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Abstract— This paper addresses the problem of partial state
feedback compensation for large scale discrete systems. The
eigenvalues of the closed-loop matrix should lie within a
designated region of the z-domain to satisfy both stability and
damping requirements. The system is to be compensated in
such a way that only the eigenvalues that lie outside the desired
region are affected. This is achieved through the use of the fast
matrix sector function to decompose the system without solving
for the eigenvalues. The decomposed system is then controlled
using LQR design techniques.

I. INTRODUCTION

The control of large scale systems, such as large space

structures[1] and networks[2], continues to provide challeng-

ing computational problems. For systems on the order of a

hundred states or more, the conventional algorithms, pole

placement and linear quadratic control, are computationally

impractical. With that, this paper expands on earlier work by

Misra et al [3], [4], who worked on partial compensation of

high order continuous systems, and shows the development

of a partial compensation technique in the discrete domain.
We first assume that the system is represented by its state

equations:

S : ẋ(k) = Ax(k) + Bu(k) (1)

where, x ∈ Rn and u ∈ Rm, n is assumed to be large. Often

it is computationally impractical to design a controller to

reassign all eigenvalues of the system through pole placement

or design an LQR controller.
In this paper, we introduce systematic approach to design

a stabilizing controller that also achieves desired damping

(ζ) and degree of stability (distance from the unit circle in

the z-domain of some desired value α). The objective of

this method is to design a state feedback that affects only

the eigenvalues of the system that do not satisfy the desired

damping and stability margin specifications. To do this, the

system is block triangularly decomposed as shown below:

S : ẋ(k) =

[
A11 A12

0 A22

]
x(k) +

[
B1

B2

]
u(k) (2)

The subsystem Sb : (A22,B2) contains the eigenvalues that

lie either outside the stability margin (α) or do not have the

desired damping (ζ).
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It should be mentioned that in [5], Saad proposes two

methods to decompose the system into subsystems based

on dominant and non-dominant eigenvalues. The first of

these methods utilizes subspace iteration with Chebyshev

acceleration [6], the second method applies Arnoldi process

to compute k largest eigenvalues of the state matrix. Both

of these methods are well suited for computation of eigen-

values of large sparse matrices; hence, they accomplish the

decomposition into dominant and non-dominant eigenvalue

sub-matrices efficiently. The downside of this process is that

k is not known a priori, and it cannot address damping or

degree of stability issues addressed in this paper.

In the work of Hench et al [7], the authors used a periodic

Riccati equation approach to accomplish the placement of

eigenvalues in a prescribed region bounded by ζ-curves.

There are differences in this work and the work done by

[7]. The scale of the systems considered in this paper is

much larger, making it necessary to separate the system

into two subsystems. One made of acceptable eigenvalues

and another containing all the eigenvalues that need to be

relocated. Unlike the present work, the approach in [7] uses

the solution of periodic ARE (Algebraic Riccati Equation)

which is computationally more expensive.

In [3], [4], the authors partitioned a large scale analog
system into subsystems using matrix sector functions and

then used LQR design to move the undesirable eigenvalues

to a designated region of acceptable stability and damping.

This paper modifies the method in [4] for use in the discrete
domain. This paper makes use of the more efficient matrix

sector algorithm proposed by Shieh et al [8], [9] instead of

Halley’s iteration formula for solving non-linear equations

[10], which was used in [4].

The layout of this paper is as follows: In Section 2, some

relevant information regarding matrix sector functions and

pole placement on a disk are reviewed. Section 3 describes

an efficient algorithm to isolate Sb from S along with the

algorithms to design a feedback controller that achieves

desired damping and stability margin specifications. This

algorithm is then illustrated with an example in Section 4.

II. Background

A. Matrix Sector Function

A generalized matrix sector function is to be used to

separate the eigenvalues of the system relative to their being

within a circular region in the λ-plane. If Ĉ is a circle of

radius ρ with a center located at the origin of the λ-plane,

as seen in Fig 1, the generalized bilinear transform, g(A), is

defined as:

g(A) = (A − ρIm)(A + ρIm)−1 (3)
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Fig. 1. Circular Matrix Sector Mapping

where A ∈ Cnxm with σ(A) = λi : i = 1, 2, · · · ,m, g(λi) � 0

and det(A + ρIm) � 0.

The fast matrix sector algorithm [8] is summarized in the

equations below:

Definitions
H(i) � [HT

1 (i),HT
2 (i)]T (4)

H̄(i) � [H̄T
1 (i), H̄T

2 (i)]T (5)

H(i) �
[
H1(i) H2(i)
H2(i) H1(i)

]
∈ Cnmxnm (6)

Initialization

H(0) � [Im, (gA)T ]T ∈ Cnmxm, n = 2 (7)

Iteration
H̄(i + 1) = Hk−1(i)H(i) (8)

H(i + 1) = H̄(i + 1)H̄−1
1 (i + 1) (9)

Termination

�����Hp(i) − Hp(i − 1)
����� < ε (10)

The recursive fast matrix algorithm should be terminated

when an acceptable error tolerance ε is reached. Upon

convergence, the desired generalized matrix sector function

is

S (0)
2

g(A) =
1

2
(Im + S 2g(a)) (11)

where,

S 2g(A) = lim
i→∞ H2(i) (12)

and the trace of S (0)
2

g(A) is equal to the number of eigenval-

ues of A that lie on the interior of the circle Ĉ. For more

information regarding this method refer to [8], [9], [11], [12]

and [13].

