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Heterozygosity probabilities P(het) for rela-
tives of isolated cases produced by incom-
pletely penetrant autosomal dominant
genes and recurrence risks for their off-
spring, R = P(het).K/2, where K is the pen-
etrance value, have been calculated in the
literature for some simple particular situa-
tions. Bayes theorem and elements from the
theory of finite difference equations en-
abled us to derive the heterozygosity prob-
ability for any individual belonging to a
pedigree containing an isolated case af-
fected with an incompletely penetrant auto-
somal dominant disorder. The generalized
formula here derived is valid for most par-
ticular cases thus far studied in the litera-
ture. Am. J. Med. Genet. 95:43–48, 2000.
© 2000 Wiley-Liss, Inc.
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INTRODUCTION

Estimating recurrence risks for the offspring of rela-
tives of an isolated case affected with an incompletely
penetrant autosomal dominant condition is a rather
complicated problem unless the relatives under consid-
eration are his or her direct descendants; algorithms
such as the ENCU system [Chase et al., 1971; Murphy
and Chase, 1975] were developed to cope efficiently
with this situation. Elston and Stewart [1971] provided

the theoretical basis for likelihood calculation in simple
pedigree situations; their algorithm and its extensions
[Lange and Elston, 1975] provided, within pedigrees,
the complex calculations that are needed for risk as-
sessment, forming the basis of several computer pro-
grams with this aim. Some computer programs, such as
the LINKAGE program [Lathrop et al., 2000, V.5.2:
ftp://linkage.rockefeller.edu/software/linkage; Terwill-
iger and Ott, 1994] and the SAGE (Statistical Analysis
for Genetic Epidemiology) program [Elston et al., 2000,
V.3.0: http://darwin.mhme.cwru.edu/pub/sage.html],
which enable the calculation of pedigree likelihoods
that generally cannot be expressed in closed form, can
perform risk estimations directly or indirectly for com-
plex pedigree structures. Heterozygosity probabilities
[P(het)] for relatives of isolated cases were calculated
previously for some particular situations [Aylsworth
and Kirkman, 1979; Emery, 1986; Frota-Pessoa et al.,
1976; Murphy and Chase, 1975; Otto and Frota-Pessoa,
1979; Pauli and Motulsky, 1981; Stevenson and Davi-
son, 1970] but did not include deriving recurrence risks
for the offspring of any relative of an isolated case
within a pedigree. In this article we derive the hetero-
zygosity probability for individual C at the generalized
case shown in the pedigree depicted in Fig. 1, where the
shaded symbol indicates an affected isolated indi-
vidual.

The formula used for calculating this probability was
derived by combining the following quantities: (a) prob-
ability of heterozygosis for normal individuals; (b)
probability of heterozygosis for the direct ancestors of a
known carrier of the gene; (c) probability of heterozy-
gosis for a normal descendant of an individual whose
heterozygosity probability is known; (d) probability of
heterozygosis for an individual who has normal descen-
dants.

Probability of Heterozygosis for
Normal Individuals

The probability of heterozygosis for a normal indi-
vidual in the case with information about all his or her
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direct ancestors, none of them being known to have had
an autosomal dominant disorder with incomplete pen-
etrance, is given by

P1(het) = 2m(1 − K) + 2m(1 − K)2 + 2 m(1 − K)3 + . . .

= (
i=1

inf

2m~1 − K)i = 2m(1 − K! (
i=0

inf

~1 − K)i

= 2m~1 − K!/K,

where K is the penetrance value and m is the mutation
rate, both quantities being assumed to have a constant
value from generation to generation. The formula for
the situation above described, first considered by
Frota-Pessoa et al. [1976], takes into account the pos-
sibility of the mutation having occurred in any of the
ancestors of the propositus and being transmitted to
him, without becoming penetrant in any of the indi-
viduals in the genealogy. In fact, 2m(1−K) is the prob-
ability of the propositus being a nonmanifesting het-
erozygote because the mutation occurred in any of the
two gametes that originated him and then did not be-
come evident; the second term of the series, 2m(1−K)2,
is the product of the following probabilities: of the mu-
tation having occurred in any of the four gametes that
originated the parents of the propositus (4m), being
nonpenetrant (1−K), being transmitted to the proposi-
tus (1/2) and then again being nonpenetrant (1−K); and
so on. Since in the absence of inbreeding the number of
direct ancestors doubles and the segregation ratio is
1/2 per generation, the term for the mutation occurring
in any of the gametes produced by the direct ancestors
that existed n generations before the propositus is ex-
actly 2m(1−K)n.

