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In the recent 20 years, scheduling with learning effect has received considerable attention. However, considering the learning effect
along with release time is limited. In light of these observations, in this paper, we investigate a single-machine problem with sum
of processing times based learning and ready times where the objective is to minimize the makespan. For solving this problem, we
build a branch-and-bound algorithm and a heuristic algorithm for the optimal solution and near-optimal solution, respectively.The
computational experiments indicate that the branch-and-bound algorithm can perform well the problem instances up to 24 jobs
in terms of CPU time and node numbers, and the average error percentage of the proposed heuristic algorithm is less than 0.5%.

1. Introduction

In the classical scheduling models, most researchers consider
that the job processing times are all constant numbers. In
fact, it can be seen in many real situations that a production
time can be shortened if it is operated later due to the fact
that the efficiency of the production facility (e.g., a machine
or a worker) continuously improves with time. This situation
is named as the “learning effect” in the research community
[1, 2]. Furthermore, Biskup [3] provided a survey paper to
discuss different learning models in the scheduling research.

More recently, the learning effect has continued to receive
a lot of effort. Formore recent problemswith time-dependent
processing times on single-machine settings, we refer readers
to Cheng et al. [4], Eren andGüner [5, 6], Eren [7], Janaik and
Rudek [8], Toksarı et al. [9], Toksari and Güner [10], Wang
and Liu [11], Wang et al. [12], Yin et al. [13], Yin et al. [14–17],
Wu et al. [18–20], Wang et al. [21–23], Bai et al. [24], Vahedi-
Nouri et al. [25], Lu et al. [26], and so forth.

Meanwhile, the concept of the learning processwith ready
times is relatively limited. For example, Bachman and Janiak
[27] showed that the makespan single-machine job position-
based learning problem is NP-hard in the strong sense.
Following the same model by Bachman and Janiak [27],
Lee et al. [28] built exact and heuristic algorithms to solve

the optimal and near-optimal solutions, respectively. Eren
[29] formulated a nonlinear mathematical programming
model for the single-machine learning scheduling problem
with different ready times. Lee et al. [30] explore a single-
machine position-based learning scheduling problem with
ready times to minimize the sum of makespan and total
completion time. Wu and Liu [31] dealt with a single-
machine problem with the learning effect and release
times where the objective is to minimize the makespan.
They proposed a branch-and-bound algorithm and three
two-stage heuristic algorithms for the problem. Wu et al.
[32] considered a single-machine problem with the sum
of processing times based learning effect and release times
to minimize the total completion times. They developed a
branch-and-bound algorithm for the optimal solution. Then
they proposed a simulated-annealing heuristic algorithm for
a near-optimal solution. Wu et al. [33] considered a single-
machine problem with learning effect and ready times where
the objective is to minimize the total weighted completion
time. They developed a branch-and-bound algorithm and
a simulated annealing algorithm for the problem. Wu et al.
[34] considered a single-machine problem with the sum
of processing time based learning effect and release times
to minimize the total weighted completion times. They
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developed a branch-and-bound algorithm incorporating
with several dominance properties and two lower bounds for
the optimal solution and then used a genetic heuristic-based
algorithm for a near-optimal solution. J.-B. Wang and J.-J.
Wang [35] investigated a single-machine scheduling problem
with time-dependent processing times and group technology
assumption to minimize the makespan with ready times of
the jobs. They showed that the problem can be solved in
polynomial time when starting time-dependent processing
times and group technology simultaneously.

Besides, Dessouky [36] pointed out the importance of
ready time in semiconductor manufacturing where it is
common to find newer, moremodernmachines running side
by side with older, less efficient machines which are kept in
operation because of high replacement cost. Moreover, all
of the above works deal with job position-based learning.
Following Kuo and Yang [37] model, in this paper, we
explored the jobs with different release times into the sum of
processing time based learning mode.

The branch-and-boundmethod is a general algorithm for
finding optimal solutions of various optimization problems.
However, the execution time required is impractical when
the number of activities increases. Therefore, a branch-
and-bound algorithm usually incorporates with dominance
properties and lower bounds to derive the optimal solution
(Lee et al. [28, 30]). Thus, we also developed a branch-and-
bound algorithm incorporating with several dominances and
two lower bounds to derive the optimal solution.

