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1. INTRODUCTION 
  
The task of quantizing general relativity raises serious questions about the meaning of the 
present formulation and interpretation of quantum mechanics when applied to so fundamental a 
structure as the space-time geometry itself. This paper seeks to clarify the formulations of 
quantum mechanics. It presents a reformulation of quantum theory in a form believed suitable 
for application to general relativity. 
The aim is not to deny or contradict the conventional formulation of quantum theory, which has 
demonstrated its usefulness in an overwhelming variety of problems, but rather to supply a new, 
more general and complete formulation, from which the conventional interpretation can be 
deduced. 
The relationship of this new formulation to the older formulation is therefore that of a 
metatheory to a theory, that is, it is an underlying theory in which the nature and consistency, as 
well as the realm of applicability, of the older theory can be investigated and clarified. 
The new theory is not based on any radical departure from the conventional one. The special 
postulates in the old theory which deal with observation are omitted in the new theory. The 
altered theory thereby acquires a new character. It has to be analyzed in and for itself before any 
identification becomes possible between the quantities of the theory and the properties of the 
world of experience. The identification, when made, leads back to the omitted postulates of the 
conventional theory that deal with observation, but in a manner which clarifies their role and 
logical position. 
We begin with a brief discussion of the conventional formulation, and some of the reasons which 
motivate one to seek a modification. 
  
2. REALM OF APPLICABILITY OF THE CONVENTIONAL OR "EXTERNAL 
OBSERVATION" FORMULATION OF QUANTUM MECHANICS 
  
We take the conventional or "external observation" formulation of quantum mechanics to be 
essentially the following1: A physical system is completely described by a state function ψ, 
which is an element of a Hilbert space, and which furthermore gives information only to the 
extent of specifying the probabilities of the results of various observations which can be made on 
the system by external observers. There are two fundamentally different ways in which the state 
function can change: 
___________________________ 



1 We use the terminology and notation of J. von Neumann, Mathematical Foundations of 
Quantum Mechanics, translated by R.T.Beyer (Princeton University Press, Princeton, I955). 
  

Process 1: The discontinuous change brought about by the observation of a quantity with 
eigenstates φ1, φ2, , in which the state ψ will be changed to the state φj, with probability 
|(ψ,φj)|2. 

Process 2: The continuous, deterministic change of state of an isolated system with time 
according to a wave equation dψ/dt = бψ, where A is a linear operator. 

  
This formulation describes a wealth of experience. No experimental evidence is known which 
contradicts it. 
Not all conceivable situations fit the framework of this mathematical formulation. Consider for 
example an isolated system consisting of an observer or measuring apparatus, plus an object 
system. Can the change with time of the state of the total system be described by Process 2? If 
so, then it would appear that no discontinuous probabilistic process like Process 1 can take place. 
If not, we are forced to admit that systems which contain observers are not subject to the same 
kind of quantum-mechanical description as we admit for all other physical systems. The question 
cannot be ruled out as lying in the domain of psychology. Much of the discussion of "observers" 
in quantum mechanics has to do with photoelectric cells, photographic plates, and similar 
devices where a mechanistic attitude can hardly be contested. For the following one can limit 
himself to this class of problems, if he is unwilling to consider observers in the more familiar 
sense on the same mechanistic level of analysis. 
What mixture of Processes 1 and 2 of the conventional formulation is to be applied to the case 
where only an approximate measurement is effected; that is, where an apparatus or observer 
interacts only weakly and for a limited time with an object system? In this case of an 
approximate measurement Б proper theory must specify (1) the new state of the object system 
that corresponds to any particular reading of the apparatus and (2) the probability with which this 
reading will occur, von NЕumann showed how to treat a special class of  approximate 
measurements by the method of projection operators.2 However, a general treatment of all 
approximate measurements by the method of projection operators can be shown (Sec. 4) to be 
impossible. 
_______________________________ 
2 Reference 1, Chap. 4, Sec. 4. 
How is one to apply the conventional formulation of quantum mechanics to the space-time 
geometry itself? The issue becomes especially acute in the case of a closed universe.3 There is no 
place to stand outside the system to observe it. There is nothing outside it to produce transitions 
from one state to another. Even the familiar concept of a proper state of the energy is completely 
inapplicable. In the derivation of the law of conservation of energy, one defines the total energy 
by way of an integral extended over a surface large enough to include all parts of the system and 
their interactions.4 But in a closed space, when a surface is made to include more and more of the 
volume, it ultimately disappears into nothingness. Attempts to define a total energy for a closed 
space collapse to the vacuous statement, zero equals zero. 
_______________________________ 
3 See A.Einstein, The Meaning of Relativity (Princeton University Press, Princeton, 1950), third 
edition, p. 107. 
4 L.Landau and E.Lifshitz, The Classical Theory of Fields, translated by M.Hamermesh 
(Addison-Wesley Press, Cambridge, 1951), p. 343. 
  
How are a quantum description of a closed universe, of approximate measurements, and of a 
system that contains an observer to be made? These three questions have one feature in common, 
that they all inquire about the quantum mechanics that is internal lo an isolated system. 



