 e32 e33.

All possible marked Young diagrams, with the corresponding invariant subspaces are:

→ 〈e11〉
→ 〈e12, e13, e21, e31〉

→ 〈e22, e33〉
→ 〈e23, e32〉

The projective space associated with this symmetry is therefore a P
3 ⊂ W̃α = P

8.

4. Physical variables

In the previous section we presented the structure of the space M on which the renormalization
map acts; the space M contains all multiple-spin interactions that can possibly be generated
by the renormalization procedure and, as such, it is the natural space to consider for studying
the dynamics of the renormalization map. However, from the physical point of view, we are
usually interested in a restricted set of interactions, given, for instance, by pair interaction
between spins and coupling with an external magnetic field.

Following the reasoning in the previous section, we expect that this space, which we call
physical space and denote by P , can be given a natural structure of a product P

1 ×P
1. In fact,

12
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defining a pair interaction amounts to assigning a certain energy Js to two neighboring spins that
are in the same state (parallel) and energy Jd to the configuration for which they are in different
states (antiparallel). The two values Js and Jd are affected by the arbitrary choice of zero of
energy, thus, once more, we can define an equivalence relation on Boltzmann weights (zs, zd).
Equivalence classes are given in homogeneous coordinates by [zs : zd] = [z : w] ∈ P

1. The
coupling with an external magnetic field can be treated in the same way: on a Potts model we
choose a special state to be coupled to the field with energy H while all other states will have
energy H ; these values are again affected by the choice of zero of energy so that we have
another projective pair on Boltzmann weights, which we denote in the usual homogeneous
coordinates by [h : h ].

For a given hierarchical lattice, one has to define how the physical space P is mapped
into the dynamical space M . We will now present a canonical (and natural) way to embed
the magnetic field variables in M . Let Γ∞ be a hierarchical lattice defined by iterating a
decoration procedure D on an initial hypergraph Γ0. We introduce in M Γ∞ an auxiliary space
of 1-interactions P

1, given by the magnetic field variables [h : h ]; let M̃ Γ∞ = M Γ∞ × P
1.

For each decorated edge E of the decoration D , we attach to each core vertex one 1-edge
corresponding to the magnetic field variables; the auxiliary 1-edges will be decorated with the
identity edge; let the resulting decoration be D̃ . Finally, attach to each vertex of Γ0 a 1-edge
corresponding to the magnetic field variables; let the resulting hypergraph be Γ̃0 and let Γ̃∞ be
the hierarchical lattice generated by iteration of the decoration D̃ on Γ̃0. It is easy to check that
Γ̃∞ will have one auxiliary edge attached to each vertex, therefore the magnetic field variables
will induce a genuine coupling with an external magnetic field. It is important to note that
since the auxiliary edges are not decorated, the external magnetic field variables will act as
parameters of the renormalization map instead of being genuine dynamical variables. Recall
that, in the case of a magnetic field, one also has to take into account a restricted symmetry of
the states, as shown in the following example.

Example 4.1. Let us consider 2-interactions with a magnetic field. The dynamical space is
P

3 × P
1; with homogeneous coordinates given by

[z : z : z : z ], [h : h ].

The natural embedding is

[z : w] , [h : h ] �→ [z = z : z = w : z = z : z = w] , [h : h ] .

The situation for the pair-interaction variables is quite different, as we cannot define a canonical
embedding of the pair-interaction variables as we did for magnetic field variables. In fact, the
embedding depends on the particular hierarchical lattice we want to consider. In the following
examples we present a number of cases.

Example 4.2. The easiest situation is given by a model on a completely symmetric 2-uniform
hypergraph (i.e., a standard graph). In this case one maps directly the physical P

1 in the
dynamical P

1 with the identity map:

[z : w] �→ [z = z : z = w].

Example 4.3. Consider a model on a completely symmetric 3-uniform hypergraph without
external magnetic field and q � 3. As stated in the previous section, example 3.5, the
dynamical space is a P

2. Suppose we want to put 2-spin interactions along each side of the
triangle. This is a way to embed the projective pair [z : w] in the dynamical space:

[z : w] �→ [z = z3 : z = zw2 : z = w3].

13
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Figure 4. Decorated 4-edge analogous to the 3-edge in figure 2. A tetrahedron is split into four
smaller tetrahedrons that join each of the four faces of the original one with its barycenter.

