
On the Quadratic Eigenvalue Complementarity Problem

Carmo Brás∗ , Alfredo N. Iusem† , Joaquim J. Júdice‡
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Abstract

We introduce several new results on the Quadratic Eigenvalue Complementarity Problem
(QEiCP), focusing on the nonsymmetric case, i,e, without making symmetry assumptions on
the matrices defining the problem. First we establish a new sufficient condition for existence of
solutions of this problem, which is somewhat more manageable than previously existent ones.
This condition works through the introduction of auxiliary variables which leads to the reduction
of QEiCP to an Eigenvalue Complementarity Problem (EiCP) in higher dimension. Hence, this
reduction suggests a new strategy for solving QEiCP, which is also analyzed in the paper. We
also present an upper bound for the number of solutions of QEiCP and exhibit some examples of
instances of QEiCP whose solution set has large cardinality, without attaining though the just
mentioned upper bound. We also investigate the numerical solution of the QEiCP by exploiting
a nonlinear programming and a variational inequality formulations of QEiCP. Some numerical
experiments are reported and illustrate the benefits and drawbacks of using these formulations
for solving the QEiCP in practice.
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1 Introduction

Given matrices B, C ∈ Rn×n, the Eigenvalue Complementarity Problem (to be denoted EiCP(B,C),
see e.g. [19] and [20]), consists of finding (λ, x, w) ∈ R× Rn × Rn such that

w = λBx− Cx (1)
w ≥ 0, x ≥ 0 (2)

xtw = 0 (3)
etx = 1, (4)

with e = (1, 1, . . . , 1)t ∈ Rn. The last constraint has been introduced, without loss of generality,
in order to prevent the x component of a solution to vanish. Usually, the matrix B is assumed to
be positive definite. In this paper, our basic assumption is the strict copositivity (SC) of B (see
Definition 1(i) in Section 2, and note that PD matrices are SC). The problem has many applications
in engineering (see [17], [20]), and can be seen as a generalization of the well-known Generalized
Eigenvalue Problem, denoted GEiP (see e.g. [9]). Indeed, GEiP consists of solving just (1) with
w = 0, and a solution (λ, x) of GEiP is just an eigenvalue and eigenvector of the matrix B−1C
in the usual sense, when B is nonsingular. If a triplet (λ, x, w) solves EiCP, then the scalar λ is
called a complementary eigenvalue and x is a complementary eigenvector associated to λ for the
pair (B, C). The condition xtw = 0 and the nonnegative requirements on x and w imply that either
xi = 0 or wi = 0 for 1 ≤ i ≤ n. These two variables are called complementary.

It is easy to prove that under strict copositivity of B, EiCP(B, C) always has a solution,
because it can be reformulated as the Variational Inequality Problem VIP(F̄ ,Ω) with feasible set
Ω = {x ∈ Rn : etx = 1, x ≥ 0} and operator F̄ : Ω → Rn given by

F̄ (x) =
xtCx

xtBx
Bx− Cx,

see [13]. Note that F̄ is continuous in Ω as a consequence of the strict copositivity of B, and that Ω
is convex and compact. It is well known that these two conditions ensure existence of solutions of
VIP(F̄ ,Ω) (see e.g. [4]). The reformulation of EiCP as a variational inequality problem is further
developed in Section 3.

If the matrices B and C are both symmetric, then EiCP is called symmetric and reduces to
the problem of finding a Stationary Point (SP) of the so-called Rayleigh Quotient function on the
simplex Ω (see, e.g. [19, 20]), which is just a SP of the following Standard Quadratic Fractional
Program

Maximize
xtCx

xtBx
subject to etx = 1

x ≥ 0.
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A number of techniques have been proposed for solving the EiCP and its extensions, see e.g.
[1], [2], [6], [7], [11], [12], [13], [14], [16], [18] and [22]. As expected, the symmetric EiCP is easier
to solve.

Recently an extension of the EiCP has been introduced in [21], where some applications are
highlighted. It has been named Quadratic Eigenvalue Complementarity Problem (QEiCP), and it
differs from EiCP through the existence of an additional quadratic term on λ. Its formal definition
follows.

Given A, B,C ∈ Rn×n, QEiCP(A, B,C) consists of finding (λ, x, w) ∈ R× Rn × Rn such that

w = λ2Ax + λBx + Cx, (5)

w ≥ 0, x ≥ 0, (6)

xtw = 0, (7)

etx = 1, (8)

where, as before, e = (1, 1, . . . , 1)t ∈ Rn. As in the case of the EiCP, (8) has been introduced,
without loss of generality, for preventing the x component of a solution of the problem from van-
ishing. Note that when A = 0 QEiCP(A, B,C) reduces to EiCP(B,−C). The λ component of a
solution of QEiCP(A,B, C) is called a quadratic complementary eigenvalue for A,B, C, and the x
component a quadratic complementary eigenvector for A, B,C associated to λ.

The case of the symmetric QEiCP, i.e., when A,B and C are symmetric matrices, has been
fully analyzed in [5], where each instance of QEiCP with n×n matrices is related to an instance of
EiCP with 2n × 2n matrices. In this paper we remove such symmetry assumption, and focus on
the general QEiCP. We also propose a connection between an n-dimensional QEiCP and a higher
dimensional EiCP, but our connection procedure, developed in Section 2, differs from the one in
[5].

We start by discussing the issue of existence of solutions. Contrary to the EiCP, the QEiCP
may lack solutions, even under strict copositivity or positive definiteness of A. Indeed if we consider
QEICP(I, 0, I), then premultiplying (6) by x and using (7), one gets 0 = (λ2 + 1) ‖x‖2, which has
no solution (λ, x) ∈ R × Rn because (8) implies that x 6= 0. In fact, this difference between EiCP
and QEiCP in terms of existence of solutions mirrors the elementary fact that linear equations in
one real variable always have solutions, while quadratic equations may fail to have them.

Thus, the issue of conditions on (A, B,C) ensuring existence of solutions of QEiCP(A, B,C) is
a relevant one. The so-called co-regularity and co-hiperbolicity properties were introduced by A.
Seeger in [21] as sufficient conditions for the existence of solutions of the QEiCP. In Section 2 we
will present another sufficient condition, which neither implies nor is implied by Seeger’s conditions,
and discuss the relation between Seeger’s conditions and ours.

Both Seeger’s and our sufficiency proofs work through the reduction of QEiCP to two different
variational inequality problems, and hence each condition suggest a strategy for solving QEiCP,
which are discussed in Section 3.
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An upper bound for the number of complementary eigenvalues for a pair (B,C) has been
established in [19] and [20]. In Section 4 we find a related upper bound for QEiCP, and exhibit an
example with a large number of them (without attaining however the upper bound).