For the situation in which there is no information
about any of the ancestors of this individual, the prob-
ability of heterozygosis for a normal individual takes
the form

P2(het! = 2m~1 − K! + 2m~1 − K!~1 − s8K!
+ 2m~1 − s8K!2+ . . .

= (
i=1

inf

2m~1 − K!wi−1 = 2m~1 − K! (
i=0

inf

wi

= 2m~1 − K!/~1 − w! = 2m~1 − K!/s,

where m and K have the same meaning as before and w8
4 1−s8 and w 4 K.w8+(1−K).1 4 1−K(1−w8) 4 1−Ks8
4 1−s are, respectively, the fitness value of affected
heterozygotes and the average fitness value of all het-
erozygotes (and s8 and s are the corresponding coeffi-
cients of selection or relative rates of decrease in fit-
ness). This formula, first derived by Stevenson and
Davison [1970], takes into account the possibilities of
the mutation having occurred: (a) in any of the two
gametes that gave rise to the propositus and then of
becoming nonpenetrant [2m(1−K)]; (b) in any of the four
gametes that gave rise to the parents of the propositus,
becoming penetrant (with probability K) and enabled
him or her to survive with probability w8 4 1−s8 and to
transmit the gene to the propositus with probability l/2
or was not penetrant and was transmitted to the pro-
positus, being then nonpenetrant [4mKw8.1/2.(1−K) +
4m(1−K).1/2.(1−K) 4 2m(1−K)(1−Ks8)] and so on. As in
the previous model, the term for the mutation occur-
ring in any of the gametes produced by the direct an-
cestors existing n generations before the propositus is
derived, taking the value 2m(1−K)(1−Ks8)n−1 or
2m(1−K)(1−s)n−1 4 2m(1−K)wn−1. The sum of all these
terms gives us the probability P2 shown above that the
propositus is a nonpenetrant heterozygote.

The two expressions P1 and P2 just derived are per-
fectly equivalent when s = K, that is, when the domi-
nant gene is lethal (i.e., produces a phenotype that dies
before reproduction or causes sterility). In fact, when
this takes place, the average relative decrease in fit-
ness of all heterozygotes (s) is exactly the penetrance
value K. When this takes place, one knows also that
equivalently none of the direct ancestors of the indi-
vidual was affected.

When there is no information about the ancestors of
the individual, the formula for an expression for P(het)
that encompasses both situations 1 and 2 is

P(het! = 2m~1 − K!/s.

When there is information about the normality of
both parents of the individual the formula takes the
form

P(het! = 2m~1 − K! + 2m~1 − K!2 ~w0 + w1 + w2 + . . .!
= 2m~1 − K! + 2m~1 − K!2/s.

When there is information about the normality of
both parents and all four grandparents the formula
becomes

P(het! = 2m~1 − K! + 2m~1 − K!2

+ 2m~1 − K!3~w0 + w1 + w2 + . . .!
= 2m~1 − K! + 2m~1 − K!2 + 2m~1 − K!3/s,

and so on, so that when there is information about the
normality of all direct ancestors over the first n gen-
erations the formula becomes

P~het! = 2m~1 − K! + 2m~1 − K!2 + . . . + 2m~1 − K!n

+ 2m~1 − K!n+1 ~w0 + w1 + w2 + . . .!
= 2m~1 − K! $@1 − ~1 − K!n#/K + ~1 − K!n/s%.

When n = 0,

P~het! = 2m~1 − K! @~1 − 1!/K + 1/s# = 2m~1 − K!/s;

Fig. 1. Individual C belonging to this generalized pedigree seeks ge-
netic counseling to ascertain his or her probability of being a heterozygote
for the autosomal dominant gene with incomplete penetrance that caused
the disease in the relative represented by the shaded symbol.

44 Otto and Maestrelli



when n tends to infinity,
P~het! = 2m~1 − K! @~1 − 0!/K + 0/s# = 2m~1 − K!/K,
as expected.