This paper is organized as follows. In Section 2, we
define the problem formulation. In Section 3, we derive some
dominance properties and two lower bounds used in the
branch-and-bound method and state the descriptions of the
proposed heuristic. In Section 4, we report the results of a
computational experiment. Conclusions could be found in
the last section.

2. Problem Statement and Notation Definition

Below are stated some notations used throughout the paper.

𝑛 denotes the size number of given jobs.
𝑆, 𝑆 denote the sequences of 𝑛 jobs.
𝑝
𝑖
denotes the basic processing time of job 𝑖.

𝑟
𝑖
denotes the ready time of job 𝑖.

𝐶
𝑖
(𝑆) is defined as the completion time of job 𝑖

scheduled in a sequence 𝑆.
𝑎 denotes the learning effect with 𝑎 < 0.
𝑝
[𝑖]
(𝑆) denotes the basic processing time for the job

scheduled in the 𝑖th position in 𝑆.
𝑟
[𝑖]
(𝑆) denotes the ready time of a job scheduled in the

𝑖th position in 𝑆.
𝐶
[𝑖]
(𝑆) denotes the completion time of a job scheduled

in the 𝑖th position in 𝑆.
𝑝
(1)
≤ 𝑝
(2)
≤ ⋅ ⋅ ⋅ ≤ 𝑝

(𝑛)
denotes a nondecreasing order

of processing times 𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
.

𝑟
(1)
≤ 𝑟
(2)
≤ ⋅ ⋅ ⋅ ≤ 𝑟

(𝑛)
denotes a nondecreasing order

of ready times 𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛
.

At first, we assume that there are n given jobs to be
operated on a single machine. Let each job 𝑗 have its
processing time 𝑝

𝑗
and a ready time 𝑟

𝑗
. Due to the learning

effect, we assume that the actual processing time of job 𝑗 is
𝑝
𝑗𝑟
= 𝑝
𝑗
(1 + ∑

𝑟−1

𝑙=1
𝑝
[𝑙]
)
𝑎 if it is scheduled in the 𝑟th position

where 𝑎 < 0 is a learning ratio common for all jobs. The
objective of this paper is tominimize themakespan of 𝑛 given
jobs in a sequence.

3. Solution Methods

Due to the fact that the proposed problem is a difficult one, we
attempt to use a branch-and-bound method and a heuristic
algorithm for this problem. In order to speed up the searching
process, we derive several dominance propositions and two
lower bounds used in the branch-and-bound method.

Next, we derive five properties based on a pairwise
interchange of two adjacent jobs.The proofs of Propositions 2
to 5 are omitted since they are similar to that of Proposition 1.

Proposition 1. If 𝑝
𝑖
< 𝑝
𝑗
andmax{𝑟

𝑖
, 𝑟
𝑗
} ≤ 𝐴, then there is an

optimal schedule in which job 𝑖 is scheduled before job 𝑗.

Proof. Consider two sequences 𝑆 = (𝜋, 𝐽
𝑖
, 𝐽
𝑗
, 𝜋

) and 𝑆 =

(𝜋, 𝐽
𝑗
, 𝐽
𝑖
, 𝜋

), where 𝜋 and 𝜋 denote partial sequences. To

show that 𝑆 dominates 𝑆, it suffices to show that 𝐶
𝑗
(𝑆) −

𝐶
𝑖
(𝑆

) < 0. In addition, let 𝐴 be the completion time of the

last job in the subsequence 𝜋. Since max{𝑟
𝑖
, 𝑟
𝑗
} ≤ 𝐴, we have

𝐶
𝑖
(𝑆) = 𝐴 + 𝑝

𝑖
(1 +

𝑟−1

∑

𝑙=1

𝑝
[𝑙]
)

𝑎

,

𝐶
𝑗
(𝑆) = 𝐴 + 𝑝

𝑖
(1 +

𝑟−1

∑

𝑙=1

𝑝
[𝑙]
)

𝑎

+ 𝑝
𝑗
(1 +

𝑟−1

∑

𝑙=1

𝑝
[𝑙]
+ 𝑝
𝑖
)

𝑎

,

𝐶
𝑗
(𝑆

) = 𝐴 + 𝑝

𝑗
(1 +

𝑟−1

∑

𝑙=1

𝑝
[𝑙]
)

𝑎

,

(1)

𝐶
𝑖
(𝑆

) = 𝐴 + 𝑝

𝑗
(1 +

𝑟−1

∑

𝑙=1

𝑝
[𝑙]
)

𝑎

+ 𝑝
𝑖
(1 +

𝑟−1

∑

𝑙=1

𝑝
[𝑙]
+ 𝑝
𝑗
)

𝑎

.