In fact, if all three spins are in the same state we have three parallel pairs, i.e. z = z3; if two
spins are in the same state and the third one is in a different state, then we have one parallel
pair and a two antiparallel pairs, i.e. z = zw2; finally if all three spins are in different states,
then all pairs will be antiparallel, i.e. : z = w3.

Note that with the embedding defined in example 4.3, each side will be counted as many
times as the number of 3-edges that share that side. Sometimes this is undesirable, since such
a number can vary from side to side. In such cases one can add to the decorated edge some
auxiliary 2-edges that will not be decorated (exactly as we did in the case of magnetic field
variables) and that will be the edges carrying the physical pair interaction. This formally adds
to the dynamical space a new P

1 factor; again, since the auxiliary 2-edges are not decorated,
interactions belonging to this P

1 will be considered as a parameter of the renormalization map.

Example 4.4. Consider the decorated edge in figure 4; at the nth iteration each side of
the original tetrahedron will be shared by 2n 4-edges. If we want to avoid counting such
multiplicities, we need to attach to the decoration four additional auxiliary 2-edges, namely
the four sides that are inside the tetrahedron. These 2-edges will not be decorated, but they will
be those carrying the pair interaction of the physical space as in example 4.2; the dynamical
variables associated with such edges will therefore act as parameters in the renormalization
map. The dynamical space will be given by M = P

4 × P
1 and the embedding in this case is

[z : w] �→ [z = 1 : z = 1 : z = 1 : z = 1 : z = 1], [z = z : z = w].

Although the embedding of example 4.4 is constant in the P
4 factor of M , the

renormalization will create 4-edge interactions that will be carried out by variables belonging
to this factor.

As the examples suggest, the physical space P is mapped into the dynamical space
(possibly after extending M with new auxiliary interactions) as a submanifold; in general,
this submanifold is not preserved by the dynamics of the renormalization map. This amounts
to the well-known fact that the renormalization of pair interactions introduce, in general, new
multiple-spin interactions. In any case, once we obtain all thermodynamical functions in
the (possibly extended) dynamical space, it is easy to restrict to the physical space to obtain
thermodynamical functions in relevant coordinates.
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5. The Green current and the set of zeros of the partition function

As we showed, the generator of the renormalization map for hierarchical lattices can be
represented by a rational map on a complex multiprojective space. We refer the interested
reader to the appendices for a minimal technical introduction on the subject of iteration of such
maps. The key result we are going to use is that a rational map comes quite naturally associated
with a so-called Green current that can be thought as a differential form with distributional
coefficients with support on the unstable set of the map. Such a current is the limit under
pull-back of the standard Kähler form if the map satisfies two properties called dominance
and algebraic stability. Our goal is to show a connection between the Green current of the
renormalization map and the non-analyticity locus of the free energy of the hierarchical lattice
generated by the corresponding decoration. To prove such a connection we use results that
so far are only available for rational maps acting on projective spaces (not multi-projective
spaces); for this reason, in what follows, we will consider only uniform hypergraphs and
decorations, for which the renormalization map is acting on a projective space, although
everything (but theorem 5!) holds true in the more general setting.

Let us fix an α-uniform decorated edge E and let D be the decoration induced by E . The
renormalization map is RD : W̃α → W̃α ; let d denote the algebraic degree of RD , i.e. the
degree of the polynomials we obtain lifting the map to Wα .

Fix now an α-uniform hypergraph Γ0 and consider the zero set of the partition function
Z DnΓ0 of the n times decorated hypergraph DnΓ0. By equation (1), this set is just the
nth preimage of the zero set of Z Γ0 under the renormalization map. Such a zero set is a
codimension-1 algebraic variety that we will denote by LYn. If we consider the (normalized)
current of integration [LYn] on the variety LYn we can express its relation to the current of
integration [LY0] on the zeros LY0 associated with Γ0 in the following way:

[LYn] = 1

dn
((RD)n)∗[LY0].

Recall that the number of edges of the hypergraph DnΓ0 is dn times the number of edges of
Γ0; as Z DnΓ0 = Z Γ0 ◦ (RD)n, the free energy per edge of DnΓ0 is

FDnΓ0 = 1

deg Z Γ0

1

dn
log |Z Γ0 ◦ (RD)n|.

The last formula shows that the free energy F is just the pluripotential of the current supported
on the zero locus of the polynomial Z Γ0 ◦RDn

. In the limit n → ∞ the support of this current
coincides with the Lee–Yang [19, 20] and Fisher zero locus of the model on the hierarchical
lattice Γ∞. Results for this kind of limits have been found by Brolin [21], Lyubich [22] for
P

1 in the 1980s, by Favre–Jonnson [23] for holomorphic maps of P
2 in 2003. Very recently

Dinh and Sibony proved the following.