No way is evident to apply the conventional formulation of quantum mechanics to a system that 
is not subject to external observation. The whole interpretive scheme of that formalism rests 
upon the notion of external observation. The probabilities of the various possible outcomes of the 
observation are prescribed exclusively by Process 1. Without that part of the formalism there is 
no means whatever to ascribe a physical interpretation to the conventional machinery. But 
Process 1 is out of the question for systems not subject to external observation.5 
_______________________________ 
5 See in particular the discussion of this point by N.Bohr and L.Rosenfeld, Kgl. Danske 
Videnskab, Selskab, Mat.-fys. Medd. 12, No. 8 (1933). 
  
3. QUANTUM MECHANICS INTERNAL TO AN ISOLATED SYSTEM 
  
This paper proposes to reward pure wave mechanics (тrocess 2 only) as a complete theory. It 
postulates that a wave function that obeys a linear wave equation everywhere and at all times 
supplies a complete mathematical model for every isolated physical system without exception. It 
further postulates that every system that is subject to external observation can be regarded as part 
of a larger isolated system. 
The wave function is taken as the basic physical entity with no a priori interpretation. 
Interpretation only comes after an investigation of the logical structure of the theory. Here as 
always the theory itself sets the framework for its interpretation. 5 
For any interpretation it is necessary to put the mathematical model of the theory into 
correspondence with experience. For this purpose it is necessary to formulate abstract models for 
observers that can be treated within the theory itself as physical systems, to consider isolated 
systems containing such model observers in interaction with other subsystems, to deduce the 
changes that occur in an observer as a consequence of interaction with the surrounding 
subsystems, and to interpret the changes in the familiar language of experience. 
Section 4 investigates representations of the state of a composite system in terms of states of 
constituent subsystems. The mathematics leads one to recognize the concept of the relativity of 
states, in the following sense: a constituent subsystem cannot be said to be in any single well-
defined state, independently of the remainder of the composite system. To any arbitrarily chosen 
state for one subsystem there will correspond a unique relative state for the remainder of the 
composite system. This relative state will usually depend upon the choice of state for the first 
subsystem. Thus the state of one subsystem does not have an independent existence, but is fixed 
only by the state of the remaining subsystem. In other words, the states occupied by the 
subsystems are not independent, but correlated. Such correlations between systems arise 
whenever systems interact. In the present formulation all measurements and observation 
processes are to be regarded simply as interactions between the physical systems involved — 
interactions which produce strong correlations. A simple model for a measurement, due to von 
Neumann, is analyzed from this viewpoint. 
Section 5 gives an abstract treatment of the problem of observation. This uses only the 
superposition principle, and general rules by which composite system states are formed of 
subsystem states, in order that the results shall have the greatest generality and be applicable to 
any form of quantum theory for which these principles hold. Deductions are drawn about the 
state of the observer relative lo the state of the object system. It is found that experiences of the 
observer (magnetic tape memory, counter system, etc.) are in full accord with predictions of the 
conventional "external observer" formulation of quantum mechanics, based on Process 1. 
Section 6 recapituIates the "relative state" formulation of quantum mechanics. 
  
4. CONCEPT OF RELATIVE STATE 
  
We now investigate some consequences of the wave mechanical formalism of composite 
systems. If a composite system S, is composed of two subsystems S1 and S2, with associated 



Hilbert spaces H1 and H2, then, according to the usual formalism of composite systems, the 
Hilbert space for S is taken to be the tensor product of H1 and H2 (written H = H1⊗H2). This has 
the consecuence that if the sets {ξi

S
1} and {ηj

S
2} are complete orthonormal sets of states for S1 

and S2, respectively, then the general state of S can be written as a superposition: 
ψS = Σi,jaijξi

S
1 ηj

S
2.  (1) 

  
From (3.1) although S is in a definite state ψS, the subsystems S1 and S2 do not possess anything 
like definite states independentlХ of one another (except in the special case where all but one of 
the aij are zero).  
We can, however, for any choice of a state in one subsystem, uniquely assign a corresponding 
relative state in the other subsystem. For example, if we choose ξk as the state for S1, while the 
composite system S is in the state ψS given by (3.1), then the corresponding relative state in S2, 
ψ(S2; relξk, S1), will be: 
  

ψ(S2; relξk, S1) = Nk Σ jakjηj
S

2  (2) 
  

where Nk is a normalization constant. This relative state for ξk is independent of the choice of 
basis {ξi} (i ≠ k) for the orthogonal complement of ξk, and is hence determined uniquely by ξk 
alone. To find the relative state in S2 for an arbitrary state of S1 therefore, one simply carries out 
the above procedure using any pair of bases for S1 and S2 which contains the desired state as one 
element of the basis for S1. To find states in S1 relative to states in S2, interchange S1 and S2 in the 
procedure. 
In the conventional or "external observation" formulation, the relative state in S2, ψ(S2; relφ, S1) 
for a state φS

1 in S1, gives the conditional probability distributions for the results of all 
measurements in S2, given that S1 has been measured and found to be in state φS

1  — i.e., that φS
1 

is the eigenfunction of the measurement in S1 corresponding to the observed eigenvalue. 
For any choice of basis in S1, {ξi}, it is always possible to represent the state of S, (1), as a single 
superposition of pairs of states, each consisting of a state from the basis {ξi} in S1 and its relative 
state in S2. Thus, from (2), (1) can be written in the form: 
                                         1 