An enumerative method and a hybrid algorithm, combining the previous method and a semi-
smooth approach, have been introduced in [6] and [7]. These algorithms are able to solve the QEiCP
when the co-regularity and co-hyperbolicity conditions are assumed to hold. In Section 5 we study
the numerical solution of the QEiCP by solving its equivalent EiCP as a Variational Inequality
Problem in the 2n-dimensional simplex. We propose a projection algorithm discussed in [2] for
solving this VIP. The numerical experiments reported in Section 5 indicate that the projection
algorithm is able to solve the VIP for many test problems, but may fail to get a solution in some
instances. A hybrid enumerative method in the spirit of [7] should be developed in the future for
guaranteeing solution of the QEiCP under the sufficient condition presented in Section 2.

2 A sufficient condition for existence of solutions of QEiCP

In this section we will present a new sufficient condition for the existence of solutions of QEiCP
and compare it with the one in [21]. The condition is based upon the study of the relation between
an arbitrary n-dimensional QEiCP and two specific instances of EiCP with matrices in R2n×2n. A
relation of this kind was also studied in [5], but the instance of EiCP chosen in this reference is
different from the ones in this paper, which are tailored for addressing the existence issue.

For the sake of a simpler notation, we commit a slight notational abuse, and say that a pair
(λ, x) ∈ R×Rn solves EiCP(B,C) when the triplet (λ, x, w), with w = λBx− Cx, is a solution of
EiCP(B,C) in the sense defined in Section 1. In the same fashion, we say that (λ, x) ∈ R×Rn solves
QEiCP(A, B,C) when the same occurs with the triplet (λ, x, w), where w = λ2Ax + λBx + Cx.

Consider now QEiCP(A,B, C) with A,B, C ∈ Rn×n and define D, G,H ∈ R2n×2n as

D =
(

A 0
0 I

)
, (9)

G =
( −B −C

I 0

)
, (10)

H =
(

B −C
I 0

)
. (11)

Next we establish a relation between the solutions of QEiCP(A,B,C) and those of EiCP(D, G)
and EiCP(D, H). We emphasize that the following result holds without making any additional
hypotheses on A,B, C.

Proposition 1. a) Assume that (λ, x) solves QEiCP(A,B, C) and consider D, G,H as in (9)–
(11).
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i) If λ = 0 then (λ, z) = (0, z) solves both EiCP(D, G) and EiCP(D, H), where z ∈ R2n is
defined as z = (0, x).

ii) If λ > 0 then (λ, z) solves EiCP(D, G), where z ∈ R2n is defined as z = (1+λ)−1(λx, x).

iii) If λ < 0 then the pair (−λ, z) solves EiCP(D,H), where z ∈ R2n is defined as z =
(1− λ)−1(−λx, x).

b) Consider D, G, H as in (9)–(11).

i) If (λ, z) solves EiCP(D, G) with z = (y, x) ∈ Rn × Rn and λ 6= 0, then λ > 0 and
(λ, (1 + λ)x) solves QEiCP(A,B,C)

ii) If (λ, z) solves EiCP(D, H) with z = (y, x) ∈ Rn × Rn and λ 6= 0, then λ > 0 and
(−λ, (1 + λ)x) solves QEiCP(A, B,C).

Proof. a) For item (i), note that checking whether (0, x) solves QEiCP(A, B,C) reduces to
verifying that Cx ≥ 0, x ≥ 0, xtCx = 0. Hence (0, (0, x)) solves both EiCP(D, G) and
EiCP(D, H). We deal now with item (ii). Note that checking that a pair (λ, z) with z =
(u, v) ∈ Rn × Rn solves EiCP(D, G) is equivalent to verifying:

λAu + Bu + Cv ≥ 0, (12)

λv − u ≥ 0, (13)

u ≥ 0, v ≥ 0, (14)

ut(λAu + Bu + Cv) + vt(λu− v) = 0, (15)

etu + etv = 1. (16)

On the other hand, since (λ, x) solves QEiCP(A,B,C), we know that

λ2Ax + λBx + Cx ≥ 0, (17)

x ≥ 0, (18)

xt(λ2Ax + λBx + Cx) = 0, (19)

etx = 1. (20)

If we take u = λ
1+λx, v = 1

1+λx, then (13) follows immediately, and indeed with equality.
Furthermore, (12) follows from (17), and (14) follows from (18) and positivity of λ. Also, the
first term of the left hand side of (15) vanishes as a consequence of (19) and the second one
because λv = u. Regarding (16), note that etu + etv = (1 + λ)−1(λetx + etx) = etx = 1,
using (20) in the third equality. For item (iii), note that if (λ, x) solves QEiCP(A,B, C) then
(−λ, x) solves QEiCP(A,−B,C). In such a case, since −λ is positive, we can apply item (ii)
to QEiCP(A,−B, C), replacing λ by −λ and B by −B. This gives the result, taking into
account the definitions of z and H.
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b) Consider first item (i). We know that (12)–(16) hold with (u, v) = (y, x), and we need to
check that

(1 + λ)(λ2Ax + λBx + Cx) ≥ 0, (21)

(1 + λ)x ≥ 0, (22)

(1 + λ)2
[
xt(λ2Ax + λBx + Cx)

]
= 0, (23)

(1 + λ)etx = 1. (24)

If λ ≥ 0 then (22) follows immediately from (14). It is rather elementary to verify that if it
holds that

y = λx, (25)

then (21) follows from (12), (23) follows from (19), and (24) follows from (20). Therefore
(λ, (1 + λ)x) solves QEiCP(A,B, C), provided λ ≥ 0. We proceed to prove (25) component-
wise, and at the same time we establish that λ ≥ 0. Note that (13) and (14) imply that
x ≥ 0, y ≥ 0 and

λx− y ≥ 0. (26)

Taking into account (12), we conclude that the four factors in both terms of the left hand
side of (15) are nonnegative, so that both terms vanish. Looking now at the second one
component-wise, we have xi(λxi − yi) = 0. If xi > 0 then we get λxi = yi as required. If
xi = 0, we get from (26) that −yi ≥ 0, and hence yi = 0 by (14), so that λxi = yi holds
trivially. We have shown that (25) holds, and hence (λ, (1 + λ)x) solves QEiCP(A,B,C).
Finally, positivity of λ follows also from (25): since (x, y) ≥ 0 by (14) and (x, y) 6= 0 by (16),
λ ≤ 0 entails a contradiction with (25).

For item (ii), we apply the same argument as in item (i) to EiCP(D, H). Since G and H
differ just by the sign of B, we conclude that (λ, (1 + λ)x) solves QEiCP(A,−B, C). It now
follows from the definition of QEiCP(A, B,C) that (−λ, (1 + λ)x) solves it.

We comment that our sufficient condition requires only item (b) of Proposition 1; however, item
(a) has some interesting consequences, see Remarks 1 and 2 below.

