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Abstract 
 

3-D surface moments and surface moment 
invariants under similarity transformation are defined 
in this paper. This variation of traditional moments 
and moment invariants can handle the situation where 
the object is unclosed. 3-D surface moment invariants 
can be used as shape descriptors for the representation 
of free-form surfaces. Some explicit surface moment 
invariants are illustrated in the experiment to describe 
the partial meaningful polygonal patches. 
 
1. Introduction 
 

With the rapid development of the acquisition of 
three-dimensional information, it is possible for us to 
recognize the shapes of 3-D objects directly. 3-D shape 
models have become more and more common now, 
part of which are made by some softwares, others 
come directly from special devices, like 3-D laser 
scanners. Applications such as object tracking and 
shape retrieval require us to consider how to choose the 
feature descriptors of 3-D shapes and how to measure 
the similarities between 3-D objects. 

2-D moment invariants were firstly proposed by Hu 
[1] in 1962 for character recognition. The property that 
they are independent of orientations has attracted many 
researchers’ interest and been widely used in various 
applications. In 1980, Sadjadi and Hall [2] first 
extended moment invariants from 2-D to 3-D. Lo and 
Don [3] constructed 3-D moment invariants with 
complex moments and group-theoretic technique. They 
also mentioned moments of a surface patch in [4]. 

Some 3-D object file formats (.obj, .off et al) now 
are commonly used representations of 3-D models, 
which include coordinates of vertexes and polygonal 
patches. Li [5] used Gaussian theorem to convert a 
volume integral into a surface one and decreased the 
computational complexity of polyhedra moments. 
Moments can also be approximately computed by 

accumulating the Cartesian coordinates of the volume 
pixels sampled in the inner of objects. 

Sometimes, these object files may have some 
irregularities, such as absence of several patches. Some 
surface models only have partial unclosed surfaces, 
like 3-D face model. Traditionally defined moments 
can not be computed in these situations. In this paper, 
we introduce 3-D surface moments which are defined 
on the surface of the 3-D models directly, which can 
solve the above problems. 

3-D surface moments are defined in Part 2. We give 
some 3-D surface moment invariants under similarity 
transformation and discuss shape descriptors for the 
representation of free-form surfaces in Part 3. 
Experimental evaluation of the given surface moment 
invariants for partial surfaces is conducted in Part 4. 
We conclude the paper and open perspectives for 
future work in Part 5. 
 
2. 3-D Surface Moments and Similarity 
Transformation 
 
2.1 3-D Surface Moments Definition 
 

Suppose )),(),,(),,((),( vuzvuyvuxvuP =  is a 

parametric surface in 3R , D is definition domain of 
v)(u,  in 2R . Three-dimensional surface moments of 

order l+m+n are defined by the surface integrals 
defined on the surface area S of ),( vuP : 
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where 222
uuu zyxE ++= , 222

vvv zyxG ++=  and 

vuvuvu zzyyxxF ++=  are the coefficients of the first 
fundamental form and ),,( zyxρ  is the density 
function defined on the surface. 



The centroid of the 3-D surface can be determined 
from the zeroth and the first-order moments by 
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Then central moments are defined as 
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The central surface moments are invariants under 
translation. 

Assume that the surface is scaled by factor λ, we 
have 
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Then the surface moment after scaling becomes: 
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moment under scaling. 
 
2.2 Similarity Transformation of Parametric 
Surface 
 

Moment invariants are expressions of moments 
which are invariant under a kind of transformation 
group. In this paper, we only discuss 3-D surface 
moment invariants under similarity transformation. 
This transformation can be decomposed into 
translation, scaling and rotation parts. 

Suppose )),('),,('),,('(),(' vuzvuyvuxvuP =  is the 
new surface of P after similarity transformation. The 
relationship between P and P'  can be expressed as 
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Here R is an orthogonal matrix which has the 
property that IRRRR TT ==  where TR is the transpose 
of R. 

Since translation and scaling invariance has been 
achieved in section 2.1, we only consider the rotation 
under orthogonal matrix R. The new coefficients of the 
first fundamental form are the same as the original 
ones. 
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The analysis of those coefficients can help us 
understand the relationship between surface moments 
before and after similarity transformation. For instance, 
we can put them into the multiple integral framework 
in the following section to get rotation invariance like 
the generation of traditional moment invariants. 
 
3. 3-D Surface Moment Invariants and 
Free-form Surface Representation 
 
3.1 3-D Surface Moment Invariants under 
Rotation 
 

We focus on the derivation of surface moment 
invariants under rotation here, since translation and 
scaling have been solved in section 2.1. Suppose 
(

iii z,y,x ), (
jjj z,y,x ),… ( kkk z,y,x ) etc. are arbitrary 

points on the surface of the model. The below four 
geometric primitives are distance between a point and 
the origin, area of a triangle between two points and 
the origin, inner product of two vectors between two 
points and the origin and volume of a tetrahedron 
between three points and the origin. They are invariant 
measurements under rotation. 
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Then, we set core(1,2,…,n) to be the multiplication 
of the above four primitives, which involves n 
participating points. The four primitives in 
core(1,2,…,n) can be of different powers. The multiple 
integral of core(1,2,…,n) is just the moment invariants 
if we expand core(1,2,…,n) by the polynomial form 
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moment invariants of different orders can be 
constructed by the following integral formula: 
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Here nizyx iii ≤≤1),,,(ρ  are density functions 
defined on the same surface of the model. 

