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ABSTRACT been effectively applied. As evidence is the degree to waieh
This paper presents a recursive direct differentiationhmoelt ticulated multibody methods now enjoy use in the areas rangi
for sensitivity analysis of flexible multibody systems geaota- from the dynamics and control of large, complex, highly i

tions and translations in the system are modeled as rigidybod spacecraft, to the modeling, simulation and analysis ool
degrees of freedom while the deformation field within eaatlybo  lar systems at the nano-scale. In the area of modern mujtibod

is approximated by superposition of modal shape functidhs. systems dynamics, design of highly complex systems, whsich i
equations of motion for the flexible members are differéatia iterative and computationally taxing in nature, can stdldhal-
at body level and the sensitivity information is generateday lenging. Sensitivity analysis, can play an important radsca

recursive divide and conquer scheme. The number of differen ciated with multibody computational problems such as igipli
tiations required in this method is minimal. The method work integration schemes, linearized dynamics, optimal cénémed
concurrently with the forward dynamics simulation of the-sy  design optimization.

tem and requires minimum data storage. The use of divide and
conquer framework makes the method linear and logarithmic i
complexity for serial and parallel implementation, respealy,

and ideally suited for general topologies. The method idiedp

to a flexible two arm robotic manipulator to calculate seivty
information and the results are compared with the finiteedhff
ence approach.

Although easy implementation and simplicity makes finite
difference approximation perhaps the most broadly adogped
proach to generate sensitivity information, it suffersiiroritical
shortcomings. This procedure is time-consuming due todbe f
that it requires one additional simulation for each of theyrded
design parameters. Furthermore, selecting the optimalnie-
tion size of a set of design variables [1] and sensitivityhaf hu-
merical solution to the perturbation size [2—4] are impoti@t

times critical) issues, and may significantly influence thecess
INTRODUCTION of this technique. Analytical sensitivity analysis methadch as
adjoint variable, direct differentiation and automatitfetientia-
tion are capable of overcoming most of the problems whicktexi
in finite difference techniques.

In the adjoint variable methods, based on variation prin-

Development of efficient, computationally low cost and
highly parallelizable methods in the multibody systems has
greatly expanded the realms into which these tools may avel ha

*Address all correspondence to this author. 1 Copyright © 2009 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use


https://core.ac.uk/display/357557348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ciples, explicit calculation of the state sensitivitiesaigided
through the introduction of a set of adjoint variables [Bb-Ma-
nipulating these adjoint variables, variations of the sysequa-
tions, and the variations of design criteria, produces ¢agired
adjoint relationships. Solving sequence of adjoint relaghips
provides the design sensitivity vector. This vector disecor-
responds to the variation (sensitivity) of design criténigerms
of design variable variations. Implementation of thesehods
can be complex, particularly when dealing with variable siee
or multirate integrations methods, and a large amount od dat
(the complete state of the system at each function valugiion
the duration of the simulation over which the sensitivity&ng

evaluated) has to be stored for the forward problem. The need

to access this complete set of state data as the adjointieqsiat
are integrated backwards in time can require a large nuntber o
I/0 operations which greatly slows the rate at which the sen-
sitivities may be determined [10, 11]. Another source oberr

is the backward temporal integration necessary for theutalc
tion of adjoint variables. Additionally, numerical statyjlfor the
adjoint variable methods remains an open question as itedica
in [2] and [12].

Automatic differentiation [13, 14] is a computer science
based approach in which the variables are identified witkin e
isting code, and derivative expressions are determinedrbgtd
application of the chain rule of differentiation. This methcan
provide results which are numerically unstable and a blpplia
cation of the chain rule of differentiation can lead to erouns
results, particularly with regard IOAE systems.

The other popular methods for sensitivity analysis areghos
based on direct differentiation [10, 15-21]. In these tégphes,
direct application of the chain rule of differentiation sad to ex-
plicitly form the states sensitivities. Mathematicallysgdo un-
derstand, high numerical stability and relative insewisjtiof the
solution accuracy to parameter perturbations have digihgd
direct differentiation algorithms among many competitaye
proaches. Besides that, if the number of design variabkraé
and the number of design constraints is large, the direferdif
entiation method becomes more attractive than adjointléei
techniques. Direct differentiation however, can be coratiorn-
ally expensive if not performed intelligently when dealiwih
large systems as is clear from the following example.