Now we rephrase the result of Proposition 1 just in terms of complementary eigenvalues.

Corollary 1. Consider QEiCP(A,B, C) with A,B, C ∈ Rn×n and the matrices D, G, H ∈ R2n×2n

as defined in (9)–(11). Then,

i) each quadratic complementary eigenvalue for (A,B, C) is either a complementary eigenvalue
for (D, G) or a complementary eigenvalue for (D, H),

ii) all nonzero complementary eigenvalues for (D,G) are positive, and are quadratic complemen-
tary eigenvalues for (A, B,C),
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iii) all nonzero complementary eigenvalues for (D, H) are positive, and their additive inverses
are quadratic complementary eigenvalues for (A,B, C).

Proof. Elementary from Proposition 1.

Corollary 1 signals a clear path for obtaining a sufficient condition for existence of solutions
of QEiCP(A,B,C): we must first find a sufficient condition for solvability of EiCP(D, G) or
EiCP(D, H) (which in principle depends only on the matrix in the leading term in (1), namely
D in this case, and henceforth just on A, in terms of the data of the QEiCP), and then impose
conditions ensuring that either 0 is a quadratic complementary eigenvalue for (A,B, C), or that 0 is
not a complementary eigenvalue of (D, G), (D, H) (which, as mentioned in the proof of Proposition
1(a), depends only upon C).

We will present next some already known conditions which fit the recipe above, for which we
need to recall the definitions of three classes of matrices (see e.g. [3]).

Definition 1. i) A matrix M ∈ Rn×n is said to be strictly copositive (SC) if xtMx > 0 for all
0 6= x ∈ Rn, x ≥ 0.

ii) The class R0 ⊂ Rn×n consists of those matrices M ∈ Rn×n such that there exists no x ∈
Rn\{0} satisfying x ≥ 0,Mx ≥ 0, xtMx = 0.

iii) The class S0 ⊂ Rn×n consists of those matrices M ∈ Rn×n such that there exists 0 6= x ∈ Rn

satisfying x ≥ 0,Mx ≥ 0.

It is obvious that 0 is a quadratic complementary eigenvalue for (A,B, C) if and only if M is
not R0. In view of this observation, we concentrate on the issue of detecting whether (A,B, C) has
a nonzero complementary eigenvalue.

Note that verifying whether a matrix C is not R0 reduces to show that the following nonlinear
program:

Minimize
1
2
xt(C + Ct)x

subject to Cx ≥ 0, etx = 1, x ≥ 0

has a global minimum with zero optimal value. So, it is in general difficult to verify whether a
matrix is R0 or not. Furthermore, note that if C is not a S0 matrix then C is a R0 matrix. It is
also important to add that verifying whether a matrix M is S0 reduces to see whether the following
linear program:

Minimize ctx
subject to Mx ≥ 0, etx = 1, x ≥ 0

is feasible for a fixed vector c ≥ 0 (c = e for instance).

Proposition 2. i) If M ∈ Rn×n is strictly copositive then EiCP(M,C) has solutions for any
C ∈ Rn×n.
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ii) If C /∈ S0 then 0 is not a complementary eigenvalue for either (D, G) or (D, H) with D, G,H
as in (9)–(11).

Proof. Item (i) has been proved in [13] (see also Section 3). For item (ii), assume that 0 is a
complementary eigenvalue for (D, G), with associated complementary eigenvector 0 6= z = (y, x) ∈
Rn × Rn. It follows immediately that By + Cx ≥ 0, −y ≥ 0, x ≥ 0, y ≥ 0, implying y = 0, and
hence Cx ≥ 0 and x 6= 0 because z 6= 0, so that we get a contradiction with the assumption that
C /∈ S0. The same argument can be used for the case of (D, H).

Now, all the pieces are in place for stating and proving our existence result for QEiCP.

Theorem 1. If A is a SC matrix and C is not a S0 matrix, then (A,B,C) admits at least one
positive quadratic complementary eigenvalue and one negative quadratic complementary eigenvalue.

Proof. Strict copositivity of A implies strict copositivity of D, so that both EiCP(D, G) and
EiCP(D, H) have complementary eigenvalues by Proposition 2(i), which are nonzero by Propo-
sition 2(ii), and hence positive by items (ii) and (iii) of Corollary 1. Hence there exist at least one
positive and one negative quadratic complementary eigenvalue for (A,B, C).

In the remainder of this section, we discuss the existence result given in Theorem 1. We start
with a corollary, stating that the roles of A and C in item (ii) of Theorem 1 can be reversed.

Corollary 2. Consider QEiCP(A,B, C) and assume that A /∈ S0 and C is strictly copositive. Then
there exist at least one positive and one negative quadratic complementary eigenvalue for (A,B, C).

Proof. Apply Theorem 1(ii) to QEiCP(C, B, A) and conclude that it has a solution (λ, x) with
λ > 0, so that

w = λ2Cx + λBx + Ax ≥ 0, x ≥ 0, wtx = 0. (27)

Let µ = λ−1. Divide the first inequality in (27) by λ2, and get from (27) w̄ = µ2Ax + µBx + Cx ≥
0, x ≥ 0, w̄tx = 0, so that (µ, x) solves QEiCP(A,B, C) and µ > 0. Proceeding in the same fashion
with QEiCP(C,−B, A), get a solution (λ̄, x̄) of this problem with λ̄ > 0, take µ̄ = λ̄−1 and conclude
that (µ̄, x̄) solves QEiCP(A,−B, C), so that −µ̄ is a negative quadratic complementary eigenvalue
for (A,B,C).

We continue with four remarks related to the result in Theorem 1.

Remark 1. When we move from QEiCP(A,B, C) to EiCP(D,G), we can settle the issue of
existence of solutions for the former excepting in one “undeterminated” case: when we only know
that 0 is a complementary eigenvalue for (D, G). If EiCP(D, G) has no solutions then the same
happens to QEiCP(A,B,C) by Corollary 1(i), if EiCP(D, G) has a solution (λ, x) with λ 6= 0 then
λ is a quadratic complementary eigenvalue for (A,B, C) by Corollary 1(ii), but the fact that 0 is
a complementary eigenvalue for (D, G) entails no conclusion at all about the existence of solutions
of QEiCP(A,B, C). The same considerations hold for EiCP(D, H).
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Remark 2. Another consequence of Corollary 1 is the following: if a method for finding all com-
plementary eigenvalues for an arbitrary instance EiCP is available, applying it to EiCP(D,G) and
EiCP(D, H) will provide all quadratic complementary eigenvalues of QEiCP(A,B, C); in fact all
complementary eigenvalues of these two EiCP’s will result in quadratic complementary eigenvalues
for QEiCP(A,B,C) (with the possible exception of 0, which can be checked separately) by virtue of
Corollary 1(ii)–(iii), and no quadratic complementary eigenvalue will be missed, as a consequence
of Corollary 1(i).

