
BACKWARD UNIQUENESS FOR PARABOLIC EQUATIONS

L. Escauriaza G. Seregin V. Šverák

Abstract. It is shown that a function u satisfying |∂t + ∆u| ≤ M (|u|+ |∇u|),
|u(x, t)| ≤ MeM|x|2 in (Rn \BR) × [0, T ] and u(x, 0) = 0 for x ∈ Rn \ BR must

vanish identically in Rn \BR × [0, T ].

1. Introduction

In this paper we prove backward uniqueness for solutions of

(1.1) |∂tu+ ∆u| ≤M (|u|+ |∇u|)

in QR,T = Rn \ BR × [0, T ], where BR = {x ∈ Rn : |x| ≤ R}. Our main result,
Theorem 1 below, says that under natural regularity assumptions on u, any solution
of (1.1) with controlled growth at infinity which vanishes at t = 0 must vanish
identically. The required growth condition is

(1.2) |u(x, t)| ≤MeM |x|2 .

The main point of the theorem is that the values of u at the parabolic boundary
of QR,T are not controlled by the assumptions. We remark that classical examples
of A. N. Tikhonov show that (1.2) is natural in the backward uniqueness context,
and that the statement of Theorem 1 fails when QR,T is replaced by BR × [0, T ].
See also [10] and [15]. When QR,T is replaced by Rn × [0, T ] the statement of
Theorem 1 follows for example from [2] and [17]. Papers [14], [18] and [20] also
contain important related results.

One interesting consequence of Theorem 1 is that it settles a well-known problem
in the regularity theory of the Navier-Stokes equations. This is explained in [19],
where Theorem 1 was conjectured and proved in the simple case M = 0. To
formulate the result implied by Theorem 1 and [19], let us consider the classical
Cauchy problem for the incompressible Navier-Stokes equations in R3 × (0, T )

(1.3)


vt + v · ∇v +∇p = ∆v in R3 × (0, T ) ,
div v = 0 in R3 × (0, T ) ,
v(x, 0) = v0(x) in R3.
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We assume that v0 is a smooth divergence-free vector field with suitable decay at
∞. It is known that the problem (1.3) has at least one Leray-Hopf weak solution.
(See, for example, [12], [7].) As proved in [19] Theorem 1 implies the following
result.

Theorem. In the notation introduced above, assume that a Leray-Hopf weak so-
lution v of (1.3) is bounded in the space L∞(0, T ;L3(R3)). Then v is smooth in
R3 × [0, T ).

In fact, one can see easily from this and the local well-posedness of (1.3) in L3

(see [11]) that the following slightly stronger statement is true: If v0 is as above and
a Leray-Hopf solution v of (1.3) is bounded in L∞(0, t1;L3(R3)) for some t1 ≤ T ,
then v is smooth in R3 × [0, t1].

Theorem 1 is also of interest in control theory. S. Micu and E. Zuazua have shown
in [16] the lack of null controllability of the heat equation on the half space for any
positive time with L2 control on the lateral boundary and for a large class of initial
data. Theorem 1 shows that the same holds for operators ∂t + ∆ + b · ∇+ c when b
and c are bounded functions, and for domains containing the complement of a ball
in Rn. In fact, one can consider b and c as additional controls and the theorem says
that under the growth assumption (1.2) null controllability by bounded controls for
ut +∆u+ b ·∇u+ cu = 0 is not possible, except for the trivial case when u vanishes
identically.

The proof of Theorem 1 uses the following Carleman inequalities:

1. Set σ(t) = te−t/3 and σa(t) = σ(t+ a). Then, there is a constant N = N(n)
such that the inequalities
(1.4)

‖σ−α−1/2
a e−|x−y|2/8(t+a)u‖L2(Rn×(0,1)) + ‖σ−α

a e−|x−y|2/8(t+a)∇u‖L2(Rn×(0,1))

≤ N‖σ−α
a e−|x−y|2/8(t+a) (∆u+ ∂tu) ‖L2(Rn×(0,1))

hold for all α ≥ 0, y ∈ Rn, 0 < a < 1 and u ∈ C∞0 (Rn × [0, 1)) verifying u(., 0) ≡ 0.
2. There is a constant α0 = α(R,n) such that, the inequalities

(1.5)
‖eα(T−t)(|x|−R)+|x|2u‖L2(QR,T ) + ‖eα(T−t)(|x|−R)+|x|2∇u‖L2(QR,T )

≤ ‖eα(T−t)(|x|−R)+|x|2 (∆u+ ∂tu) ‖L2(QR,T ) + ‖e|x|
2
∇u(., T )‖L2(Rn\BR)

hold for all α ≥ α0 and u ∈ C∞0 (QR,T ) satisfying u(., 0) ≡ 0.