B. Pole Placement on a Disk

As done in [14] the eigenvalues of a matrix (A− γI)/r lie

in a unit circle about the origin if and only if there exists a

positive definite matrix P satisfying

(A − γI)T )

r
P

A − γI)

r
− P = −Q

r2
(13)

where Q(= CT C) is a positive semi-definite matrix and (A,C)

is an observable pair.

When under state feedback compensation (u = Fx), the

eigenvalues of (A + BF) will lie within a disk of radius r

and center γ if and only if there exists a positive definite

matrix P satisfying

−γ(A + BF)T P − γP(A + BF)+

(A + BF)T P(A + BF) + (γ2 − r2)P = −Q
(14)

where Q is a positive semi-definite matrix. In which case,

the feedback matrix F is given by

F = −(r2R + BT PB)−1BT P(A − γI)3 (15)

where R is any arbitrary positive definite matrix and P is the

symmetric positive definite solution to the Ricatti equation

below:

−Q =
(A − γI)T

r
P

(A − γI)

r
−

P
(A − γI)T

r
PB(r2R + BT PB)−1BT P

(A − γI)

r

(16)

and Q = CT C.

III. Main Results

A. Selection of Region

Before decomposing the system, a region needs to be

selected which has the desired damping and stability margin.

It is in our best interest to keep this area as large as

possible to maintain robustness and keep gains manageable.

The following is the development of an exact relationship

between the radius and center of a circle of maximum area

and the prescribed damping and stability.

1) Vertically Constrained Region: For our circular region,

the limiting distance will be either in the vertical or horizon-

tal direction. If it is limited in the vertical direction it will

be due to the ζ-curve (damping factor), as shown in Fig. 2.

If this is the case, the relationships for the center and radius

of the circle are developed below.

Given G(s) =
ω2

n

s2+2ζω2
n s+ω2

n
, a second order transfer function

in the s-plane has eigenvalues located at s1,2 = −ζωn ± jωn.

The equivalent eigenvalues in the z-plane are located at

z = esT |s1,2
= e−ζωnT∠(±ωnT

√
1 − ζ2) = r∠ ± Θ

which gives leads to the following three equations.

e−ζωnT = r (17)

ζωnT = ln r (18)
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Fig. 2. Vertically Constrained Region

ωnT
√

1 − ζ2 = Θ (19)

Taking the ratio of (18) and (19) yields

ζ√
1 − ζ2

=
−lnr
Θ

(20)

Then solve for r to obtain,

e

(
−ζΘ√
1−ζ2

)
= r (21)

Converting (19) and (21) to rectangular form yields:

Re = e

(
−ζΘ√
1−ζ2

)
cos(Θ) (22)

Im = e

(
−ζΘ√
1−ζ2

)
sin(Θ) (23)

Solving for the value of θ such that the vertical clearance

of the constant ζ-curve is maximized in terms of ζ yields:

Im′(Θ) =
−ζ√
1 − ζ2

e

(
−ζΘ√
1−ζ2

)
sin(Θ)+

e

(
−ζΘ√
1−ζ2

)
cos(Θ) = 0

(24)

ζ√
1 − ζ2

sin(Θ) = cos(Θ) (25)

Θ = tan−1

⎛⎜⎜⎜⎜⎜⎝
√

1 − ζ2

ζ

⎞⎟⎟⎟⎟⎟⎠ (26)

Plugging θ into the parametric equations for the curve, (22)

and (23), to find the points on the zeta curve that could

bound the maximum area circle in the z-plane satisfying our

requirements. This gives us:

Re = e

(
−ζ√
1−ζ2

tan−1

( √
1−ζ2
ζ

))
cos

(
tan−1

( √
1−ζ2

ζ

))
(27)

Im = e

(
−ζ√
1−ζ2

tan−1

( √
1−ζ2
ζ

))
sin

(
tan−1

( √
1−ζ2

ζ

))
(28)

Simplifying further yields

Re = ζe

(
−ζ√

1−zeta2
tan−1

( √
1−ζ2
ζ

))
(29)

Im =
√

1 − ζ2e

(
−ζ√
1−ζ2

tan−1

( √
1−ζ2
ζ

))
(30)

which restated in terms of the circular region are

rdisk = Im =
√

1 − ζ2e

(
−ζ√
1−ζ2

tan−1

( √
1−ζ2
ζ

))
(31)

cdisk =

⎛⎜⎜⎜⎜⎜⎜⎝Re = ζe

(
−ζ√

1−zeta2
tan−1

( √
1−ζ2
ζ

))
, 0

⎞⎟⎟⎟⎟⎟⎟⎠ (32)