Remark 3. We mention that strict copositivity of A by itself is not sufficient for existence of
solutions of QEiCP(A,B, C). Considering QEiCP(I, 0, I), it is easy to show that it lacks solutions,
while I is strictly copositive. In this case C ∈ S0 and 0 is a complementary eigenvalue for (D, G),
but C ∈ R0 and hence 0 is not a quadratic complementary eigenvalue of QEiCP(I, 0, I).

Remark 4. Showing that a matrix C either belongs or does not belong to S0 reduces to a linear
program. Furthermore, any one of the following two conditions is obviously sufficient for ensuring
that C /∈ S0:

i) −C is strictly copositive (or even positive definite),

ii) C has a fully negative row, i.e. there exists i ∈ {1, . . . , n} such that Cij < 0 for all j ∈
{1, . . . , n}.

Finally, we close the section with the comparison between our sufficient condition for existence
of solutions of QEiCP(A,B, C) and an already known sufficient condition, introduced by A. Seeger
in [21] and stated in the next proposition.

Proposition 3. If (A,B, C) satisfy
xtAx 6= 0, (28)

(xtBx)2 ≥ (xtAx)(xtCx), (29)

for all 0 6= x ∈ Rn, x ≥ 0, then QEiCP(A,B, C) has solutions.

Proof. See [21].

In [21], matrices A satisfying (28) are called co-regular and triplets (A,B, C) satisfying (29) are
said to be co-hyperbolic.

For the comparison between the assumptions of Theorem 1 and Proposition 3, we say that a
triplet (A,B, C) satisfies (P) when either C /∈ S0 and A is strictly copositive, or C /∈ R0, and that
it satisfies (P’) when A is co-regular and (A,B, C) is co-hyperbolic.

We mention that if A is strictly copositive and C satisfies condition (i) in Remark 4, then (P’)
holds, because in such a case one has xtAx ≥ 0, xtCx ≤ 0 for all x ∈ Rn

+, so that the right hand
side in (29) is nonpositive, making this inequality valid.
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On the other hand, it is easy to exhibit instances in which (P) holds but (P’) does not. For
instance, take A positive definite, B = 0 and C satisfying condition (ii) in Remark 4 and having a
positive diagonal element (i.e., there exist i, k ∈ {1, . . . , n} such that Cij < 0 for all j ∈ {1, . . . , n}
and Ckk > 0). Clearly (P) holds but, taking x equal to the k-th vector in the canonical basis of Rn,
i.e, ek with ek

j = δjk (Kronecker’s delta), one has xtBx = 0, (xtAx)(xtCx) = AkkCkk > 0. Hence
(P’) fails.

There are also many instances of QEiCP for which (P’) holds but not (P). Take for instance
A = C = I, B = 2I. Validity of (P’) is immediate, but (P) fails because I ∈ R0 ∪ S0, as can be
easily verified. Hence, (P) and (P’) are independent of each other.

We comment now on some features of (P) and (P’).

i) (P) depends only upon the matrices A and C, while (P’) also involves the matrix B.

ii) The copositivity of A in (P) and the co-regularity of A in (P’) are in a certain sense comparable
in terms of the difficulty of checking their validity. In fact, co-regularity of A is equivalent to
copositivity of either A or −A, because it implies that the sign of φ(x) = xtAx cannot change
within the nonnegative orthant. Both hold when A is positive definite, a standard condition
for the matrix in the leading term for EiCP (note that (P’) also holds when A is negative
definite).

iii) On the other hand, there is a remarkable difference between (P) and (P’) in terms of the
remaining conditions, i.e., besides copositivity in (P) and co-regularity in (P’). The co-
hyperbolicity condition given by (29) is definitely quite hard to check, excepting in very
special cases (e.g. when A and −C are both copositive, as mentioned above). At the same
time, determining whether a given matrix belongs to the class S0 reduces to solving a linear
programming problem, a task much easier that determining copositivity, for instance.

Other differences between (P) and (P’), related to the variational inequality problems induced
by each of them, are discussed in the next section.

3 The reformulation of QEiCP as nonlinear complementarity or
variational inequality problems

The fact that EiCP can be reformulated as a nonlinear complementarity or a variational inequality
problem was already mentioned in Section 1, and was in fact recognized very early in the history
of the subject, see e.g. [13]. We show in this section that the same reformulations work for QEiCP
(see e.g. [5]). We start by giving a general overview of the issue, for the sake of self-containment,
and then we discuss it from the perspective of properties (P) and (P’).

We recall now the definition of the nonlinear complementarity problem. Let Rm
+ be the non-

negative orthant of Rm. Given F : Rm
+ → Rm, the nonlinear complementarity problem NCP(F )
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consists of finding z ∈ Rm such that

z ≥ 0, F (z) ≥ 0, F (z)tz = 0. (30)

We rewrite EiCP and QEiCP as instances of NCP. Consider first EiCP(B, C) and assume that
B is strictly copositive. Condition (3) can be rewritten as λ(xtBx)− (xtCx) = 0, so that if (λ, x)
solves EiCP(B, C) then λ = (xtCx)/(xtBx). If we consider now F̄ : Rn → Rn as introduced in
Section 1, namely

F̄ (x) =
xtCx

xtBx
Bx− Cx, (31)

then it is immediate that (1)–(3) are precisely the conditions defining NCP(F̄ ), namely (30). Since
(4) has been introduced just for ensuring that complementary eigenvectors are nonzero, we can
encapsulate the relation between EiCP(B, C) and NCP(F̄ ) in the following proposition.

Proposition 4. If (x∗, λ∗) solves EiCP(B,C) then x∗ solves NCP(F̄ ) with F̄ as in (31). If
x̄ is a nonzero solution of NCP(F̄ ) then (λ∗, x∗) solves EiCP(B, C) with x∗ = ‖x̄‖−1

1 x̄, λ∗ =
(x̄tCx̄)/(x̄tBx̄).

Proof. Elementary; see the paragraph just before the statement of the proposition.