The formula shown above can be rewritten as

P~het! = 2m~1 − K!/K.@1 + ~K − s! ~1 − K!n/s#,
showing that, if we consider the situations in which the
penetrance values are high (as it usually happens, be-
ing of the order of 0.9 or more and certainly always
larger than 0.5), as n increases (1−K)n tends to zero and
the above expression tends rapidly to the form P(het)
4 2m(1−K)/K. If the relative decrease in fitness s is
high and of the order of K, the latter expression be-
comes even more likely.

The result just obtained is an important formulation
because it encompasses two extreme situations studied
with some detail in the literature.

A really generalized formula is not possible in simple
analytic form, because it will depend on different num-
bers and positions of direct ascendants falling into
three categories: normal ascendants with full informa-
tion about the normality of their direct ancestors, nor-
mal ascendants without any information about the nor-
mality of their direct ancestors, and direct ancestors
about whose normality nothing is known. To illustrate
the point, let us consider the probability of heterozygo-
sis of individual E in Fig. 2, where individuals A, B, C
and E are normal but nothing is known about indi-
vidual D nor all the ancestors of B. Individual E, whose
probability of heterozygosis we want to determine, can
be a heterozygote because (1) he or she is the result of
a nonpenetrant fresh mutation, with probability
2m~1 − K! = P0;
or (2) the gene was transmitted to him or her by A, with
probability

2m~1 − K!/K.@~1 − K!/2#2 = P1.Q2, where Q = ~1 − K!/2;
or (3) the gene was transmitted to him or her by B, with
probability

2m~1 − K!/s.@~1 − K!/2#2 = P2.Q2;
or (4) the gene was transmitted to him or her by D,
about whom nothing is known, with probability
2mK/s . w8 . @~1 − K!/2# + 2m~1 − K!/s . 1 . @~1 − K!/2#

= 2m~1 − K + Kw8!/s . @~1 − K!/2#
= 2m~1 − Ks8!/s . @~1 − K!/2#
= 2m~1 − s!/s . @~1 − K!/2#
= P3.Q;

or, finally, (5) the gene was transmitted to him or her
by C, in whom the gene originated through a fresh
mutation (we have already considered the case in
which the gene gets to E from A or B through C), with
probability

2m~1 − K! . @~1 − K!/2# = P0.Q;

therefore, the final probability of heterozygosis for E is

P~E = het! = 2m~1 − K! . $1 + @~1 − K!/2#2 . ~1/K + 1/s!
+ @~1 − K!/2 + ~1 − s!/2s#%

= P0 + ~P1 + P2!Q2 + ~P3 + P0!Q.

The calculation of the probability of heterozygosis
conditional to the information structure of a genealogy
is easily and readily obtained for any other possible
situation, five of which are depicted on Fig. 3; for the
genealogies shown, the probabilities of heterozygosis
for individual E are respectively:

a! P~het! = P0 + ~P2 + P3!Q

b! P~het! = P0 + 2@P0 + ~P2 + P3!Q#Q

c! P~het! = P0 + ~P1 + P3!Q

d! P~het! = P0 + ~P1 + P2!Q

e! P~het! = P0 + @2P0 + (P1 + P2 + 2P3!Q#Q,

where, as defined above, P0 4 2m(1 − K), P1 4 2m(1 −
K)/K, P2 4 2m(1 − K)/s, P3 4 2m(1 − s)/s, and Q 4 (1 −
K)/2.

Probability of Heterozygosis for a Couple with
an Isolated Affected Descendant

The occurrence of a heterozygote can be explained by
one of two mutually exclusive events: (a) the gene is the
result of a new mutation occurring in one of the ga-
metes that gave rise to him or her (probability 2m); (b)
one of his or her parents is heterozygous [probability
4m(1−K)/K, using the situation in which there is infor-
mation about all the direct ancestors and all were
known to be normal] and transmitted the gene to him

Fig. 2. Nothing is known about individual D and all the ancestors of B;
B and D are direct ancestors of E, which heterozygosis probability is going
to be determined.

Fig. 3. Pedigrees used in examples of calculation of heterozygosity
probability for individual E. The question marks indicate that there is no
available information about one or more persons or their direct ancestors.
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or her (probability 1/2), the final probability figure be-
ing 2m(1−K)/K.