The first Carleman inequality, based on ideas developed in [3], [4], [5], and [6],
is used to prove that under the assumptions of Theorem 1 one has

|u(x, t)|+ |∇u(x, t)| ≤ Ne−|x|
2/(Nt)

for some N > 0 in Q6R,T . This estimate enables us to apply the second Carleman
inequality to the (slightly modified) function u, and obtain the result (for sufficiently
small T ) by letting α→∞. Inequality (1.5) seems to be new.

As is usual in the context of L2 Carleman estimates, we use suitable integration
by parts to prove our main inequalities. The calculations can be organized either by
using identities developed in [6], or by following more or less standard calculations
with new dependent variables and commutators in the spirit of [8], [9] or [21]. In
this paper we will use the former method, which is based on Lemma 1 below. An
alternative proof of Theorem 1, which uses the latter method and a slightly modified
version of (1.4) and (1.5) will appear elsewhere.
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2. Proof of the main result

In what follows we assume that the functions entering the expressions below are
“sufficiently regular” so that the quantities we consider are suitably well-defined.
For example, the assumption that the derivatives entering our formulae are distri-
butional derivatives and are square integrable over bounded sets is sufficient.

Theorem 1. Assume that u : QR,T −→ R verifies in QR,T the inequalities

|∆u+ ∂tu| ≤M (|u|+ |∇u|) and |u(x, t)| ≤MeM |x|2

for some positive constants M , T and R. Then, if u(x, 0) ≡ 0 in Rn \ BR, u
vanishes identically in QR,T .

Though the proof of this result is given for real-valued functions, the arguments
also work when u is replaced by a vector-valued function ω : QR,T −→ Rn verifying
the same conditions and the inequality

(2.1) |∆ω + ∂tω| ≤M (|ω|+ |∇ω|) .

This is because (2.1) is a triangular parabolic system with ∂t + ∆ as the principal
part and the solutions ω to (2.1) verify the L∞-bounds [13] for real-valued subso-
lutions to parabolic equations: if ω ∈W 2,1

2,loc(QR,T ) is a solution of (2.1), there is a
constant N depending on M such that

√
s|∇ω(y, s)|+ |ω(y, s)| ≤ N

s
n
2 +1

∫ 2s

s

∫
B√s(y)

|ω|dX ,

when |y| > 2
√
s+R and 0 < s ≤ T/2.

To prove the result we need four lemmas. The Lemmas 1 through 3 are used
to build the Carleman inequalities. In Lemma 4 it is shown that u vanishes in
Rn \BR × [0,M ] when M is small, R ≥ 1 and T = 1, and the general case follows
using suitable parabolic rescalings and time translations.

In the sequel dX = dxdt and I denotes the identity matrix.

Lemma 1. Assume that u and G are smooth functions on an open set in Rn+1 and
that G is positive. Then, the following identity holds when F = (∂tG−∆G) /G

∇ ·
[
2∂tuG∇u+ |∇u|2∇G− 2 (∇G · ∇u)∇u+ uFG∇u+ 1

2u
2F∇G− 1

2u
2G∇F

]
−∂t

[
|∇u|2G+ 1

2u
2FG

]
= 2

(
∂tu−∇ logG · ∇u+ 1

2Fu
)
(∆u+ ∂tu)G− 2

(
∂tu−∇ logG · ∇u+ 1

2Fu
)2
G

− 1
2u

2 (∂tF + ∆F )G− 2D2(logG)∇u · ∇u G .

Proof. The formula follows formally upon expanding the left hand side with the
product rule, multiplying out the products and squares on the right hand side and
comparing both outcomes.

The main ideas behind the previous argument come from the following observa-
tions. First,

2
(
∂tu−∇ logG · ∇u+ 1

2Fu
)
(∆u+ ∂tu)G− 2

(
∂tu−∇ logG · ∇u+ 1

2Fu
)2
G

= 2
(
∂tu−∇ logG · ∇u+ 1

2Fu
) (

∆u+∇ logG · ∇u− 1
2Fu

)
G ,
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and the operators

A = ∂t −∇ logG · ∇+ 1
2F and S = ∆ +∇ logG · ∇ − 1

2F

are respectively antisymmetric and symmetric in L2(GdX). We can now use
Rellich-Nečas identity with vector field ∇G

2∇G · ∇u∆u = ∆G|∇u|2 − 2D2G∇u · ∇u−∇ ·
(
|∇u|2∇G− 2 (∇G · ∇u)∇u

)
,

to compute the quadratic form associated to the commutator of these two operators
in L2(GdX).

Now, integrating the formula in Lemma 1 over Rn × [0, T ] we get the following
identity.

Lemma 2. Assume that G is a smooth positive function in QR,T , u ∈ C∞0 (QR,T )
and set F = (∂tG−∆G) /G. Then, the following identity holds

2
∫ (

∂tu−∇ logG · ∇u+ 1
2Fu

)2
GdX + 2

∫
D2(logG)∇u · ∇u GdX

+ 1
2

∫
u2 (∂tF + ∆F )GdX = 2

∫
(∆u+ ∂tu)

(
∂tu−∇ logG · ∇u+ 1

2Fu
)
GdX

+
∫
|∇u|2G dx

∣∣∣∣t=T

t=0

+ 1
2

∫
u2FG dx

∣∣∣∣t=T

t=0

.