We continue with QEiCP(A,B, C), observing that if (λ, x) solves QEiCP(A,B, C) then (7) can
be rewritten as λ2(xtAx)+λ(xtBx)+(xT Cx) = 0 so that λ can be obtained from x by solving this
quadratic equation. Assume now that A is co-regular and (A,B, C) is co-hyperbolic, and define
λ1, λ2 : Rn

+ → R and F1, F2 : Rn
+ → Rn as

λ1(x) =
−xtBx +

√
(xtBx)2 − 4(xtAx)(xtCx)

2xtAx
, (32)

λ2(x) =
−xtBx−

√
(xtBx)2 − 4(xtAx)(xtCx)

2xtAx
, (33)

Fi(x) = λi(x)2Ax + λi(x)Bx + Cx, (i = 1, 2). (34)

As in the case of EiCP, we get the following connection between QEiCP(A,B, C) and NCP(F1),
NCP(F2):

Proposition 5. If (x∗, λ∗) solves QEiCP(A,B, C) then x∗ solves either NCP(F1) or NCP(F2),
with Fi as in (34) (i = 1, 2). If x̄ is a nonzero solution of NCP(Fi) (i = 1, 2) then (λ∗, x∗) solves
QEiCP(A, B,C) with x∗ = ‖x̄‖−1

1 x̄, λ∗ = λi(x̄) (i = 1, 2), as defined in (32), (33).

Proof. Elementary, and similar to the proof of Proposition 4.
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An undesirable feature of this reduction of EiCP or QEiCP to NCP is that only nonzero solutions
of NCP give rise to solutions to EiCP or QEiCP, and this request does not appear in the definition
of NCP. It would be desirable to add this request to NCP as an additional constraint, as in (4), (8).
The attempt to add additional constraints to a nonlinear complementarity problem leads naturally
to a variational inequality problem, where the feasible set can be any closed and convex subset of
Rm, rather than the nonnegative orthant, as is the case for NCP.

We recall that given a closed and convex K ⊂ Rm and F : K → Rm, the variational inequality
problem VIP(F, K) consists of finding z̄ ∈ K such that

F (z̄)t(z − z̄) ≥ 0 ∀ z ∈ K. (35)

For our purposes, we are interested in a particular subset of Rm as the feasible set for VIP, namely
the set Ω introduced in Section 1, defined as Ω = {z ∈ Rm : z ≥ 0, etz = 1}, with e = (1, 1, . . . , 1)t ∈
Rm. Since Ω is the standard simplex and F is positively homogeneous then [4] VIP(F, Ω) becomes

z ≥ 0, F (z) ≥ 0, ztF (z) = 0, etz = 1.

We remark that it follows easily from (31)–(34) that the operators F̄ , F1 and F2 are positively
homogeneous and satisfy 0 = F̄ (z)tz, 0 = F1(z)tz = F2(z)tz for all z ∈ Ω, which means that both
for EiCP and for QEiCP the related NCP and VIP are basically equivalent.

As mentioned in Section 1, compactness and convexity of K and continuity of F on K guarantee
existence of solutions of VIP(F, K) (see [4]). This classical result, together with the comments in
the previous paragraph and Propositions 4–5, easily provide proofs for Propositions 2(i) and 3.

We have finished with the announced overview, and now we focus on two alternative ap-
proaches for solving QEiCP(A,B, C) through variational inequalities, namely solving VIP(F1,Ω)
and VIP(F2,Ω), with m = n and F1, F2 as in (34), or solving VIP(F̄ ,Ω) with m = 2n and F̄ related
to EiCP(D,G) or EiCP(D,H), where D, G, H are given by (9)–(11). Taking into account (31), we
write next the formula of F̄ for this second option in terms of the original data of QEiCP, with
z = (y, x) ∈ Rn × Rn. We have

F̄ (y, x) =

(
yt(I − C)x− ytBy

ytAy + ‖x‖2
2

)[
Ay
x

]
+

[
By + Cx
−y

]
. (36)

We denote as Approach 1 the one which deals with VIP(Fi, Ω) (i = 1, 2) and as Approach 2 the
one dealing with VIP(F̄ ,Ω), with F̄ as in (36).

We proceed to make a conceptual comparison between these two approaches. One obvious
drawback of Approach 2 is that it deals with a VIP in dimension 2n while both VIP’s in Approach
1 work in dimension n.

On the other hand, Approach 2 exhibits al least two attractive features, which might overcome
the dimensionality issue. In the first place, the formula of F̄ given in (36) is simpler than the
formulae of F1, F2 given by (32)–(34). In fact, the presence of the square root in (32) and (33) is
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certainly undesirable from a numerical point of view, and could make the evaluation of the Fi’s at
a given point costlier than an evaluation of F̄ , despite the dimensionality issue.

The second advantage of Approach 2 over Approach 1 refers to a robustness property. As
we have mentioned, both approaches require similar assumptions on A (co-regularity or strict
copositivity) in order to ensure that the denominators in (32), (33) and (36) do not vanish, and
when these assumptions are not valid both approaches might fail. The situation is however different
when we look at the additional assumptions, in particular at the co-hyperbolicity of (A,B, C) for
the case of Approach 1, which, as already mentioned, is pretty hard to check. Assume that we have
an instance of QEiCP with strictly copositive A, but such that neither the assumptions on C in
Property (P) nor the co-hyperbolicity in Property (P’) have been checked. Suppose also that we
solve the respective VIP’s with some feasible method, i.e. one which approaches a solution z of the
problem through a sequence {zk} ⊂ Ω, and evaluates the operators F̄ , F1 or F2 at the zk’s (and
possibly at other feasible points too). Regardless of the assumptions on C, when using Approach
2 a solution (λ, z) of EiCP(D,G) or EiCP(D, H) will be found, and if λ 6= 0 this will provide a
solution of QEiCP(A,B, C) as a result of Theorem 1. If λ = 0, it can be immediately checked
whether (0, z) solves QEiCP(A,B, C), and only when this does not happen the procedure fails:
it cannot be determined whether (A,B, C) has or not some nonzero quadratic complementarity
eigenvalue. The situation is rather worse when following Approach 1. If at some iteration the
evaluation of F1 or F2 is required at a point x where the co-hyperbolicity condition fails, i.e. such
that (xT Bx)2 < 4(xtAx)(xtCx), then the method just breaks when attempting to evaluate the
square root in (32) or (33), and nothing is obtained in terms of solutions of QEiCP(A, B,C). In
this sense, Approach 2 looks more robust than Approach 1; the former always provides a pair (λ, x),
and a solution of QEiCP whenever λ 6= 0, while the latter is likely to stop at any iteration when
the co-hyperbolicity condition is not known to hold.