(2)
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After taking the difference of (1) and (2), we have

𝐶
𝑖
(𝑆

) − 𝐶
𝑗
(𝑆) = (𝑝

𝑗
− 𝑝
𝑖
)(1 +

𝑟−1

∑

𝑙=1

𝑝
[𝑙]
)

𝑎

+ 𝑝
𝑖
(1 +

𝑟−1

∑

𝑙=1

𝑝
[𝑙]
+ 𝑝
𝑗
)

𝑎

− 𝑝
𝑗
(1 +

𝑟−1

∑

𝑙=1

𝑝
[𝑙]
+ 𝑝
𝑖
)

𝑎

.

(3)

On substituting 𝜆 = 𝑝
𝑗
/𝑝
𝑖
, V = (1 + ∑𝑟−1

𝑙=1
𝑝
[𝑙]
), and 𝑥 =

(𝑝
𝑖
/∑
𝑛

𝑙=1
𝑝
𝑙
) into (3) and simplifying, we obtain

𝐶
𝑖
(𝑆

) − 𝐶
𝑗
(𝑆) = 𝑝

𝑖
V𝑎 [(𝜆 − 1) + (1 + 𝜆𝑥)𝑎 − 𝜆 (1 + 𝑥)𝑎] .

(4)

Equation (4) can be easily obtained by taking the first and
the second derivatives to 𝜆 for 𝜆 ≥ 1, 𝑎 ≤ 0, and 𝑥 > 0, and
we have 𝐶

𝑖
(𝑆

) − 𝐶
𝑗
(𝑆) > 0. Therefore, 𝑆 dominates 𝑆.

Proposition 2. If 𝑟
𝑖
≤ 𝐴 ≤ 𝑟

𝑗
≤ 𝐴 + 𝑝

𝑖
(1 + ∑

𝑟−1

𝑙=1
𝑝
[𝑙]
)

𝑎

and
𝑝
𝑖
< 𝑝
𝑗
, then 𝑆 dominates 𝑆.

Proposition 3. If 𝐴 ≥ 𝑟
𝑖
and 𝐴 + 𝑝

𝑖
(1 + ∑

𝑟−1

𝑙=1
𝑝
[𝑙]
)

𝑎

< 𝑟
𝑗
, then

there is an optimal schedule in which job 𝑖 is scheduled before
job 𝑗.

Proposition 4. If 𝐴 ≤ 𝑟
𝑖
≤ 𝑟
𝑗
, 𝑟
𝑖
+ 𝑝
𝑖
(1 + ∑

𝑟−1

𝑙=1
𝑝
[𝑙]
)
𝑎
≥ 𝑟
𝑗
,

and 𝑝
𝑖
< 𝑝
𝑗
, then there is an optimal schedule in which job 𝑖 is

scheduled before job 𝑗.

Proposition 5. If 𝐴 ≤ 𝑟
𝑖
and 𝑟
𝑖
+ 𝑝
𝑖
(1 + ∑

𝑟−1

𝑙=1
𝑝
[𝑙]
)

𝑎

≥ 𝑟
𝑗
, then

there is an optimal schedule in which job 𝑖 is scheduled before
job 𝑗.

In what follows, two more properties to determine the
ordering of the remaining unscheduled jobs are developed.
Let 𝑆 = (𝜋, 𝜋𝑐) and 𝑆

1
= (𝜋, 𝜋


) be two sequences of jobs

in which 𝜋 denotes the scheduled part containing 𝑘 jobs,
𝜋
𝑐 denotes the unscheduled part, and the jobs in 𝜋 are

scheduled in the SPT rule; that is, 𝑝
(𝑘+1)

≤ 𝑝
(𝑘+2)

≤ ⋅ ⋅ ⋅ ≤

𝑝
(𝑛)
.

Proposition 6. If there exists job 𝑗 ∈ 𝜋
𝑐 such that

max{𝐶
[𝑘−1]

(𝑆), 𝑟
𝑗
} + 𝑝
𝑗
(1 + ∑

𝑘

𝑙=1
𝑝
[𝑙]
)

𝑎

< 𝑟
[𝑘]
, then 𝑆 = (𝜋, 𝜋𝑐)

is a dominated sequence.