ψS = Σi — ξi
S

1 ψ(S2; relξi, S1).  (3) 
                                       Ni 
This is an important representation used frequently. 
Summarizing: There does not, in general, exist anything like a single state for one subsystem of a 
composite system. Subsystems do not possess states that are independent of the states of the 
remainder of the system, so that the subsystem states are generally correlated with one another. 
One can arbitrarily choose a state for one subsystem, and be led to the relative state for the 
remainder. Thus we are faced with a fundamental relativity of states, which is implied by the 
formalism of composite systems. It is meaningless to ask the absolute state of a subsystem — one 
can only ask the state relative to a given state of the remainder of the subsystem. 
At this point we consider a simple example, due to von Neumann, which serves as a model of a 
measurement process. Discussion of this example prepares the ground for the analysis of 
"observation." We start with a system of only one coordinate, q (such as position of a particle), 
and an apparatus of one coordinate r (for example the position of a meter needle). Further 
suppose that they are initially independent, so that the combined wave function is ψ0

S+A = φ(q)η 
(r) where φ(q) is the initial system wave function, and η (r) is the initial apparatus function. The 
Hamiltonian is such that the two systems do not interact except during the interval t = 0 to t = T, 
during which time the total Hamiltonian consists only of a simple interaction, 
  

HI = - iћq(d/dr).               (4) 
  
Then the state 



  
ψt

S+A (q,r) = φ(q)η (r - qt)   (5) 
  
is a solution of the Schrödinger equation,  
  

iћ(dψt
S+A /dt) = HIψt

S+A,             (6) 
  
for the specified initial conditions at lime t = 0. 
From (5) at time t = T (at which time interaction stops) there is no longer any definite 
independent apparatus state, nor any independent system state. The apparatus therefore does not 
indicate any definite object-system value, and nothing like process 1 has occurred. 
Nevertheless, we can look upon the total wave function (5) as a superposition of pairs of 
subsystem states, each element of which has a definite q value and a correspondingly displaced 
apparatus state. Thus after the interaction the state (5) has the form: 

ψT
S+A = φ(q')δ(q - q')η (r - q'T)dq' ,      (7) 

which is a superposition of states ψq' = δ(q - q')η (r - q'T). Each of these elements, ψq', of the 
superposition describes a state in which the system has the definite value q = q', and in which the 
apparatus has a state that is displaced from its original state by the amount q'T. These elements 
ψq' are then superposed with coefficients φ(q') to form the total state (7). 
Conversely, if we transform to the representation where the apparatus coordinate is definite, we 
write (5) as 

ψT
S+A = (1/Nr')ξ 

r' (q)δ(r - r') dr' , 
where  

ξ 
r' (q) = Nr'φ(q)η (r' - qT)   (8) 

and 
 (1/Nr')2  = φ*(q) φ(q)η*( r' - qT) η (r' - qT)dq .     

Then the ξ 
r'(q) are the relative system state functions6 for the apparatus states δ(r - r') of definite 

value r = r'. 
_______________________________ 
6 This example provides a model of an approximate measurement. However, the relative system 
state after the interaction ξ 

r'(q) cannot ordinarily be generated from the Пoriginal system state φ 
by the application of БnХ projection operator, E. Proof: Suppose on the contrary that ξ 

r'(q) = 
NEφ(q) = N'φ(q)η(r' - qt), where N, N' are normalization constants. Then 

E(NEφ(q)) = NE2φ(q) = N''φ(q)η2(r' - qt) 
and E2φ(q) = (N''/N)φ(q)η2(r' - qt). But the condition E2 = E which is necessary for E to be a 
projection implies that N'/N''η(q) = η2(q) which is generally false. 
  
If T is sufficiently large, or η(r) sufficiently sharp (near δ(r)) then ξr'(q) is nearly δ(q - r'/T) and 
the relative system states ξ 

r' (q) are nearly eigenstates for the values q = r'/T. 
We have seen that (8) is a superposition of states ψr', for each of which the apparatus has 
recorded a definite value r', and the system is left in approximately the eigenstate of the 
measurement corresponding to q = r'/T. The discontinuous "jump" into an eigenstate is thus only 
a relative proposition, dependent upon the mode of decomposition of the total wave function into 
the superposition, and relative to a particularly chosen apparatus-coordinate value. So far as the 
complete theory is concerned all elements of the superposition exist simultaneously, and the 
entire process is quite continuous. 
von Neumann's example is only a special case of a more general situation. Consider any 
measuring apparatus interacting with any object system. As a result of the interaction the state of 
the measuring apparatus is no longer capable of independent definition. It can be defined only 
relative to the state of the object system. In other words, there exists only a correlation between 
the states of the two systems. It seems as if nothing can ever be settled by such a measurement. 



This indefinite behavior seems to be quite at variance with our observations, since physical 
objects always appear to us to have definite positions. Can we reconcile this feature wave 
mechanical theory built purely on Process 2 with experience, or must the theory be abandoned as 
untenable? In order to answer this question we consider the problem of observation itself within 
the framework of the theory. 
  