4 A nonlinear programming formulation of the QEiCP

Let A ∈ SC and C /∈ S0. If D and G are the matrices given by (9) and (10) respectively, then, by
Proposition 1, EiCP (D, G) has at least a solution (λ̄, z̄) such that λ̄ > 0 and z̄ = (ȳ, x̄) satisfies
ȳ = λ̄x̄. Furthermore (λ̄, (1 + λ̄)x̄) is a solution of QEiCP. Hence there is a vector w̄ ≥ 0 such that
(x̄, ȳ, w̄, λ̄) satisfies the following constraints

λ

(
A 0
0 I

)(
y
x

)
−

( −B −C
I 0

)(
y
x

)
=

(
w
0

)

ety + etx = 1
ytw = xtw = 0
x, y, w, λ ≥ 0

By introducing the vector v̄ defined by v̄ = λ̄ȳ, then (x̄, ȳ, v̄, w̄, λ̄) is a solution of the following
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system
Av + By + Cx = w (37)

ety + etx = 1 (38)

etv + ety = λ (39)

w, x, y, v ≥ 0 (40)

wtv = wty = wtx = 0 (41)

y = λx (42)

v = λy (43)

Let
K = {(x, y, v, w, λ) : (x, y, v, w, λ) satisfies (37)-(40)} (44)

and consider the nonlinear program

NLP : Minimize f(x, y, v, w, λ) = ‖y − λx‖2 + ‖v − λy‖2 + (x + y + v)tw
subject to (x, y, v, w, λ) ∈ K.

(45)

where ‖.‖ is the Euclidean norm. Then the following result holds:

Proposition 6. Let A ∈ SC, C /∈ S0 and K be the set given by (44). Then the NLP (45) has a
global minimum (x̄, ȳ, v̄, w̄, λ̄) and (λ̄, (1 + λ̄)x̄) is a solution of QEiCP.

Since computing a global minimum of NLP (45) is a difficult task, it is interesting to investigate
when a stationary point of f on K provides a solution of QEiCP. The following result answers to
this question.

Proposition 7. A stationary point (x̄, ȳ, v̄, w̄, λ̄) of f on K is a global minimum of NLP (45) with
f(x̄, ȳ, v̄, w̄, λ̄) = 0 if and only if the Lagrange multipliers associated to the equalities (38) and (39)
are equal to zero.

Proof. Let u, γ0 and θ0 be the Lagrange multipliers associated to the equalities (37), (38) and (39)
respectively and α, β, γ and θ be the Lagrange multipliers associated to the nonnegative constraints
w ≥ 0, x ≥ 0, y ≥ 0 and v ≥ 0 respectively. Hence (x̄, ȳ, v̄, w̄, λ̄) satisfies the following KKT
conditions:

x + y + v = u + α (46)

− 2λ(y − λx) + w = −Ctu + β + γ0e (47)

2[(y − λx)− λ(v − λy)] + w = −Btu + γ + γ0e + θ0e (48)

2(v − λy) + w = −Atu + θ + θ0e (49)
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− 2xt(y − λx)− 2yt(v − λy) = −θ0 (50)

x, y, v, w ≥ 0 (51)

β, γ, θ, α ≥ 0 (52)

βtx = γty = θtv = αtw = 0 (53)

Multiplying (46), (47), (48) and (49) by wt, xt, yt and vt respectively, using (53) and adding
the resulting equalities term by term, we get

2[(y − λx)t(y − λx) + (v − λy)t(v − λy) + wt(x + y + v)] = γ0 + θ0λ

i.e.,
2f(x, y, v, w, λ) = γ0 + θ0λ (54)

Now, if γ0 = θ0 = 0, then f(x̄, ȳ, v̄, w̄, λ̄) = 0 and (x̄, ȳ, v̄, w̄, λ̄) is a global minimum of NLP.
Conversely, if (x̄, ȳ, v̄, w̄, λ̄) is a global minimum of NLP with f(x̄, ȳ, v̄, w̄, λ̄) = 0, then γ0 +θ0λ = 0.
Furthermore θ0 = 0 by (50) and γ0 = 0.

Note: A Nonlinear Program similar to NLP (45) can be constructed associated to EiCP (D, H).

This theorem is not very useful in practice, as it is better to see whether the objective function
value at the stationary point is null instead of computing the Lagrange multipliers associated with
the equalities (38) and (39). However, it gives an indication that the computation of a simple
stationary point may in many cases provide a solution to the QEiCP. This issue is discussed later
in this paper.

5 Local algorithms for QEiCP

In Section 3, it is shown that a solution to the QEiCP can be found by solving the VIP(F̄ , Ω),
where F̄ is the mapping defined by (36) and

Ω = {z = (y, x) ∈ R2n : ety + etx = 1, y ≥ 0, x ≥ 0}. (55)

A popular technique for solving this VIP(F̄ , Ω) is to use the so-called Regularized Gap-Function
fα defined for a given α > 0, by

fα(z) = −min{F̄ (z)t(u− z) +
α

2
‖u− z‖2 : u ∈ Ω} (56)

for each z = (y, x) ∈ Ω. The following property holds:
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Proposition 8. [8, 10] For each α > 0, z̄ = (ȳ, x̄) ∈ Ω is a global minimum of

Minimize fα(z)
subject to z ∈ Ω

(57)

with value fα(z̄) = 0 if and only if z̄ is a solution of VIP(F̄ ,Ω).

This property shows that solving VIP(F̄ ,Ω) reduces to a global optimization problem of a
continuously differentiable function on the simplex. Such a point is very difficult to compute in
practice. A stationary point of fα on Ω is much easier to find but there is no guarantee that
it provides a solution of the VIP [4]. Furthermore the computation of such a point requires the
gradient of fα, and the computation of this vector is quite involved. To alleviate the computational
work we recommend the derivative-free projection algorithm (DFP) discussed in [2] for solving the
VIP(F̄ ,Ω). In order to briefly explain such a procedure, let z̄ = (ȳ, x̄) ∈ Ω be a current point.
Then a search direction is computed by

d = PΩ

(
z̄ − 1

α
F̄ (z̄)

)
− z̄ (58)

where PΩ(u) is the projection of u ∈ R2n in the simplex that is, the unique global minimum and
stationary point of

Minimize ‖u− v‖2

subject to v ∈ Ω.
(59)

The computation of such a point can be done in polynomial-time by a number of algorithms
[2]. Now, if d = 0 (i.e., ‖d‖ < ε for some tolerance) then z̄ is a solution of VIP. Otherwise d satisfies
F̄ (z̄)td < 0 [2] and we look for a stepsize δ > 0 such that implies the reduction of the value of fα

according to the following Armijo type criterion:

fα(z̄ + δd) ≤ fα(z̄) + δβF̄ (z̄)td, (60)

where 0 < β < 1. As for the usual Armijo criterion, a number of trials of the form

δ =
1

p1.4
, (61)

for p = 1, 2, . . . is done until the condition (60) is satisfied. Unfortunately there is no theoretical
guarantee that such a procedure terminates with a stepsize δ > 0 satisfying (60) after a finite number
of trials. In this last case the algorithm terminates unsuccessfully. If a stepsize δ is computed then
the point z̄ is updated by z̃ = z̄ + δd. It is easy to show that this new point z̃ belongs to Ω and a
new iteration of the DFP method should be applied with such a point. The steps of the algorithm
are presented below:
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DFP algorithm

Step 0. Let z̄ = (ȳ, x̄) ∈ Ω and ε a positive tolerance.