Normalizing these two probabilities gives the prob-
ability of heterozygosis for the parents as:
P~A or B = het! = @2m~1 − K!/K#/@2m~1 − K!/K + 2m#

= 1 − K,
the probability of heterozygosity for each parent being
P~A = het! = P~B = het! = P~A or B = het!/2 = ~1 − K!/2.

The quantity just derived [(1−K)/2 4 Q] is the con-
ditional probability P(D4het|E4het) of heterozygosis
for an individual D, given that his or her child (E) is a
heterozygote. Using this quantity, the probability of
heterozygosis for any of the individuals in the geneal-
ogy of Fig. 4 is determined as:

P~E = het! = P~F = het! . P~E = het ? F = het!
= 1 . ~1 − K!/2 = ~1 − K!/2 = Q

P~D = het! = P~E = het! . P~D = het ? E = het!
= @~1 − K!/2#2 = Q2

P~C = het! = P~D = het! . P~C = het ? D = het!
= @~1 − K/2#3 = Q3

P~A or B = het! = P~C = het! . P~A = het ? C = het!
+ P~C = het! . P~B = het ? C = het!

= @~1 − K!/2#3 ~1 − K! = 2@~1 − K!/2#4

= 2Q4.
If there are n3 individuals (one per generation), de-

scendants of the couple [A,B] down to the affected case
inclusive, the probability of heterozygosis for [A,B] is
given by

P~A or B = het ? n3! = 2@~1 − K!/2#n3 = 2Qn3.
When there is no information about the ascendants

of either A or B, the probability of heterozygosis for the
parents of a known heterozygote is obtained now by
normalizing the probabilities 2m(1−K)/s and 2m, so that
P8(A or B 4 het) 4 (1−K)/(1−K+s) and P8(A4het) 4
P8(B4het) 4 (1−K)/[2(1−K+s)]. For all other individu-
als in Fig. 4, the conditional probability [(1−K)/2] of
being a heterozygote given that a son or a daughter is
a heterozygote is valid. Therefore, if there are n3 indi-
viduals (one per generation) descendants of the couple
[A,B] down to the affected case inclusive, the probabil-
ity of heterozygosis for [A,B] is given by

P8~A or B = het ? n3! = 2 @~1 − K!/2#n3/~1 − K + s!.
Other expressions for the probability of heterozygo-

sis for a couple given that they have an isolated af-

fected descendant are easily obtained when the level of
information about the ascendants of both A and B var-
ies between the two extreme cases just considered.

Probability of Heterozygosity for an Individual,
Descendant of an Individual Whose

Heterozygosity Probability is Known

If a normal individual belonging to the nth genera-
tion (Fig. 5) has a probability Pn of being heterozygote,
the probability that a normal child born to this person
is also a heterozygote (Pn+1) is obtained easily by ap-
plying Bayes theorem (see Table I), so that Pn+1 4 Pn(1
− K)/(2 − PnK), which is the first order fractional dif-
ference equation Pn+1 4 [a+bPn]/[c+dPn], with a 4 0, b
4 1−K, c 4 2, and d 4 −K. Its general solution is given
by

Pn = [(b − r1!~dP0 + r2 − b!r2
n + ~r2 − b!~dP0 + r1 − b!r1

n#/

@d~dP0 + r2 − b!r2
n − d~dP0 + r1 − b!r1

n#,

where r1 4 (b + c + D1/2)/2 4 1 − K , r2 4 (b + c − D1/2)/2
4 2,

D = ~b − c!2 + 4ad = ~− 1 − K!2, and P0 = P~A or B = het!.
Taking into account the elements shown in Fig. 5,

this formula can be rewritten as

P~C = het ? n1! = P0~1 + K! ~1 − K/2!n1/$1 + K − KP0

@1 − ~1 − K/2!n1#%
= P0 ~1 + K!Qn1/@1 + K − KP0 ~1 − Qn1!#,

where, as before, Q 4 (1 − K)/2.