5. OBSERVATION 
  
We have the task of making deductions about the appearance of phenomena to observers which 
are considered as purely physical systems and are treated within the theory. To accomplish this it 
is necessary to identify some present properties of such an observer with features of the past 
experience of the observer. 
Thus, in order to say that an observer 0 has observed the event α, it is necessary that the state of 
0 has become changed from its former state to a new state which is dependent upon α. 
It will suffice for our purposes to consider the observers to possess memories (i.e., parts of a 
relatively permanent nature whose states are in correspondence with past experience of the 
observers). In order to make deductions about the past experience of an observer it is sufficient 
to deduce the present contents of the memory as it appears within the mathematical model. 
As models for observers we can, if we wish, consider automatically functioning machines, 
possessing sensory apparatus and coupled to recording devices capable of registering past 
sensory data and machine configurations. We can further suppose that the machine is so 
constructed that its present actions shall be determined not only by its present sensory data, but 
by the contents of its memory as well. Such a machine will then be capable of performing a 
sequence of observations (measurements), and furthermore of deciding upon its future 
experiments on the basis of past results. If we consider that current sensory data, as well as 
machine configuration, is immediately recorded in the memory, then the actions of the machine 
at a given instant can be regarded as a function of the memory contents only, and all relevant 
experience of the machine is contained in the memory. 
For such machines we are justified in using such phrases as "the machine has perceived A" or 
"the machine is aware of A" if the occurrence of A is represented in the memory, since the future 
behavior of the machine will be based upon the occurrence of A. In fact, all of the customary 
language of subjective experience is quite applicable lo such machines, and forms the most 
natural and useful mode of expression when dealing with their behavior, as is well known to 
individuals who work with complex automata. 
When dealing with a system representing an observer quantum mechanically we ascribe a state 
function, ψ0, to it. When the state ψ0 describes an observer whose memory contains 
representations of the events A, B,  , у we denote this fact by appending the memory sequence in 
brackets as a subscript, writing: 

ψ0 [A, B,  , C]    (9) 
The symbols A, B,  , у, which we assume to be ordered time-wise, therefore stand for memory 
configurations which are in correspondence with the past experience of the observer. These 
configurations can be regarded as punches in a paper tape, impressions on a magnetic reel, 
configurations of a relay switching circuit, or even configurations of brain cells. We require only 
that they be capable of the interpretation: "The observer has experienced the succession of events 
A, B,  , у." (We sometimes write dots in a memory sequence,  A, B,  , у, to indicate the possible 
presence of previous memories which are irrelevant to the case being considered.) 
The mathematical model seeks to treat the interaction of such observer systems with other 
physical systems (observations), within the framework of Process 2 wave mechanics, and to 
deduce the resulting memory configurations, which are then to be interpreted as records of the 
past experiences of the observers. 



We begin by defining what constitutes a "good" observation. A good observation of a quantity A, 
with eigenfunctions φi, for a system S, by an observer whose initial state is ψ0, consists of an 
interaction which, in a specified period of time, transforms each (total) state 
  

ψS+0 = φiψ0[. . .]                   (10) 
  

into a new state  
  

ψS+0' = φiψ0[. . .αi]   (11) 
  

where αi characterizes7 the state φi. (The symbol, αi, might stand for a recording of the 
eigenvalue, for example.) That is, we require that the system state, if it is an eigenstate, shall be 
unchanged, and (2) that the observer state shall change so as to describe an observer that is 
"aware" of which eigenfunction it is; that is, some property is recorded in the memory of the 
observer which characterizes φi, such as the eigenvalue. The requirement that the eigenstates for 
the system be unchanged is necessary if the observation is to be significant (repeatable), and the 
requirement that the observer state change in a manner which is different for each eigenfunction 
is necessary if we are to be able to call the interaction an observation at all. How closely a 
general interaction satisfies the definition of a good observation depends upon (1) the way in 
which the interaction depends upon the dynamical variables of the observer system —including 
memory variables — and upon the dynamical variables of the object system and (2) the initial 
state of the observer system. Given (1) and (2), one can for example solve the wave equation, 
deduce the state of the composite system after the end of the interaction, and check whether an 
object system that was originally in an eigenstate is left in an eigenstate, as demanded by the 
repeatability postulate. This postulate is satisfied, for example, by the model of von Neumann 
that has already been discussed. 
_______________________________ 
7 It should be understood that ψ0[. . .αi] is a different state for each i. A more precise notation 
would write ψ0

i[. . .αi], but no confusion can arise if we simply let the ψ0
i be indexed only by the 

index of the memory configuration symbol. 
  