Step 1. Compute d by (58).

Step 2. If ‖d‖ < ε, terminate with an approximate solution of VIP(F̄ , Ω).

Step 3. Try to compute a stepsize δ of the form (61) satisfying (60). If such a δ cannot be
computed after a finite number of trials terminate the algorithm with a failure.

Step 4. Update z̄ := z̄ + δd and go to Step 1 with the new point z̄.

It is important to note that the verification of the criterion (60) only requires the computation
of values of the regularized gap-function fα. Due to the definition (56) of fα, the computation of
these values reduces to a Strictly Convex Quadratic Separable Program on the simplex, which can
be solved in polynomial-time by a number of efficient algorithm [2]. Therefore the DFP method is
very simple to implement. The main drawback of this approach is its unability for solving the VIP
in general. The performance of the algorithm may be improved by a special choice of the initial
point. However, such a choice is also a difficult task.

Another local approach for solving QEiCP consists of finding a stationary point of NLP (45) in-
troduced in Section 4. Such a point can be computed by an active-set method, as that implemented
in the well-known code MINOS [15] or any other efficient nonlinear programming algorithm.

In order to verify the efficiency and efficacy of these two local techniques for solving the QEiCP,
we have performed some experiments on the solution of the QEiCP test problems discussed in [6]
by MINOS and DFP.

For this latter algorithm three different starting points have been used in the experiments:

(INP1) the baricenter of the simplex, i.e.

x̄i = ȳi =
1
2n

, for all i = 1, . . . , n

(INP2) a vector of the canonical basis, i.e.

x̄i = 1, x̄j = 0, j 6= i

ȳj = 0, j = 1, . . . , n

for some i (we used i = n).

(INP3) the stationary point (ȳ, x̄) computed by MINOS.

The numerical performance of these two algorithms is highlighted in Tables 1 and 2 below. In
these tables, the following notations are used:
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• n: order of the matrices A, B and C.

• f : value of the objective function at the Stationary Point of NLP (45) computed by MINOS.

• λ: value of the variable λ at the Stationary Point of NLP (45) computed by MINOS and the
complementary eigenvalue when DFP terminates successfully (i.e., no value of λ is provided
when the algorithms were not able to find a solution for QEiCP).

• ‖d‖: norm of the DFP direction at the termination of the DFP algorithm.

• It: number of iterations required by the algorithms to terminate.

Problem n f λ It

SeegerAdlyQ(3) 3 1.6291E-13 0.2656 4

Rand(0,1,5) 5 4.3760E-17 0.8422 19
Rand(0,1,10) 10 1.5157E-03 0.9057 69
Rand(0,1,20) 20 1.1929E-05 1.0287 231
Rand(0,1,30) 30 9.5175E-04 0.8958 254
Rand(0,1,40) 40 1.6352E-03 0.9045 332
Rand(0,1,50) 50 5.2166E-04 0.9844 538

Rand(0,10,5) 5 6.3680E-03 0.8561 18
Rand(0,10,10) 10 1.8237E-03 0.8937 79
Rand(0,10,20) 20 1.6556E-03 1.0997 99
Rand(0,10,30) 30 1.0369E-02 0.8946 135
Rand(0,10,40) 40 1.8319E-03 0.9983 264
Rand(0,10,50) 50 5.6333E-03 0.7545 365

Rand(0,100,5) 5 8.0186E-17 1.1120 34
Rand(0,100,10) 10 3.6174E-03 0.8139 65
Rand(0,100,20) 20 1.7354E-02 1.0031 75
Rand(0,100,30) 30 7.3798E-03 1.0373 169
Rand(0,100,40) 40 2.8234E-03 0.9097 265
Rand(0,100,50) 50 4.1658E-03 0.9286 287

Table 1: Solution of QEiCP by a Stationary Point of NLP (45).

The following conclusions can be stated from these numerical results:

(i) MINOS usually finds a stationary point whose objective function value is quite small, i.e.,
close to a solution of QEiCP. In three cases the stationary point provides a solution to the
QEiCP. Note that small values of the objective function at the computed stationary points,
such those obtained in this experience, have an important impact on the efficiency of a hybrid
enumerative method to be designed in the spirit of [7] for the solution of QEiCP.

(ii) In general the DFP algorithm does not perform well for each one of the three choices of initial
points.
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INP1 INP2 INP3
Problem ‖d‖ It λ ‖d‖ It λ ‖d‖ It λ

SeegerAdlyQ(3) 9.615E-17 2 0.0 0.0 1 0.0 3.310E-07 1 0.2656

Rand(0,1,5) 3.990E-02 8 9.387E-07 28 0.8253 2.092E-09 1 0.8422
Rand(0,1,10) 9.229E-07 137 0.8107 9.631E-07 130 0.8107 1.884E-02 2
Rand(0,1,20) 4.834E-07 68 1.1142 0.1231 20 3.399E-03 2
Rand(0,1,30) 9.830E-07 162 1.0546 0.1100 15 3.072E-02 1
Rand(0,1,40) 5.031E-02 13 0.2197 4 3.938E-02 2
Rand(0,1,50) 9.930E-07 315 0.1153 0.1094 13 2.275E-02 1

Rand(0,10,5) 2.645E-04 16 0.7071 2 7.536E-02 1
Rand(0,10,10) 0.7046 2 0.6102 3 0.5236 2
Rand(0,10,20) 0.5419 2 0.9696 3 3.879E-02 1
Rand(0,10,30) 0.5691 2 0.4518 2 9.243E-02 1
Rand(0,10,40) 0.4267 2 0.7071 3 3.875E-02 1
Rand(0,10,50) 0.5833 1 0.7071 3 6.277E-02 1

Rand(0,100,5) 0.7071 2 0.7071 2 8.932E-09 1 1.1120
Rand(0,100,10) 0.7071 3 0.7071 2 5.536E-02 1
Rand(0,100,20) 0.7071 2 0.2487 6 0.1180 1
Rand(0,100,30) 0.6992 1 0.7071 2 2.301E-02 1
Rand(0,100,40) 0.7655 1 0.7071 3 5.243E-02 1
Rand(0,100,50) 0.7071 2 0.7071 2 2.628E-02 1

Table 2: Solution of QEiCP by DFP algorithm.

(iii) The performance of the DFP algorithm seems to be quite influenced by scaling, as it is much
more efficient when all the elements of the matrices A, B and C belong to the interval [0, 1]
(four out of six instances have been solved when the barycenter is chosen as the initial point).

(iv) When DFP algorithm starts with an initial point that is a Stationary Point of NLP (45), then
it usually terminates with this point (It = 1).

(v) The matrix C of the test problem SeegerAdlyQ(3) is S0 and is not R0. Therefore zero
is a complementary eigenvalue of QEiCP. For this instance both the algorithms MINOS and
DFP have been able to find a solution of the QEiCP. However, DFP computed the zero
complementary eigenvalue while MINOS found a positive eigenvalue.