Proposition 7. If 𝐶
[𝑘]
(𝑆
1
) > max

𝑗∈𝜋
𝑐{𝑟
𝑗
}, then 𝑆

1
= (𝜋, 𝜋


)

dominates sequences of the type (𝜋, 𝜋𝑐) for any unscheduled
sequence 𝜋𝑐.

Following that, we will propose two simple lower bounds
to curtail the branching tree. According to the definition, the
completion time for the (𝑘 + 1)th job is given by

𝐶
[𝑘+1]

(𝑆) = max {𝐶
[𝑘]
(𝑆) , 𝑟
[𝑘+1]

} + 𝑝
[𝑘+1]

(1 +

𝑘

∑

𝑙=1

𝑝
[𝑙]
)

𝑎

≥ 𝐶
[𝑘]
(𝑆) + 𝑝

[𝑘+1]
(1 +

𝑘

∑

𝑙=1

𝑝
[𝑙]
)

𝑎

.

(5)

The makespan for 𝑆 is easily obtained as follows:

𝐶
[𝑛]
(𝑆) ≥ 𝐶

[𝑘]
(𝑆) +

𝑛−𝑘

∑

𝑗=1

𝑝
[𝑘+𝑗]

(1 +

𝑘

∑

𝑙=1

𝑝
[𝑙]
+

𝑗−1

∑

𝑙=1

𝑝
[𝑘+𝑙]
)

𝑎

.

(6)

According to (6), we have

lb
1
= 𝐶
[𝑘]
(𝑆) +

𝑛−𝑘

∑

𝑗=1

𝑝
(𝑘+𝑗)

(1 +

𝑘

∑

𝑙=1

𝑝
[𝑙]
+

𝑗−1

∑

𝑙=1

𝑝
(𝑛−𝑘−𝑙+1)

)

𝑎

,

(7)

where 𝑝
(𝑘+1)

≤ 𝑝
(𝑘+2)

≤ ⋅ ⋅ ⋅ ≤ 𝑝
(𝑛)
. In a similar way, we have

lb
2
= max
1≤𝑗≤𝑛−𝑘

{

{

{

𝑟
∗

(𝑘+𝑗)
+

𝑛−𝑘

∑

𝑗=1

𝑝
∗

(𝑘+𝑗)
(1 +

𝑘

∑

𝑙=1

𝑝
[𝑙]

+

𝑗−1

∑

𝑙=1

𝑝
∗

(𝑛−𝑘−𝑙+1)
)

𝑎

}

}

}

,

(8)

where𝑝∗
(𝑘+1)

≤ 𝑝
∗

(𝑘+2)
≤ ⋅ ⋅ ⋅ ≤ 𝑝

∗

(𝑛)
denote the processing times

of the unscheduled jobs arranged in a nondecreasing order.
In order to make the lower bound tighter, we choose the

maximum value from (7) and (8) as the lower bound.That is,

lb = max {lb
1
, lb
2
} . (9)

A typical approach to a NP-hard problem is to provide a
heuristic algorithm. In what follows, a hybrid SPT heuristic
algorithm is proposed. Chen et al. [38] used the concept
hybrid to move from local optimal solutions to near-optimal
solutions. Liu and MacCarthy [39] used to arrange jobs in
a nondecreasing order of weight-factors of processing time
and their corresponding ready time for jobs for the flow time
criterion. Thus, we attempt to adopt a dynamic weight which
is dependent on the job size due to learning effect. The steps
of the proposed algorithm are described as follows.

The details of the first heuristic algorithm (HA) are
provided as shown in Algorithm 1.

The complexities of each stage in the proposed heuristic
algorithm are 𝑂(𝑛2). Therefore, the complexity for the pro-
posed heuristic algorithm is 𝑂((𝑘 + 1)𝑛2).
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Input 𝐽 = {𝐽
1
, 𝐽
2
, . . . , 𝐽

𝑛
}, 𝑛, and 𝑘 = [𝑛/2];

For 𝑙 ← 1 to 𝑘 + 1 do
Set 𝛼 = (𝑙 − 1)/𝑡
For 𝑖 ← 1 to 𝑛 do
Choose job 𝐽

𝑢
from 𝐽 with min

𝑗∈𝐽
{𝛼𝑝
𝑗
+ (1 − 𝛼)𝑟

𝑗
} to be placed job 𝐽

𝑢
in the ith position

Enddo
enddo
Output sol(𝑆

1
), sol(𝑆

2
), . . . , sol(𝑆

𝑘+1
) and min{sol(𝑆

1
), sol(𝑆

2
), . . . , sol(𝑆

𝑘+1
)}.