From the definition of a good observation we first deduce the result of an observation upon a 
system which is not in an eigenstate of the observation. We know from our definition that the 
interaction transforms states φiψ0[. . .] into states φiψ0[. . .αi]. Consequently these solutions of the 
wave equation can be superposed to give the final state for the case of an arbitrary initial system 
state. Thus if the initial system state is not an eigenstate, but a general state Σiaiφi, the final total 
state will have the form: 
  

ψS+0' = Σiaiφiψ0[. . .αi].  (12) 
  
This superposition principle continues to apply in the presence of further systems which do not 
interact during the measurement. Thus, if systems S1, S2, . . . , Sn are present as well as 0, with 
original states ψS

1, ψS
2, . . . , ψS

n, and the only interaction during the time of measurement takes 
place between S1 and 0, the measurement will transform the initial total state: 

ψS
1

 + S
2

 + . . . + S
n

+ 0 = ψS
1ψS

2 . . .ψS
n,ψ0[. . .]                 (13) 

into the final state:  
ψ 'S1

 + S
2

 + . . . + S
n

+ 0 = Σiaiφi
 S

1ψS
2 . . .ψS

n,ψ0[. . .αi]      (14) 
where ai = (φi

 S
1,ψS

1) and φi
 S

1 are eigenfunctions of the observation. 
Thus we arrive at the general rule for the transformation of total state functions which describe 
systems within which observation processes occur: 

Rule 1: The observation of a quantity A, with eigenfunctions φi
 S

1, in a system S1 by the 
observer 0, transforms the total state according to: 



ψS
1ψS

2 . . .ψS
nψ0[. . .] 

→ Σiaiφi
 S

1ψS
2 . . .ψS

n,ψ0[. . .αi] (15) 
where 

ai = (φi
 S

1,ψS
1). 

If we next consider a second observation to be made, where our total state is now a 
superposition, we can apply Rule 1 separately to each element of the superposition, since each 
element separately obeys the wave equation and behaves independently of the remaining 
elements, and then superpose the results to obtain the final solution. We formulate this as: 

Rule 2: Rule 1 may be applied separately to each element of a superposition of total system 
states, the results being superposed to obtain the final total state. Thus, a determination of 
B, with eigenfunctions ηj

S
2,^, on S2 by the observer 0 transforms the total state 

Σiaiφi
 S

1ψS
2 . . .ψS

n,ψ0[. . .αi]         (16) 
into the state  

Σi,jai bj φi
 S

1ηj
S

2ψS
2 . . .ψS

n,ψ0[. . .αi,βj]        (17) 
where bj = (ηj

S
2,ψS

2), which follows from the application of Rule 1 to each element φi
 S

1ψS
2 

. . .ψS
n,ψ0[. . .αi], and then superposing the results with the Уcoefficients αi. 

These two rules, which follow directly from the superposition principle, give a convenient 
method for determining final total states for any number of observation process in any 
combinations. We now seek the interpretation of such final total states. 
Let us consider the simple case of Б single observation of a quantity A, with eigenfunctions φi, in 
the system S with initial state ψS, by an observer 0 whose initial state is ψ0[. . .]. The final result 
is, as we have seen, the superposition 

ψ 'S + 0 = Σiaiφi
 ψ0[. . .αi].  (18) 

There is no longer any independent system state or observer state, although the two have become 
correlated in a one-one manner. However, in each element of the superposition, φiψ0[. . .αi], the 
object-system state is a particular eigenstate of the observation, and furthermore the observer-
sХstem state describes the observer as definitelyХ perceiving that particular system state. This 
correlation is what allows one to maintain the interpretation that a measurement has been 
performed. 
We now consider a situation where the observer system comes into interaction with the object 
system for a second time. According lo Rule 2 we arrive at the total state after the second 
observation: 

ψ ''S + 0 = Σiaiφi
 ψ0[. . .αi,αi].  (19) 

Again, each element φiψ0[. . .αi,αi] describes a system eigenstate, but this time also describes the 
observer as having obtained the same result for each of the two observations. Thus for every 
separate state of the observer in the final superposition the result of the observation was 
repeatable, even though different for different states. This repeatability is a consequence of the 
fact that after an observation the relative system state for a particular observer state is the 
corresponding eigenstate. 
Consider now a different situation. An observer-system 0, with initial state ψ0[. . .], measures the 
same quantity A in a number of separate, identical, systems which are initially in the same state, 
ψS

1  =ψS
2 = . . . = ψS

n = Σiaiφi (where the φi are, as usual, eigenfunctions of A). The initial total 
state function is then 

ψ0
S

1
 + S

2
 + . . . + S

n
+ 0 = ψS

1ψS
2 . . .ψS

nψ0[. . .]  (20) 
We assume that the measurements are performed on the systems in the order S1, S2, . . . ,Sn. Then 
the total state after the first measurement is by Rule 1, 

ψ1
S

1
 + S

2
 + . . . + S

n
+ 0 = Σiaiφi

 S
1ψS

2 . . .ψS
n,ψ0[. . .αi

1]       (21) 
(where αi

1 refers to the first system, S1). 
After the second measurement it is, by Rule 2,  
ψ2

S
1

 + S
2

 + . . . + S
n

+ 0 

= Σi,jai aj φi
 S

1φj
S

2ψS
3 . . .ψS

n,ψ0[. . . αi
1

, αj
2] (22) 

and in general, after r measurements have taken place (r ≤ n), Rule 2 gives the result : 



ψr = Σi,j, ... k ai aj . . . ak φi
 S

1φj
S

2ψS
3 . . .ψS

n,ψ0[. . . αi
1

, αj
2] (23) 

We can give this state, ψr, the following interpretation. It consists of a superposition of states: 
ψ 'ij . . . k  = φi