Probability of Heterozygosis for an Individual
With Normal Descendants

The probabilities of occurrence of one child, one child
and one grandchild, etc. (one descendant per genera-
tion, all normal) are always 1 if C (Fig. 1) is a homozy-
gote and has the following values P1, P2, ..., Pn2

if C is
a heterozygote:

P1 = 1/2 + ~1 − K!/2 = 1/2 + Q
P2 = 1/2 + Q~1/2 + Q!

= 1/2 ? ~1 + Q! + Q2

P3 = 1/2 + Q @1/2 + Q~1/2 + Q!#
= 1/2 ? ~1 + Q + Q2! + Q3

P4 = 1/2 + Q$1/2 + Q@1/2 + Q~1/2 + Q!#%
= 1/2 ? ~1 + Q + Q2 + Q3! + Q4

. . .
Pn2

= 1/2 ? ~1 + Q + Q + . . . + Qn2−1! + Qn2

= 1/2 ? @~1 − Qn2!/~1 − Q!# + Qn2 = ~1 + KQn2!/~1 + K!,

Fig. 4. Pedigree illustrating the situation in which a couple (A, B) has
an isolated affected descendant (F).

Fig. 5. Pedigree illustrating the situation in which individual C de-
scends from a direct ancestor (A or B), which heterozygosis probability is
known.
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where Q 4 (1 − K)/2 and n2 is the number of direct
descendants (1 by generation). So, given that C has had
n2 direct descendants, the conditional probabilities of
being a non-penetrant heterozygote or a normal homo-
zygote are in the ratios

~1 + KQn2!/~1 + K!:1.

If the prior probability of heterozygosis of C is Ph,
then the probability of heterozygosis for C, given that
he or she has n2 direct normal descendants, is

P~C = het ? n2! = Ph . Pn2
/~Ph . Pn2

+ 1 − Ph!.

Generalization

We consider the general situation presented in
Fig. 1.

Setting P0 4 P(A or B-het|n3) we obtain the prob-
abilities of C for heterozygosis and homozygosis shown
in Table II, where the quantities in line (1) are the
combined probabilities of occurrence of n3 individuals
(one per generation) between the couple [A,B] and the
affected individual inclusive (P0 4 2Qn3) and of n1 di-
rect ascendants of the propositus up to the couple [A,B]
inclusive; and the quantities in line (2) are the condi-
tional probabilities of occurrence of n2 normal descen-
dants of C. The expression at left of line (1) was im-
ported directly from the end of the section before the
last; the expression shown at right is its mutual
complement. The ratios shown on line (2) were taken
directly from last section above. Replacing P0 with 2Qn3

we obtain:

~1! P0 ~1 + K!Qn1 = 2 ~1 + K!Qn3+n1:1 + K − P0 ~K + Qn1!
= 1 + K − 2Qn3 ~K + Qn1)

~2! ~1 + KQn2!/~1 + K!:1

Therefore, the joint probabilities are

2Qn3+n1 ~1 + KQn2!:1 + K − 2Qn3 ~K + Qn1!,

so that

P~C = het ? n1,n2,n3! = 2Qn3+n1~1 + KQn2!/

@1 + K − 2KQn3~1 − Qn1+n2!#.

By introducing the logical operator dn3 (dn3 4 1 if n3 4
0, dn3 4 0 if n3 ° 0), the formula includes the case n3
4 0 (A or B affected):

P~C = het ? n1,n2,n3! = 2Qn3+n1 ~1 + KQn2!/
@~1 + K! ~1 + dn3

!

− 2KQn3 ~1 − Qn1+n2!#.

The latter expression reduces to

P~het ? n1,n2,n3! = 2Qn3+n1 ~1 + KQn2!/@1 + K − 2KQn3

~1 − Qn1+n2!#

when n3 ° 0 (so that dn3 4 0); and to

P~het ? n1,n2! = Qn1 ~1 + KQn2!/~1 + KQn1+n2!

when n3 4 0 (so that dn3 4 1).
The generalization just derived allows the calcula-

tion of the probability of heterozygosity for any relative
of an affected case, six situations of which are shown in
Fig. 6. The formula above reduces to the following val-
ues for examples (a)–(f):

~a! P~A or B = het ? n1 = 0,n2,n3 = 0!
= ~1 + KQn2!/@1 + K − K~1 − Qn2!#
= ~1 + KQn2!/~1 + KQn2! = 1.