There are several ways to describe the dynamics of a flexi-

ble body and here we limit our discussion to modal superjoosit
method (FDCA) as described in [22]. In sensitivity analygis
is desired to determine the sensitivity of a specific costfiom
to the variation of the particular design or control varegbl In
FDCA, large rotations or translations are modeled agid body
(relative and/or absolute) degrees of freedom associatadive
interconnecting kinematic joint free modes of motion. Tehase
fully described by introducing sets of generalized coceatis
{ai}{*, and generalized speedls;}! ;. The elastic deformation

coordinateq g}, and their time derivative§ut}*,. The ob-
jective functionJ |s often an explicit function of the design and
state variables, while states of the system, themselesnatic-
itly dependent on the values of the design parameters. Tdrere
the sensitivity equation of the objective functidrwith respect
to design variabl@ can be written as

3 &, 0Jdg 93 dy 4 di
0=+ S (oo
op r;(OQr dp;  our dp; au, d pJ)
Ty Qe oddd oy adk, ),
; Kdp, aukdp; | adkdp;

Herenb represents the number of bodies. In multi-flexible-
body systems, generating the dependencies of highly cduple
states and states derivatives on design parameters is tatopti
ally expensive. Fortunately, the state variable sens@wineed
not be solved for directly, but can be determined from terapor
integration of the system state time derivatives as

d_q _ t=T+dt ﬂ dts d_q (2a)
dpj fi—riae  Jt=t  dPjli dpj |i_¢
dul o omtdnl g A (2b)
dpj fi—riae  Jt=t  dPjli dpj |{_¢

In the above equationg, contains the generalized coordi-
nates for all the kinematical joints and the modal cooraisat
in the system. Similarly, all the generalized and modal dpee
are buried in the vectar;, while the vectou; involves the time
derivatives of the generalized speeds. Based on equaiiptin€2
main task in sensitivity analysis reduces to that of findiffg e
ciently the sensrtrvrty ofl; with respect to the design variable(s).
Integratrngdur over the time domain of interest and substitut-
ing back the results in equation (1) will provide the sensitiof
the objective function with respect to the desired desigaipa-
ter(s).

The governing equations of motion of a general multi-
flexible-body system, in the state space form, is repredeage

M mxmUmx1 = K mx1- (3
In this coupled set of equations) defines the total number of
rigid and flexible degrees of freedom of the systema. is the
known mass matrix and is a known vector of the applied and
state-dependent inertia forces on the system. Directrdiftea-
tion of equation (3) with respect to the desired parametergi

of the bodyk in the system may be represented by sets of modal an expression foad— as
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(5]

du 0k 0% dg 0% du
= |M — =t ——
[ mxm]dpjmxl op; = 0q dpj = ou dp;
oM oM dq oM du,. [6]
a5 v 4
[6pj dg dp;  du dpj] @

7
Application of the direct method in this manner incurs large 7]

computational expenses in generating the differentiatiohich
ranges fronO(m?) to O(m?). Also, solution for the state deriva-
tive sensitivities by direct methods is @(m®) expense. These
costs can quickly become prohibitive for larger valuesnof
Therefore, in generating sensitivity information for suaghly
complex systems, it is necessary to introduce quick andesitic
algorithms.

In this paper, an efficient logarithmic complexity (for par-
allel implementation) direct differentiation method ipented
for the determination of first order design sensitivitie$lexible
multibody systems. The governing equations which define the
states and state derivatives of the system are derived lmsed
Flexible Divide and Conquer Algorithm (FDCA) as described
in [22]. The use of divide and conquer framework makes the [11]
method suitable for systems with tree or ladder like topigeg
In such complex topologies FDCA-based sensitivity analisi
expected to be more efficient than the other methods [17y23] i
which the constraint equations and their sensitivitiebéodesign
variables in forward dynamics and sensitivity equationsusth
be solved for. Since this methodology works concurrenttywi
the forward dynamics problem as opposed to the adjointvgria
methods, there is no need for the backward temporal infegrat
of the equations and consequently requires minimal data sto
age. The sensitivity equations for the entire system arerngéed
via a hierarchiassemblyprocess and as a result the actual dif-
ferentiation required in this method is minimum as compaoed
traditional methods.
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