 S
1φj

S
2 

. . . φk
 S

r 
5ψS

r+1 . . .ψS
nψ0[αi

1
, αj

2. . . αk
r] (24) 

each of which describes the observer with a definite memory sequence [αi
1

,αj
2. . . αk

r]. Relative to 
him the (observed) system states are the corresponding eigenfunctions φi

S
1,φj

S
2, . . . ,φk

S
r, the 

remaining systems, S1, S2, . . . ,Sn, being unaltered. 
A typical element ψ'

ij ... k of the final superposition describes a state of affairs wherein the 
observer has perceived an apparently random sequence of definite results for the observations. 
Furthermore the object systems have been left in the corresponding eigenstates of the 
observation. At this stage suppose that a redetermination of an earlier system observation (Sl) 
takes place. Then it follows that every element of the resulting final superposition will describe 
the observer with a memory configuration of the form [αi

1
,
 . . .αj

l
,
 . . .αk

r
,αj

l] in which the earlier 
memory coincides with the later — i.e., the memory states are correlated. It will thus appear to 
the observer, as described by a typical element of the superposition, that each initial observation 
on a system caused the system to "jump" into an eigenstate in a random fashion and thereafter 
remain there for subsequent measurements on the same system. Therefore — disregarding for 
the moment quantitative questions of relative frequencies — the probabilistic assertions of 
Process 1 appear to be valid to the observer described by a typical element of the final 
superposition. 
We thus arrive at the following picture: Throughout all of a sequence of observation processes 
there is only one physical system representing the observer, yet there is no single unique state of 
the observer (which follows from the representations of interacting systems). Nevertheless, there 
is a representation in terms of a superposition, each element of which contains a definite 
observer state and a corresponding system state. Thus with each succeeding observation (or 
interaction), the observer state "branches" into a number of different states. Each branch 
represents a different outcome of the measurement and the corresponding eigenstate for the 
object-system state. All branches exist simultaneously in the superposition after any given 
sequence of observations.‡ The "trajectory" of the memory configuration of an observer 
performing a sequence of measurements is thus not a linear sequence of memory configurations, 
but a branching tree, with all possible outcomes existing simultaneously in a final superposition 
with various coefficients in the mathematical model. In any familiar memory device the 
branching does not continue indefinitely, but must stop at a point limited by the capacity of the 
memory. 
  
‡ Note added in proof. — In reply to a preprint of this article some correspondents have raised 
the question of the "transition from possible to actual," arguing that in "reality" there is — as our 
experience testifies — no such splitting of observers states, so that only one branch can ever 
actually exist. Since this point may occur to other readers the following is offered in explanation. 
The whole issue of the transition from "possible" to "actual" is taken care of in the theory in a 
very simple way — there is no such transition, nor is such a transition necessary for the theory to 
be in accord with our experience. From the viewpoint of the theory all elements of a 
superposition (all "branches") are "actual," none <are [added in M.Price's FAQ — E.Sh.]> any 
more "real" than the rest. It is unnecessary to suppose that all but one are somehow destroyed, 
since all the separate elements of a superposition individually obey the wave equation with 
complete indifference to the presence or absence ("actuality" or not) of any other elements. This 
total lack of effect of one branch on another also implies that no observer will ever be aware of 
any "splitting" process. 
Arguments that the world picture presented by this theory is contradicted by experience, because 
we are unaware of any branching process, are like the criticism of the Copernican theory that the 
mobility of the earth as a real physical fact is incompatible with the common sense interpretation 
of nature because we feel no such motion. In both cases the argument fails when it is shown that 



the theory itself predicts that our experience will be what it in fact is. (In the Copernican case the 
addition of Newtonian physics was required to be able to show that the earth's inhabitants would 
be unaware of any motion of the earth.) 
  
In order to establish quantitative results, we must put some sort of measure (weighting) on the 
elements of a final superposition. This is necessary to be able to make assertions which hold for 
almost all of the observer states described by elements of a superposition. We wish to make 
quantitative statements about the relative frequencies of the different possible results of 
observation — which are recorded in the memory — for a typical observer state; but to 
accomplish this we must have Б method for selecting a typical element from a superposition of 
orthogonal states. 
We therefore seek a general scheme to assign a measure to the elements of a superposition of 
orthogonal states Σiai φi. We require a positive function m of the complex coefficients of the 
elements of the superposition, so that m(ai) shall be the measure assigned to the clement φi. In 
order that this general scheme be unambiguous we must first require that the states themselves 
always be normalized, so that we can distinguish the coefficients from the states. However, we 
can still only determine the coefficients, in distinction to the states, up to an arbitrary phase 
factor. In order to avoid ambiguities the function m must therefore be a function of the 
amplitudes of the coefficients alone, m(ai) = m(|ai|).  
We now impose an additivity requirement. We can regard a subset  
             n 
of the superposition, say Σ aiφi, as a single element αφ': 
     i = 1 
                               n 