End

Algorithm 1: HA algorithm.

4. Simulation Results

In this section we conduct a computational experiment to
evaluate the performances of all proposed algorithms. All
the algorithms were coded in Fortran and run on Compaq
Visual Fortran version 6.6 on a 3.4GHz Pentium 4 CPU
with 1GB RAM on Windows XP. Following Reeves [40]
setting, we generated the job processing time from a uniform
distribution 𝑈(1, 20) and generated job ready times from
another uniform distribution𝑈(0, 20𝑛𝜆), where 𝜆 is taken as
the values 1/𝑛, 0.25, 0.5, 0.75, and 1.

For the branch-and-bound algorithm, we reported the
average and the maximum numbers of nodes and the average
and the maximum execution time (in seconds). For the
heuristic algorithms, we reported the mean and the maxi-
mum error percentages. The error is defined as

(𝐻 − 𝑂
∗
)

𝑂
∗

, (10)

where 𝐻 and 𝑂∗ are the solutions obtained from the
heuristic algorithm and the branch-and-bound algorithm,
respectively.

To evaluate performances of the proposed propositions
and lower bounds, in the first part, we set the number of
jobs to 10 and set the learning effect as the value of −0.2.
The branch-and-bound algorithmwith neither lower bounds
nor dominance properties was used as the base, and the
dominance properties were included one each time. The
results were given in Figure 1. It can be observed that all
the proposed propositions are useful in the branch-and-
bound algorithm, especially Propositions 1, 6, and 7 and
lb
1
.
To investigate the impact of the control variable 𝜆, in the

second part, we set the number of jobs to 12, the learning
effect 𝑎 as the values of −0.05, −0.1, −0.15, and −0.2, and the
control variable 𝜆 as the values of 1/𝑛 and from 0.2 to 1, with
a jump of 0.05 each time. For each condition, 1000 instances
were randomly generated. The results were summarized in
Figures 2 and 3. It can be observed in Figure 2 that when
the learning effect is fixed, the average number of nodes
in the branch-and-bound algorithm first increases and then
decreases as 𝜆 increases. It can be observed that Proposition 7
is useful in that case since the job completion time for
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Figure 3: The performance of heuristic algorithm over 𝜆 and 𝑎.

the partial scheduled jobs is easily larger than the maximal
ready time of the unscheduled jobs in small value 𝜆 case.
On the other hand, when the value of 𝜆 becomes larger,
Proposition 6 becomes useful in that case. The similar
behavior can be seen in Figure 3. The mean error decreased
to zero as the value of 𝜆 became larger.

To evaluate the impact of learning effect, in the third
part we set the job size to 12, the learning effect to from
−0.2 to −0.05 with a jump of 0.025 each time, and 𝜆 to the
values of 1/𝑛, 0.25, 0.5, 0.75, and 1. We test a total of 35 cases
for this part. We generated 1000 instances for each case and
summarized the results in Figures 4 and 5. Figure 4 indicated
that themeannumber of nodes increases as the learning effect
becomes strong when 𝜆 = 1/𝑛, 0.25, and 0.5. As the learning
effect is stronger, Proposition 7 is less efficient since it is more
difficult for the job completion time to surpass the maximal
job ready time. Meanwhile, the mean number of nodes
decreases as the learning effect becomes stronger when 𝜆 =
0.75 and 1. When the value of 𝜆 becomes large, Proposition 6
becomes useful. Figure 5 showed that the performance of HA
algorithm performs very well with average error of less than
0.0045.

To evaluate the performances of all proposed algorithms
over different parameters, in the fourth part we set the
number of jobs to 12, 16, 20, and 24, the control variable 𝜃
to the values of 1/𝑛, 0.25, 0.5, 0.75, and 1, and the learning
effect 𝑎 to the values of −0.05, −0.1, −0.15, and −0.2 (note
that if the learning effect took values less than −0.2, then the
job processing timewould approach zero very fast.Therefore,
it was set to take values no less than −0.2). We generated
100 instances randomly for each case and summarized all the
results in Table 1.