~b! P~C = het ? n1 = 1,n2 = 0,n3 = 0! = Q~1 + K!/
@1 + K − K~1 − Q!# = ~1 − K!/~2 − K!.

~c! P~A or B = het ? n1 = 0,n2 = 0,n3 = 1! = 2Q ~1 + K!/
@1 + K − 2KQ~1 − 1!# = 1 − K.

~d! P~C = het ? n1 = 1,n2 = 1,n3 = 1!
= 2Q2 . ~1 + KQ!/@1 + K − 2KQ~1 − Q2!#
= @~1 − K!3 + ~1 − K!2#/ @~1 − K!3

+ ~1 − K!2+ 2~1 − K! + 4K#.

~e! P~A or B = het ? n1 = 0,n2 = 0,n3 = 2!
= 2Q2. ~1 + K!/@1 + K − 2Q2.

~1 − 1!# = ~1 − K!2/2.

~f! P~C = het ? n1 = 2, n2 = 0,n3 = 2!
= 2Q4 . ~1 + K!/@1 + K − 2KQ2 . ~1 − Q2!#
= ~1 − K!4/@8 − K~1 − K!2 . ~3 − K!#.

In all formulae just derived, it was assumed that there
is information about the normality of all ascendants of
A and B and we started by putting P0 4 P(A or B 4
het| n3) 4 2Qn3.

Other formulae are easily obtained by replacing this
latter value for the appropriate expressions that corre-
spond to the levels of information we have about the
ascendants of both A and B. When this is taken into
account, our formulae are valid for all particular cases
thus far studied in the literature.

RECURRENCE RISKS FOR RELATIVES OF
ISOLATED CASES

Multiplying the probability of heterozygosis P(C 4
het| n3, n1, n2) by K/2 we obtain the recurrence risk of
the disease in the offspring of any individual. For in-
stance, in the common case of a couple with a single
affected child, the risk of a new affected child is giv-
en by

R1 4 K(1 − K)/2

TABLE I. Probabilities for C of Heterozygosis
and Homozygosis

Heterozygosis Homozygosis

Prior Pn/2 1 − Pn/2
Conditional (to be normal) 1 − K 1
Joint probability Pn(1 − K) : 2 − Pn

TABLE II. Probabilities for C of Heterozygosis and Homozygosis

Heterozygosis Homozygosis

(1) P0(1 + K)Qn1/[(1 + K) − KP0 (1 − Qn1)] : 1 − P0(1 + K) Qn1/[(1 + K) − KP0 (1 − Qn1)]
(2) (1 + KQn2)/(1 + K) : 1
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which corresponds to the case in which all the direct
ancestors of the affected individual were known to be
normal; and

R2 4 K(1 − K)/2(1 − K + s)

which corresponds to the case in which there is no in-
formation at all about any of the direct ancestors of the
affected individual.

The two expressions for R1 and R2 shown previously
were first derived by Frota-Pessoa et al. [1976] and
Stevenson and Davison [1970], respectively. The re-
sults of Stevenson and Davison [1970] also were ob-
tained by Aylsworth and Kirkman [1979], Pauli and
Motulsky [1981] and Emery [1986].

The formulae just presented can be adapted to in-
clude phenocopies or somatic mutations, situations
very frequent in dominant conditions. We shall illus-
trate this point with the following example [Frota-
Pessoa et al., 1976]: bilateral retinoblastoma is the re-
sult of an autosomal dominant gene with 80%
penetrance. The recurrence risk for a sib of an isolated
case is R1 4 K(1−K)/2 4 0.08 or 8%. No direct estimate
of penetrance is available or appropriate for the uni-
lateral disorder, which is heterogeneous. About 80% of
the isolated cases of unilateral retinoblastoma are due
to somatic mutations that behave as phenocopies, since
they are not transmitted. The remaining 20% of the
cases are considered to be due to the same gene pro-

ducing the bilateral cases. Therefore, the risk of recur-
rence is R 4 0.2 × R1 4 0.016 or 1.6%. The empiric
recurrence risk is obtained from two studies based on
1,846 families [Fuhrmann and Vogel, 1969; Vogel,
1967] and is 1.25%. The calculated risk of 1.6% agrees
very well with this figure (chi-square 4 1.47; 1 d.f.; P >
0.10).
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