Theorem 5.1 (Dinh–Sibony [14]). Let f ∈ Hd(P
k) be a holomorphic map of degree d on

the projective space of complex dimension k, T its Green current. There exists a completely
invariant proper analytic subset E such that if H is a hypersurface of degree s in P

k which
does not contain any component of E, then

1

dn
f n∗[H ] → sT

where [H ] is the current of integration on H.

The maximal completely invariant proper subset E ⊃ E has been found [24] to be a finite
union of linear subspaces and bounds have been found for the maximal number of components
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of codimension 1 [25] that cannot be more than k + 1 (sharp) and for codimension 2 [26] that
is less than 4(k + 1)2 (possibly not sharp).

We recall (see appendix C for details) that, while rational maps on Ĉ are automatically
holomorphic, this is not true in general for rational maps in higher dimensional spaces; in
fact, holomorphic maps are such that the so-called indeterminacy set is empty. From the
physical point of view, the indeterminacy set contains all Boltzmann weights that cannot be
renormalized, i.e. such that applying the renormalization map to them gives all Boltzmann
weights equal to 0. Although renormalization maps are not in general holomorphic, their
restrictions on symmetrical interaction submanifold (see section 3) usually are. Moreover, the
requirement of being holomorphic is a technical assumption that can possibly be removed using
a more careful definition of the Green current. The connection is nevertheless interesting and
it is worthwhile to try to understand how properties of the decoration are related to regularity
properties of the corresponding renormalization map. As summarized in the appendix, we
need the map to enjoy two main properties in order for the Green current to be at least defined:
dominance and algebraic stability.

The dominance property states that the Jacobian determinant of the map should not be
identically zero. It is therefore very easy to check if a particular renormalization map enjoy
this property; nevertheless, it is interesting to point out that, in general, decoration that presents
some degeneracies will correspond to non-dominant maps. We now give two examples of
such degenerate decorations:

Example 5.2. As a first example consider a decoration such that the renormalization map is
invariant under permutations of Sα ; a 2-decoration suffices to illustrate the fact:

Zs1s2 = Zs2s1 .

This implies that the image of the map is an algebraic subvariety that in turn implies that
the map is not dominant. This degeneracy is in some sense removable as it can be ruled out
by naturally restricting the map to the invariant variety which corresponds to Sα-invariant
interactions.

Example 5.3. As a second example consider the following uniform decorated edge:

Z · Z 2 = Z 3.

In this case the 3-spin interactions can be expressed in terms of 2-spin interactions. Clearly the
map will not be surjective on the space of 3-spin interactions as it will provide just interactions
that can be described by 2-edges, which in turn form a subvariety of codimension 1. In such
cases one should again restrict to the appropriate space of interactions to obtain a dominant
map.

The other regularity condition we have to check is algebraic stability; this property is much
harder to verify than the dominance condition. In fact, algebraic stability is related to the
growth of the degrees of iterates of the renormalization map. It may happen that iterating
the map we obtain factors that are common to all coordinates and which therefore have to be
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Figure 5. Decoration generating the Cayley graph for the free group with two generators along
with some iterations. This is not the simplest decoration that generates the Cayley graph, although
this particular one has a renormalization map with common factors.

simplified; this operation lowers the degree of the map. In the maps studied so far, common
factors do appear, but only in the definition of the map (i.e., the first iteration); we believe
that once we simplify common factors which are possibly present at the first iteration, the
renormalization map should be algebraically stable. Also, from a mathematical point of view,
it would be quite important to prove algebraic stability for such maps, or at least to find
conditions in terms of the decorations in order to ensure that this property holds. In fact, a
characterization of algebraically stable maps is still lacking; for instance, it is not yet known
how to build nontrivial maps that are a priori algebraically stable.

Example 5.4. To give an example of the appearance of common factors we consider the model
shown in figure 5. The model can be given by a non-uniform decoration; in this decoration
we have two different kinds of one-dimensional edges (dotted and solid in the picture). The
resulting graph is also known as the Cayley graph of the free group on two generators.