2) Horizontally Constrained Region: The above shows

the relationships if the dominant constraint is the damping

factor. If the stability factor α has an effect such as Fig. 3,

the relationships are as follow:

x1 = −e

(
−ζπ√
1−ζ2

)
(33)

x2 = α (34)

where x1 is our left most boundary due to the ζ-curve and

x2 is the right most boundary due to the α-curve. This gives

us the following relationships:

rdisk =
x2 − x1

2
=
α + e

(
−ζπ√
1−ζ2

)

2
(35)

cdisk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
α − e

(
−ζπ√
1−ζ2

)

2
, 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (36)

Fig. 3. Horizontally Constrained Region
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B. Block Triangular Decomposition of the System

In this section, a method is developed to efficiently per-

form triangular decomposition on the controllable system

pair (A,B) such that

A =
[
A11 A12

0 A22

]
, B =

[
B1

B2

]
(37)

where the eigenvalues of A11 are in the desirable region and

the eigenvalues of A22 need to be relocated to the desired

region. One option to accomplish this is through Schur

decomposition and then rearranging the eigenvalues along

the diagonal [15]. Unfortunately, Schur decomposition is

computationally expensive and will incur inaccuracies when

used on large scale systems making the results unreliable.

Below, a matrix sector function approach will be used to

decompose the system into the form in (37).

As mentioned earlier, the eigenvalues of the system are to

be moved to a circular region that satisfies both a stability

and damping specification. After determining the location

of that circular region, center and radius, the system can

be separated into subsystems. To do this, the matrix sector

algorithm is applied to A′ = A − cdiskIn, which divides the

complex plane into two sectors.

After convergence, S 2(A) has eigenvalues at ±1 with

distinct eigenvectors. The next step is to perform a QR

decomposition on (S 2(A) − Im)

QT (S 2(A) − In) = R, R =
[
R11 R12

0 0

]
(38)

where R11 ∈ Rn1 xn1 and n2 = n−n1. The matrix Q can now

be used to transform the system (A, B) to the block triangular

form:

(A, B) � (QT AQ,QT B) �
([

A11 A12

0 A22

]
,

[
B1

B2

])
(39)

A11 ∈ Rn1 xn1 , A22 ∈ Rn2 xn2 , where A11 contains the

eigenvalues of the system that lie within the circular region

and A22 contains the eigenvalues of the system that lie

outside the circular region and may not meet the stability

and damping specifications, where

n2 << n. (40)

C. LQR Design

The last part is to design a controller for the subsystem

(A22, B2) that does not meet specifications. This is accom-

plished by solving the aforementioned Ricatti equation using

(A22, B2) as seen in (41).

−Q =
(A22 − γI)T

r
P

(A22 − γI)

r
−

P
(A22 − γI)T

r
PB2(r2R + BT

2 PB2)−1BT
2 P

(A22 − γI)

r

(41)

IV. Illustrative Example

In this section, an example is presented demonstrating the

effectiveness of this technique. For this example, a 100th

order system was created with 5 outlying eigenvalues and

9 marginal eigenvalues. This system was generated using

a random number generator and shifting the eigenvalues

toward the center of the desired region (ζ = 0.707 and α =
0.8). Nine of the points naturally fell outside of the circle.

Then five more points were added using a diagonal matrix,

D5 , that were further from the circle for demonstration

purposes as seen in (42), where Ψ is a randomly generated

matrix with eigenvalues centered around the center of our

desired region. The system is then transformed using an

arbitrary orthogonal matrix M (MMT = I).

A = M
[
Ψ 0

0 D5

]
MT ,D5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 0 0

0 λ2 0 0 0

0 0 λ3 0 0

0 0 0 λ4 0

0 0 0 0 λ5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(42)

For this example, the input matrix, B, was a randomly

generated matrix of size n × 10.
In Figure 4, the eigenvalues of the uncompensated system

are indicated by ’o’. The system was partitioned into a

”good” 86th order system and a ”bad” 14th order system.

The eigenvalues of the ”bad” subsystem were reassigned

using LQR design, while leaving the ”good” subsystem

unaffected. The eigenvalues of the final system are designated

by ’x’ in Figure 4. Without this technique, reassigning all

the eigenvalues to the desired region would have required a

100th order LQR problem rather than a relatively small 14th

order problem.
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Fig. 4. Compensated and Uncompensated Eigenvalues.

V. Conclusion

This paper presented a procedure for partial state feed-

back compensation of a large scale discrete system. The
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method shown here partitions the system into two subsystems

through the use of block triangular decomposition. A con-

troller is then designed to compensate the ”bad” subsystem,

moving eigenvalues to a desired region through the use of

LQR design techniques. This dramatically reduces the size

of the problem by only controlling eigenvalues out side of

desired specifications.
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