αφ' = Σ aiφi .   (25) 
                        i = 1 
We then demand that the measure assigned to φ' shall be the sum of the measures assigned to the 
φi (i from 1 to n): 
                                 n 

m(α) = Σ m(ai).   (26) 
      i = 1 

Then we have already restricted the choice of m to the square amplitude alone; in other words, 
we have m(ai) = ai*ai, apart from a multiplicative constant. 
To see this, note that the normality of φ' requires that |α| = (Σai*ai)1/2. From our remarks about 
the dependence of m upon the amplitude alone, we replace the ai by their amplitudes ui = |ai|. 
Equation (26) then imposes the requirement, 

m(α) = m(Σai*ai)1/2 = m(ui
2)1/2  = Σ m(ui) = Σ m(ui

2)1/2.     (27) 
Defining a new function g(x) 

g(x) = m(√x)                 (28) 
we see that (27) requires that  

g(Σui
2) = Σ g(ui

2) .                  (29) 
Thus g is restricted to be linear and necessarily has the form: 

g(x) = cx        (c constant).            (30) 
Therefore g(x2) = cx2 = m(√x2) = m(x) and we have deduced that m is restricted to the form 

m(ai) = m(ui) = cui
2 = cai*ai.          (31) 

We have thus shown that the only choice of measure consistent with our additivity requirement 
is the square amplitude measure, apart from an arbitrary multiplicative constant which may be 
fixed, if desired, by normalization requirements. (The requirement that the total measure be unity 
implies that this constant is 1.) 
The situation here is fully analogous to that of classical statistical mechanics, where one puts a 
measure on trajectories of systems in the phase space by placing a measure on the phase space 
itself, and then making assertions (such as ergodicity, quasi-ergodicity, etc.) which hold for 



"almost all" trajectories. This notion of ''almost all" depends here also upon the choice of 
measure, which is in this case taken to be the Lebesgue measure on the phase space. One could 
contradict the statements of classical statistical mechanics by choosing a measure for which only 
the exceptional trajectories had nonzero measure. Nevertheless the choice of Lebesgue measure 
on the phase space can be justified by the fact that it is the only choice for which the 
"conservation of probability" holds, (Liouville's theorem) and hence the only choice which 
makes possible any reasonable statistical deductions at all. 
In our case, we wish to make statements about "trajectories" of ob-servers. However, for us a 
trajectory is constantly branching (transforming from state to superposition) with each successive 
measurement. To have a requirement analogous to the "conservation of probability" in the 
classical case, we demand that the measure assigned to a trajectory at one time shall equal the 
sum of the measures of its separate branches at a later time. This is precisely the additivity 
requirement which we imposed and which leads uniquely to the choice of square-amplitude 
measure. Our procedure is therefore quite as justified as that of classical statistical mechanics. 
Having deduced that there is a unique measure which will satisfy our requirements, the square-
amplitude measure, we continue our deduction. This measure then assigns to the i,j, . . . kth 
element of the superposition (24), 

φi
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. . . φk
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r]       (32) 
the measure (weight) 

Mi,j, 
. . .

 k = (ai aj . . . ak)*( ai aj . . . ak)                  (33) 
so that the observer state with memory configuration [αi

1
,αj

2
,
. . . ,αk

r] is assigned the measure 
ai*aiaj*aj . . . ak*ak = Mi,j, 

. . .
 k. We see immediately that this is a product measure, namely, 

Mi,j, 
. . .

 k  = Mi Mj 
. . . Mk  (34) 

where  
Mi  = ai *ai  

so that the measure assigned to a particular memory sequence [αi
1

,αj
2

,
. . . ,αk

r] is simply the 
product of the measures for the individual components of the memory sequence. 
There is a direct correspondence of our measure structure to the probability theory of random 
sequences. lf we regard the Mi,j, 

. . .
 k as probabilities for the sequences then the sequences are 

equivalent to the random sequences which are generated by ascribing to each term the 
independent probabilities Mi = ai*ai. Now probability theory is equivalent to measure theory 
mathematically, so that we can make use of it, while keeping in mind that all results should be 
translated back to measure theoretic language. 
Thus, in particular, if we consider the sequences to become longer and longer (more and more 
observations performed) each memory sequence of the final superposition will satisfy any given 
criterion for a randomly generated sequence, generated by the independent probabilities ai*ai, 
except for a set of total measure which tends toward zero as the number of observations becomes 
unlimited. Hence all averages of functions over any memory sequence, including the special case 
of frequencies, can be computed from the probabilities ai*ai, except for a set of memory 
sequences of measure zero. We have therefore shown that the statistical assertions of Process 1 
will appear to be valid to the observer, in almost all elements of the superposition (24), in the 
limit as the number of observations goes to infinity.  
While we have so far considered only sequences of observations of the same quantity upon 
identical systems, the result is equally true for arbitrary sequences of observations, as may be 
verified by writing more general sequences of measurements, and applying Rules 1 and 2 in the 
same manner as presented here. 
We can therefore summarize the situation when the sequence of observations is arbitrary, when 
these observations are made upon the same or different systems in any order, and when the 
number of observations of each quantity in each system is very large, with the following result: 
  

Except for a set of memory sequences of measure nearly zero, the averages of any functions 
over a memory sequence can be calculated approximately by the use of the independent 



probabilities given by Process 1 for each initial observation, on a system, and by the use of the 
usual transition probabilities for succeeding observations upon the same system. In the limit, as 
the number of all types of observations goes to infinity the calculation is exact, and the 
exceptional set has measure zero. 