If we are in the case without an external magnetic field, the renormalization map associated
with the decoration has common factors. Removing them corresponds to pruning all the
branches of the tree and leaving a one-dimensional chain; this equivalence was observed long
ago in [27]. This is the physical meaning to the idea of factoring out common factors in
such a model although one probably cannot always give such a physical interpretation to the
mathematical operation.
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Appendix A. Sum of decorated α-edges

In this appendix we define a natural sum operation on decorated edges. Let α = (r, i) and let
E1 and E2 be two decorated α-edges:

E1 = {V = (v1, . . . , vr ) � V0, E = Eβ1 � · · · � Eβp
},

E2 = {W = (w1, . . . , wr) � W0, F = Fγ1 � · · · � Fγq
},

we define their sum E1 +E2 to be the decorated α-edge obtained by taking the disjoint union of
the respective vertex and edge sets and then identifying surface vertices. The partition of the
resulting edge set will be given by the union of the partitions of the summands: more formally
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let Ṽ = (ṽ1, . . . , ṽr ) � V0 � W0. We define the collapsing map:

π : V � W → Ṽ ,

π(u) =
{

ṽk if u = vk or u = wk for some k

u otherwise, i.e. u ∈ V0 � W0,

then the edge sets are given by

Ẽδ � π∗(Eδ � Fδ) δ ∈ β ∪ γ,

and the sum decorated edge will be

E1 + E2 � {Ṽ , Ẽ}.
We can define the zero decorated α-edge as the decorated α-edge with r surface vertices, no
core vertices and no edges; we consider the zero decorated edge to be uniform

0α � {V = (v1, . . . , vr ) � ∅, E = ∅}.
Clearly the zero decorated edge is the null element of the sum operation. It is straightforward
to check that the conditional partition function Z

0α

I of the zero decorated edge 0α is constant.
Also, it is easy to check that given E1 and E2 two uniform decorated α-edges we have that the
renormalization map induced by the sum E1 + E2 is given by the following expression:

RE1+E2 = RE1 · RE2

where on the right-hand side the product is defined coordinatewise.

Appendix B. Pluripotential theory

In this appendix we give some basic notions about pluripotential theory which are useful in
the study of the dynamics of the RG action. We refer the interested reader to the appropriate
sections of [30, 31] for a more in-depth introduction.

Let M be a smooth manifold and D(M) the vector space of smooth real-valued functions
with compact support on M, endowed with the usual compact-open topology. The space of
distributions D′(M) is the vector space of continuous linear functional on D(M) endowed
with the usual weak topology.

Let � be the Laplace operator in C (as the two-dimensional real Euclidean space); given
a measure μ we define its potential as the distributional solution of the equation �Pμ = μ.
Functions that are local potentials of a positive measure μ are called subharmonic and are
characterized as follows:

Definition. Let � be an open domain of C. An upper semi-continuous function u : � →
[−∞, +∞[ is subharmonic if it is not identically equal to −∞ and it enjoys the subaverage
property, i.e. for all z0 ∈ �, for all r ∈ R

+ such that the closed disk of center z0 and radius r
is contained in �, we have

u(z0) � 1

2π

∫ 2π

0
u(z0 + reiθ ) dθ.

For example if f is an holomorphic function then u = log |f | is subharmonic and �u is
supported on the zeroes of f .

In the multidimensional setting we will need to use currents and plurisubharmonic
functions rather than distributions and subharmonic functions. We will now introduce the
appropriate definitions.
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Let Dp be the vector space of smooth differential p-forms with compact support endowed
with the compact-open topology. A current S of dimension p is a continuous linear functional
on Dp; the space of p-currents will be denoted as Dp ′ and will be given the weak topology.
For example, since one can associate the Dirac delta with a point, one can associate a p-current
with any p-dimensional submanifold N of M by integrating p-forms over N. Operations on
forms as exterior product with other forms and the exterior differential operator can act by
duality on the space of currents as well:

〈S ∧ ω, φ〉 � 〈S, ω ∧ φ〉 〈 dS, φ〉 � (−1)p+1〈S, dφ〉.
As a dual object to forms, a current S can naturally be pushed forward by a map f , provided
that the restriction of f on the support of S is proper (i.e., the preimage of compact sets is
compact). Moreover, if f is a proper submersion one can define a push-forward operation for
forms and therefore one can define a pull-back for currents. If the manifold has a complex
structure we should distinguish between the holomorphic and antiholomorphic part of a form.
A complex differential form of bidegree (p, q) can be written as:

Dp,q � φ =
∑

|I |=p|J |=q

φIJ dzI ∧ dz̄J .