As shown in Table 1, regardless of 𝑛 or learning rate varia-
tions, all the instances at 𝜆 = 1/𝑛 are easily found out to be an
optimal solution since Proposition 7 is powerful.On the other
hand, the instances easily are solved out when the value of 𝜆
is getting larger due to Proposition 6. It also can be seen that
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Figure 4: The performance of branch-and-bound algorithm over
different learning effect.
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Figure 5: The performance of heuristic algorithm over different
learning effect.

the number of nodes becomes exponentially as the number of
jobs increases larger. When fixed 𝑛 = 24, there are 11 cases in
which the branch-and-bound algorithm took larger than 108
nodes to solve out the instances. It can be found that the worst
performance is located at case (𝑛, 𝑎, 𝜆) = (24, −0.1, 0.25)with
9.9 × 10

8 nodes and 8322 seconds. Furthermore, Figure 6
indicated that there is no clear trend. Figure 7 further showed
that the branch-and-bound algorithm can solve most of the
problems in a reasonable amount of time when the job size is
less than or equal to 24, excluding some difficult instances.
For the performance of the proposed heuristic algorithm,
out of the 80 evaluations, Table 1 indicated that all mean
error percentages are less than 0.5%. Even in all difficult
cases at 𝜆 = 0.25 the performance of proposed algorithm
was not affected. Moreover, HA also was not affected as the
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Table 1: The performance of the branch-and-bound and the heuristic algorithms.

𝑛 𝑎 𝜆

Branch-and-bound algorithm HA
Node CPU time (sec.) Error

Mean Max Mean Max Mean Max

12

−0.05

1/𝑛 17 123 0.0008 0.0156 0.0017 0.0176
0.25 158 1672 0.0048 0.0047 0.0012 0.0187
0.50 374 4711 0.0058 0.0625 0.0010 0.0172
0.75 666 17380 0.0092 0.2500 0.0001 0.0053
1.00 213 7429 0.0033 0.0938 0.0001 0.0048

−0.10

1/𝑛 9 55 0.0009 0.0156 0.0022 0.0079
0.25 244 2207 0.0053 0.0312 0.0014 0.0121
0.50 881 14373 0.0116 0.1562 0.0005 0.0142
0.75 486 17778 0.0062 0.1875 0.0003 0.0119
1.00 102 1447 0.0020 0.0312 0.0002 0.0083

−0.15

1/𝑛 10 119 0.0011 0.0156 0.0030 0.0125
0.25 346 3263 0.0070 0.0469 0.0019 0.0387
0.50 1169 23592 0.0148 0.2656 0.0005 0.0186
0.75 180 3484 0.0025 0.0312 0.0002 0.0096
1.00 70 841 0.0008 0.0156 0.0003 0.0129

−0.20

1/𝑛 13 224 0.0019 0.0156 0.0004 0.0151
0.25 678 8671 0.0125 0.1562 0.0022 0.0215
0.50 440 5711 0.0059 0.0781 0.0008 0.0185
0.75 110 1852 0.0017 0.0312 0.0005 0.0121
1.00 48 269 0.0014 0.0156 0.0000 0.0045

16

−0.05

1/𝑛 48 719 0.0066 0.0781 0.0009 0.0039
0.25 5431 131044 0.3069 5.5469 0.0006 0.0086
0.50 38532 1411457 0.8681 31.8281 0.0008 0.0116
0.75 15999 1107504 0.3728 25.7812 0.0001 0.0040
1.00 870 16849 0.0211 0.3750 0.0001 0.0046

−0.10

1/𝑛 64 673 0.0081 0.0781 0.0022 0.0083
0.25 13367 859718 0.5369 29.1875 0.0012 0.0184
0.50 21592 535276 0.4861 10.6562 0.0002 0.0118
0.75 1925 54132 0.0526 1.5469 0.0003 0.0094
1.00 261 2075 0.0076 0.0469 0.0001 0.0033

−0.15

1/𝑛 66 369 0.0078 0.0469 0.0038 0.0180
0.25 19822 712421 0.6286 14.0938 0.0010 0.0092
0.50 54197 2918302 1.1222 53.7500 0.0002 0.0066
0.75 1801 109046 0.0478 2.9531 0.0001 0.0050
1.00 197 2892 0.0062 0.0781 0.0000 0.0017