These results clearly indicate the need of designing an enumerative algorithm similar to the
one designed for the EiCP [6, 13] that searches stationary points of NLP in a systematic way until
finding one with a null objective function value (or smaller than a prescribed tolerance). As in [7],
the efficiency of this enumerative method can be enhanced if it is combined with the DFP method
or a semi-smooth algorithm similar to the one discussed in [1] for the EiCP. This will certainly be
an interesting topic of our future research.
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6 On the number of quadratic complementary eigenvalues

In this section, we discuss the maximum number of quadratic complementary eigenvalues for
QEiCP(A, B,C). We obtain it through the introduction of an additional variable y ∈ Rn, leading
to a 2n dimensional problem, similar to the one used in Section 2. A related upper bound for the
number of solutions of EiCP(B, C) has been established in [18].

As mentioned in Section 1, given B, C ∈ Rn×n, a generalized eigenvalue is a complex number λ
such that there exists 0 6= x ∈ Cn satisfying λBx−Cx = 0. The number of generalized eigenvalues
for a pair (B, C) is bounded by n, because the equation above demands singularity of λB − C, or
equivalently det(λB−C) = 0. Hence, the announced bound follows from the fact that det(λB−C)
is a polynomial of degree at most n as a function of λ, having therefore at most n complex roots.

Based on the same property, it has been proved in Corollary 5.4 of [21] that the number θn of
quadratic complementary eigenvalues of (A,B, C), with A, B,C ∈ Rn×n, is bounded by n2n.

Next we present an n-dimensional instance of QEiCP with 2n+1 − 2 quadratic complementary
eigenvalues. This means that 2n+1 − 2 ≤ θn ≤ n2n. We comment that an example of an n-
dimensional EiCP with 3(2n−1 − 1) complementary eigenvalues has been exhibited in [23]. This
example could be used to generate an example of QEiCP with 3(2n − 2) quadratic complementary
eigenvalues, improving over our example. Since the adaptation is not trivial and the example in
[23] is itself quite involved, we opted to present our much simpler example, for which the counting
procedure is also rather elementary.

Consider R as a vector space over Q and take a set {r1, r2, . . . , rn} of n positive real numbers
which are linearly independent over Q. Define r, e ∈ Rn as r = (r1, r2, . . . , rn)t, e = (1, 1, . . . , 1)t,
and consider the matrices A,B, C defined as A = −I,B = 0, C = ert. Note that C has rank 1. For
each nonempty subset J of N define the vectors xJ , wJ ∈ Rn, and the numbers sJ , λ̄J , λ̂J as

xJ
j =

{
1 if j ∈ J

0 if j /∈ J,
(62)

sJ =
∑

j∈J

rj , λ̄J =
√

sJ , λ̂J = −
√

sJ , (63)

wJ = λ̄2AxJ + CxJ = λ̂2AxJ + CxJ . (64)

We claim that all triplets in the set
{
(λ̄J , xJ , wJ)

}
∅6=J⊂N

∪
{

(λ̂J , xJ , wJ)
}
∅6=J⊂N

are solutions

of QEiCP(A,B, C). We proceed to establish the claim.
It follows from (62), (63) that

(
λ̄J

)2
AxJ =

(
λ̂J

)2
AxJ = −sJxJ ,

CxJ = ertxJ = (rtxJ)e = sJe,
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so that, in view of (64)
wJ = sJ(−xJ + e) = sJ(e− xJ). (65)

Denoting Jc = N \J , it is immediate that e−xJ = xJc
, so that e−xJ ≥ 0 and, taking into account

(62), (xJ)t(e− xJ) = (xJ)txJc
= 0, so that we conclude, using (65), (64) and the fact that B = 0,

that (
λ̄J

)2
AxJ + λ̄JBxJ + CxJ =

(
λ̂J

)2
AxJ + λ̂JBxJ + CxJ = wJ ,

xJ ≥ 0, wJ ≥ 0 (xJ)twJ = 0,

which proves the claim.
No we claim that all the numbers in the set

{
λ̄J

}
∅6=J⊂N

∪
{

λ̂J
}
∅6=J⊂N

are different. Since we

consider only nonempty subsets of N , the λ̄J ’s are positive, and the λ̂J ’s, being the additive inverses
of the λ̄J ’s, are negative, and so it suffices to show that the λ̄J ’s are all different. We proceed to
do so. Assume that J,K ⊂ N are such that λ̄J = λ̄K . Then, by (63),

0 =
(
λ̄J

)2 − (
λ̄K

)2
= sJ − sK =

∑

j∈J

rj −
∑

k∈K

rk, (66)

i.e., we have a linear combination of the rj ’s with rational coefficients (in fact, they are 0, 1 or −1),
which vanishes. By the linear independence of the rj ’s, all coefficients in the linear combination
must vanish, and then it follows easily from (66) that J = K, so that the second claim holds. Since
N has 2n−1 nonempty subsets, and we have two quadratic complementary eigenvalues of (A,B, C)
for each subset J of N , namely λ̄J and λ̂J , we have proved that (A,B, C) has at least 2n+1 − 2
quadratic complementary eigenvalues.

We observe that the linear independence of the ri’s over Q is not essential; it suffice to take the
ri’s so that all their “partial sums” are different. We could have taken, for instance, ri = 10i.

Observe that the bound for the number of quadratic complementary eigenvalues given by θn

admits up to 2j eigenvalues for each subset J of cardinality j, while our example has only 2,
independently of the cardinality of J . In fact, since rank(C) = 1, the same holds for all its
principal submatrices, and it is immediate that CJ has one positive eigenvalue, namely sJ , with
the associated positive eigenvector eJ (meaning the j-th dimensional version of e), and also the
eigenvalue 0, with j − 1 eigenvectors, which form a basis of the orthogonal complement of eJ .

It is not difficult to perturb the matrix C so that each submatrix CJ has j different positive
eigenvalues, and in such a way that no pair of eigenvalues of different principal submatrices of C
coincide, but it does not seem possible to do so while preserving at the same time nonnegativity of
all the associated eigenvectors, as well as of all entries of C, and these two nonnegativity conditions
seem to be necessary for the satisfaction of the complementarity constraints, in such a way that
the eigenvalues of the principal submatrices of C give rise to quadratic complementary eigenvalues
of the triplet (−I, 0, C). Possibly, in order to attain the upper bound given by θn (if it is at all
attainable), an example must be constructed using a triplet (A,B, C) with (A, B) 6= (−I, 0).
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[12] Júdice, J, Sherali, H.D., Ribeiro, I. The eigenvalue complementarity problem. Computational
Optimization and Applications 37 (2007) 139-156.

22
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