A (p, p)-form is said to be positive if for all complex submanifolds Y of dimension p, its
restriction on Y is a nonnegative volume form; (p, q)-currents are defined by duality and
a (p, p)-current is said to be positive if it evaluates as a positive number on any positive
(p, p)-form.

Along with the exterior holomorphic ∂ and antiholomorphic ∂̄ differentiation we can
define two real operators d = ∂ + ∂̄ and dc = i

2π
(∂̄ − ∂). The second-order operator ddc is

going to replace the Laplacian operator in the multidimensional setting. We are now left to
introduce the analogous of subharmonic functions.

Definition. Let � be an open subset of C
n. An upper semi-continuous function u : � →

[−∞, ∞[ is plurisubharmonic (in short psh) in � if it is not identically equal to −∞ and it
enjoys the subaverage property when restricted to any one-dimensional disk, i.e. for all z0 ∈ �

and for all w ∈ C
n such that the one-dimensional complex disk z0 +wD̄ (where D̄ is the closed

unit disk in C) is contained in � one has

u(z0) � 1

2π

∫ 2π

0
u(z0 + weiθ ) dθ.

The space of psh functions enjoys an important compactness property:

Theorem. Let uj be a sequence of plurisubharmonic functions on a domain � ⊂ C
n. Assume

that for all compacts K ⊂ � the sequence is dominated by a psh function. Then either
uj → −∞ on all compact subsets of � or there exists a subsequence ujk

which converges in
L1

loc(�) to a psh function.

A function u ∈ L1
loc(�) is a.e. equal to a psh function the (1, 1)-current ddcu is positive;

conversely if S is a positive closed (1, 1)-current, there exists a psh function u such that u is a
local potential of S.

Appendix C. Projective spaces and rational dynamics

Consider the complex vector space C
n+1\{0} modulo the action of the multiplicative group

C
∗ by scalar multiplications. The resulting space is a complex manifold of dimension n
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called projective space P
n. The natural coordinates on the projective space are the so-called

homogeneous coordinates:

P
n � [z0 : z1 : · · · : zn] � π(z0, z1, . . . , zn),

where π is the projection map that defines the quotient. P
n comes naturally endowed with a

standard Kähler form ω given by the relation π∗ω = ddc log |z|.
A rational map of degree d over P

n is a map of the form:

f : [z0 : z1 : · · · : zn] �→ [P0 : P1 : · · · : Pn],

where Pj s are homogeneous polynomials of degree d with no nonzero common factors. The
map f can be lifted to a polynomial map F on the complex space up to nonzero multiplicative
factors. A rational map on P

n is said dominant if given any lift F, its Jacobian determinant
does not vanish identically. The set of dominant maps of degree d will be denoted by Md .
One then defines the indeterminacy set I � πF−1 ({0}).

Roughly speaking I is a bad set for the dynamics and good maps are such that I is small.
The space Hd ⊂ Md of maps such that I = ∅ is defined as the space of holomorphic maps.
In most applications a weaker condition on f ∈ Md suffices: suppose there is no integer n
and no codimension-1 hypersurface V such that f n(V ) ⊂ I ; then f is said to be algebraically
stable as the latter condition is equivalent to requiring that the degree of f n is dn.

A rational map f acts on the space of positive closed (1, 1)-currents by pull-back,
i.e. given a potential u of a current S (i.e., ddcu = π∗S), f ∗S is defined by the relation
π∗f ∗S = ddc(u ◦ F). Such an action is continuous provided that f is dominant. An
important result is the following.

Theorem (see [31]). Let d � 2f ∈ Md(P
N) be algebraically stable. Then the sequence

Tn � 1

dn
(f n)∗ω

converges to a closed positive (1, 1)-current T such that f ∗T = d · T . T is called the Green
current of f . A potential of T is called Green function.

The support of the Green current can be partially understood in a purely topological setting;
in fact, let us define the stable (or Fatou) set of the map as follows:

F = {p ∈ P
n s.t. ∃U � p open nbhd on which the family f k|U is equicontinuous}

J � P
n\F is called Julia set of f and is the unstable set for the dynamics; this set always

contains the support of the Green current (see [31]) that therefore assumes a definite topological
meaning.

A multiprojective space is just a product of p projective spaces; rational maps on such
spaces are those that are lifted to separately homogeneous polynomials. The notion of degree
becomes that of multi-degree, which is a square integer matrix of dimension p. Studying the
dynamics of rational maps on such spaces is more complicated and very few results have been
proved so far [29], but among these there is the existence of the Green current for algebraically
stable dominant maps.
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