−0.20

1/𝑛 171 4282 0.0184 0.3906 0.0038 0.0107
0.25 27159 725798 0.8030 16.3594 0.0015 0.0208
0.50 10999 712605 0.2536 16.3750 0.0005 0.0127
0.75 320 4508 0.0087 0.1406 0.0000 0.0040
1.00 109 2101 0.0031 0.0625 0.0001 0.0068

−0.05

1/𝑛 158 1761 0.0253 0.2812 0.0009 0.0041
0.25 337842 7781036 23.2809 468.5000 0.0007 0.0062
0.50 1676257 59366260 39.0003 1204.8750 0.0001 0.0048
0.75 27610 1036801 0.7211 26.7188 0.0001 0.0033
1.00 3704 182198 0.0926 4.0625 0.0000 0.0026
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Table 1: Continued.

𝑛 𝑎 𝜆

Branch-and-bound algorithm HA
Node CPU time (sec.) Error

Mean Max Mean Max Mean Max

−0.10

1/𝑛 147 1100 0.0265 0.1875 0.0020 0.0064
0.25 525486 18272556 29.7661 931.7031 0.0009 0.0076
0.50 1104005 58152896 25.7080 1319.7812 0.0001 0.0049
0.75 4288 121994 0.1178 3.4219 0.0000 0.0033
1.00 1286 24316 0.0040 0.8594 0.0000 0.0000

−0.15

1/𝑛 357 5056 0.0590 0.7500 0.0027 0.0127
20 0.25 1394787 35061512 54.7898 1016.5000 0.0010 0.0096

0.50 98518 3076627 2.7577 100.0469 0.0000 0.0030
0.75 5682 391725 0.1486 9.4219 0.0000 0.0000
1.00 1104 76371 0.0314 2.1250 0.0001 0.0028

−0.20

1/𝑛 458 8952 0.0720 1.1719 0.0040 0.0105
0.25 2498437 44522213 77.4317 1213.4531 0.0012 0.0095
0.50 11662 493749 0.3208 12.7500 0.0002 0.0052
0.75 543 5827 0.0161 0.1406 0.0001 0.0035
1.00 317 5588 0.0097 0.1562 0.0000 0.0000

24

−0.05

1/𝑛 350 9729 0.0876 2.1250 0.0009 0.0036
0.25 8305284 76961550 829.5079 6601.4219 0.0004 0.0046
0.50 6064502 66135367 216.9024 2553.3438 0.0002 0.0044
0.75 430956 16808123 13.7014 507.8281 0.0000 0.0000
1.00 14553 288343 0.4666 6.4531 0.0000 0.0000

−0.10

1/𝑛 616 9924 0.1622 2.3750 0.0017 0.0046
0.25 16901968 99754077 1432.9100 8322.3906 0.0008 0.0078
0.50 3412720 78241619 119.5013 2819.4062 0.0000 0.0043
0.75 173689 11582237 4.8338 279.3125 0.0000 0.0028
1.00 2911 82129 0.1058 2.7500 0.0000 0.0000

−0.15

1/𝑛 562 6245 0.1494 1.5312 0.0027 0.0102
0.25 9840876 79790848 558.4099 7802.9844 0.0006 0.0040
0.50 370863 13626535 13.3567 479.3594 0.0000 0.0047
0.75 3971 53339 0.1498 2.1406 0.0000 0.0000
1.00 2929 194770 0.1219 8.4688 0.0000 0.0000

−0.20

1/𝑛 2043 67463 0.5033 15.7969 0.0044 0.0122
0.25 10286808 99187625 504.8521 7724.5156 0.0005 0.0076
0.50 30923 562049 0.9963 14.6250 0.0000 0.0042
0.75 1685 28692 0.0706 1.0625 0.0001 0.0029
1.00 431 5241 0.0184 0.1719 0.0000 0.0021

values of learning rate or release time vary because all of the
maximum values of the worst cases of the algorithms were
less than 5%. Thus, HA algorithm is recommended due to its
accuracy.

5. Conclusions

In this paper we studied a single-machine scheduling prob-
lem tominimize themakespan.We considered job processing

times as the decreasing functions of their already processed
jobs and all the jobs have their different ready times. Due
to the fact that the same problem without a learning effect
has been NP-hard one, we then proposed a branch-and-
bound algorithm and a heuristic algorithm for this prob-
lem.

The results showed that the branch-and-bound algorithm
can solve the instances up to 𝑛 = 24, and the proposed
heuristic HA is very accurate.
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