We give six surface moment invariants below by 
the multiple integrals of primitives )1(4R , )2,1,(4 OA , 

)2,1,(4 OAn , )2,1,(3 OAn , )2()1()2,1,( 22 RROAn  and 
)1()2,1,( 22 ROAn . They are then divided by certain 

powers of the zeroth order moments for normalization. 
These six invariants consist of 3 fourth order, 2 third 
order and 1 mixed order surface moment invariants. 
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Besides, three second order moment invariants 
under rotation can be seen in [2], and another nine 
moment invariants under fourth order were shown in 
[3]. All of them can be used to construct surface 
moment invariants. Numerators of formulas (21) and 
(22) have already appeared in [3], but theirs are not 
explicit expressions. 
 
3.2 3-D Surface Moment Invariants for Free-
form Surface Representation 
 

Free-form surface representation claims that shape 
descriptors of the surface we get should be independent 
of orientations. Some works concern the features of 

points on the surface. Iterative Closest Points 
algorithms in [6] find the correspondence of two points 
sets and transform one points set to the position and 
orientation of the other one’s. Chua and Jarvis [7] use 
point signature to describe the structural neighborhood 
of a point on the surface. It is invariant to rotation and 
translation, and can recognize partial-overlapping 
objects. Other works describe free-form surfaces using 
the surface information. Extended Gaussian Images [8] 
map surface normal vectors onto a unit sphere, called 
the Gaussian Sphere. Yamany and Farag [9] use 
surface curvature information from certain points and 
produce images, called “surface signatures” for 
accurate surface registration and matching. Spin 
images in [10] is a data level shape descriptor that is 
used to match surfaces represented as surface meshes. 
Adan and Adan [11] present a flexible similarity 
measure based on Modeling Wave (MV) topology in 
spherical models. Different partial information of the 
model has been carried out to recognize a mesh model. 

Similarly, 3-D surface moment invariants in this 
paper can be used as shape descriptors for free-form 
surfaces, since they are also independent of the 
orientations in 3-D space. In next part, we illustrate the 
usage of surface moment invariants for representation 
of partial meaningful surfaces. 
 
4. Experimental Evaluation 
 

A 3-D cow model is selected for the experiment, 
whose surfaces are polygonal patches. Four meaningful 
parts of the cow can be seen in Figure 1. These four 
partial surfaces are not closed, but we can compute the 
surface moment invariants of them. We transform the 
four parts into 125 new ones under different similarity 
transformations. 

We uniformly sample the points on the surface 
patches to approximately compute each surface 
moment of each part. It is easier than accurate 
computation of surface moments, but will result in 
small degree of deviation under rotation. 

The means and standard deviations of the six 
surface moment invariants (18)-(23) of the four parts 
are shown in Table 1. The relatively low ratios of 
standard deviation/mean testify the invariance of these 
six surface moment invariants experimentally. By 
comparing the means of the six invariants of the four 
parts, we can find that surface moment invariants have 
the ability to distinguish these parts and can be used to 
represent the characteristics of the meaningful parts. 
 



   
(a)                                            (b) 

   
(c)                                            (d) 

Figure 1. Partial surfaces of mouth (a), ear 
(b), leg (c) and tail (d) in a cow model 

 
5. Conclusions and Future Work 
 

In this paper, we introduce a kind of moment—
surface moment, and give some explicit surface 
moment invariants under similarity transformation. 
They can be treated as a new kind of shape descriptors 
of free-form surfaces and can handle the situation 
where 3-D surface objects are not closed. 

The next things we can do are the automatic 
meaningful segmentation of 3-D surfaces, and the 
selection of a suitable set of surface moment invariants 
for shape representation. Fast and accurate 
computation of surface moment invariants can also be 
investigated. Surface moment invariants can be applied 
to 3-D shape retrieval and 3-D face recognition which 
require the independence of rotation. 
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Table 1. Invariance test of the six 3-D surface moment invariants of the partial surfaces 
3-D Surface Moment 
Invariants 1I  ( 210 − ) 2I  ( 510− ) 3I  ( 310− ) 4I  ( 410− ) 5I  ( 410− ) 6I  ( 310− ) 

Mean 1.760 6.081 0.1099 0.6635 0.1453 0.9210 Mouth 
Stand. Dev. 0.01939 0.1169 0.001530 0.001832 0.002138 0.01799 
Mean 2.313 2.786 0.3674 0.5736 0.05839 1.875 Ear 
Stand. Dev. 0.008552 0.01978 0.002753 0.005604 0.001102 0.01088 
Mean 8.609 10.46 5.959 8.154 4.061 16.54 Leg 
Stand. Dev. 0.007399 0.02967 0.009559 0.01942 0.02694 0.02450 
Mean 28.28 5.555 76.13 102.0 97.33 109.5 Tail 
Stand. Dev. 0.1460 0.05293 0.7923 1.896 1.832 0.8204 

 