  
This prescription for the calculation of averages over memory sequences by probabilities 
assigned to individual elements is precisely that of the conventional "external observation" 
theory (Process 1). Moreover, these predictions hold for almost all memory sequences. Therefore 
all predictions of the usual theory will appear to be valid to the observer in almost all observer 
states. 
In particular, the uncertainty principle is never violated since the latest measurement upon a 
system supplies all possible information about the relative system state, so that there is no direct 
correlation between any earlier results of observation on the system, and the succeeding 
observation. Any observation of a quantity B, between two successive observations of quantity A 
(all on the same system) will destroy the one-one correspondence between the earlier and later 
memory states for the result of A. Thus for alternating observations of different quantities there 
are fundamental limitations upon the correlations between memory states for the same observed 
quantity, these limitations expressing the content of the uncertainty principle. 
As a final step one may investigate the consequences of allowing several observer systems to 
interact with (observe) the same object system, as well as to interact with one another 
(communicate). The latter interaction can be treated simply as an interaction which correlates 
parts of the memory configuration of one observer with another. When these observer systems 
are investigated, in the same manner as we have already presented in this section using Rules 1 
and 2, one finds that in all elements of the final superposition: 
1. When several observers have separately observed the same quantity in the object system and 
then communicated the results to one another they find that they are in agreement. This 
agreement persists even when an observer performs his observation after the result has been 
communicated to him by another observer who has performed the observation. 
2. Let one observer perform an observation of a quantity A in the ПbjЕct system, then let a 
second perform an observation of a quantity B in this object system which does not commute 
with A, and finally let the first observer repeat his observation of A. Then the memory system of 
the first observer will not in general show the same result for both observations. The intervening 
observation by the other observer of the non-commuting quantity B prevents the possibility of 
any one to one correlation between the two observations of A. 
3. Consider the case where the states of two object systems are correlated, but where the two 
systems do not interact. Let one observer perform a specified observation on the first system, 
then let another observer perform an observation on the second system, and finally let the first 
observer repeat his observation. Then it is found that the first observer always gets the same 
result both times, and the observation by the second observer has no effect whatsoever on the 
outcome of the first's observations. Fictitious paradoxes like that of Einstein, Podolsky, and 
Rosen8 which are concerned with such correlated, noninteracting systems are easily investigated 
and clarified in the present scheme. 
  
8 Einstein, Podolsky, and Rosen, Phys. Rev. 47, 777 (1935). For a thorough discussion of the 
physics of observation, see the chapter by N.Bohr in Albert Einstein, Philosopher-Scientist (The 
Library of Living Philosophers, Inc., Evanston, 1949). 
  
Many further combinations of several observers and systems can be studied within the present 
framework. The results of the present "relative state" formalism agree with those of the 
conventional "external observation" formalism in all those cases where that familiar machinery is 
applicable. 



In conclusion, the continuous evolution of the state function of a composite system with time 
gives a complete mathematical model for processes that involve an idealized observer. When 
interaction occurs, the result of the evolution in time is a superposition of states, each element of 
which assigns a different state to the memory of the observer. Judged by the state of the memory 
in almost all of the observer states, the probabilistic conclusion of the usual "external 
observation" formulation of quantum theory are valid. In other words, pure Process 2 wave 
mechanics, without any initial probability assertions, leads to all the probability concepts of the 
familiar formalism. 
  

6. DISCUSSION 
  
The theory based on pure wave mechanics is a conceptually simple, causal theory, which gives 
predictions in accord with experience. It constitutes a framework in which one can investigate in 
detail, mathematically, and in a logically consistent manner a number of sometimes puzzling 
subjects, such as the measuring process itself and the interrelationship of several observers. 
Objections have been raised in the past to the conventional or "external observation" formulation 
of quantum theory on the grounds that its probabilistic features are postulated in advance instead 
of being derived from the theory itself. We believe that the present "relative-state" formulation 
meets this objection, while retaining all of the content of the standard formulation. 
While our theory ultimately justifies the use of the probabilistic interpretation as an aid to 
making practical predictions, it forms a broader frame in which to understand the consistency of 
that interpretation. In this respect it can be said to form a metatheorХ for the standard theory. It 
transcends the usual ''external observation" formulation, however, in its ability to deal logically 
with questions of imperfect observation and approximate measurement. 
The "relative state" formulation will apply to all forms of quantum mechanics which maintain 
the superposition principle. It may therefore prove a fruitful framework for the quantization of 
general relativity. The formalism invites one to construct the formal theory first, and to supply 
the statistical interpretation later. This method should be particularly useful for interpreting 
quantized unified field theories where there is no question of ever isolating observers and object 
systems. They all are represented in a single structure, the field. Any interpretative rules can 
probably only be deduced in and through the theory itself. 
Aside from any possible practical advantages of the theory, it remains a matter of intellectual 
interest that the statistical assertions of the usual interpretation do not have the status of 
independent hypotheses, but are deducible (in the present sense) from the pure wave mechanics 
that starts completely free of statistical postulates. 
 