Thus, in general we can expect to control the L2(GdX) norm of u and ∇u by
the L2(GdX) norm of ∆u+ ∂tu, where logG is convex and ∂tF + ∆F > 0.

In particular, when G = e2α(T−t)(|x|−R)+2|x|2 the following inequalities hold on
QR,T for α > 0 sufficiently large depending on n and R,

(2.2) D2(logG) ≥ I , F ≤ 0 and ∂tF + ∆F ≥ 1 .

Then, the second Carleman inequality (1.5) follows from Lemma 2, (2.2) and from
the Cauchy-Schwarz’s inequality (which is used to handle the first integral on the
right hand side of the formula in Lemma 2).

The Carleman inequality (1.4) involves the function G = e−|x|
2/4t. In this case,

D2(logG) = − 1
2tI and logG is concave, but multiplying the identity in Lemma 1 by

a suitable function depending on time, one can manage to make the “commutator”of
the two operators given below to be a positive operator. In particular, following
the formula (2.3) below,

σ1−α

σ̇

(
∂tu−∇ logG · ∇u− ασ̇

2σ u
)
(∆u+ ∂tu)G

− σ1−α

σ̇

(
∂tu−∇ logG · ∇u− ασ̇

2σ u
)2
G

= σ1−α

σ̇

(
∂tu−∇ logG · ∇u− ασ̇

2σ u
) (

∆u+∇ logG · ∇u+ ασ̇
2σ u

)
G ,

and the operators

A = ∂t −∇ logG · ∇ − ασ̇
2σ and S = ∆ +∇ logG · ∇+ ασ̇

2σ
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are respectively antisymmetric and symmetric in L2(σ−αGdX). Then, the qua-
dratic form associated to the “commutator”with respect to the measure σ1−α

σ̇ GdX
is calculated using the divergence theorem.

Finally, the parameter a ∈ (0, 1) in the Carleman inequality (1.4) is there to make
rigorous the integration by parts done in its proof when u ∈ C∞0 (Rn × [0, 1)) and
u(x, 0) ≡ 0 on Rn. Setting there a = 0 would only allow to enter in (1.4) functions
u ∈ C∞0 (Rn × (0, 1)) or vanishing to infinite order at (y, 0) in the (x, t)-variable.

Lemma 3. Let α > 0, G denote a positive caloric function in Rn × [0, 1] and
σ = σ(t) a positive non-decreasing function on [0, 1). Then, the following identity
holds for all u ∈ C∞0 (Rn × [0, 1)) verifying u(x, 0) = 0 on Rn

2
∫

σ1−α

σ̇

(
∂tu−∇ logG · ∇u− ασ̇

2σ u
)2
GdX +

∫
σ1−α

σ̇ DG∇u · ∇u GdX

= 2
∫

σ1−α

σ̇ (∆u+ ∂tu)
(
∂tu−∇ logG · ∇u− ασ̇

2σ u
)
GdX ,

where DG =
.

l̂og σ
σ̇ I + 2D2(logG) .

Proof. Replacing in lemma 1 the function G by σ−αG we have F = −α ˙̂
log σ and

the identity

(2.3)

σ−α∇ ·
[
2∂tuG∇u+ |∇u|2∇G− 2 (∇G · ∇u)∇u− ασ̇

σ uG∇u−
ασ̇
2σ u

2∇G
]

= 2σ−α
(
∂tu−∇ logG · ∇u− ασ̇

2σ u
)
(∆u+ ∂tu)G

−2σ−α
(
∂tu−∇ logG · ∇u− ασ̇

2σ u
)2
G+ α

2 σ
−α ¨̂

log σu2G

−2σ−αD2(logG)∇u · ∇uG+ ∂t

[
σ−α|∇u|2G− ασ̇

2σ σ
−αu2G

]
.

Multiplying (2.3) by σ
σ̇ and using the identities

(
σ
σ̇

) ¨̂
log σ = − ˙̂

log σ
σ̇ ,

σ
σ̇∂t

[
σ−α|∇u|2G− ασ̇

2σ σ
−αu2G

]
= ∂t

[
σ1−α

σ̇ |∇u|2G− ασ−α

2 u2G
]
− σ1−α

σ̇

˙̂
log σ

σ̇ |∇u|
2G+ ασ−α

2

˙̂
log σ

σ̇u
2G ,

it follows that

(2.4)

σ1−α

σ̇ ∇ ·
[
2∂tuG∇u+ |∇u|2∇G− 2 (∇G · ∇u)∇u− ασ̇

σ uG∇u−
ασ̇
2σ u

2∇G
]

= 2σ1−α

σ̇

(
∂tu−∇ logG · ∇u− ασ̇

2σ u
)
(∆u+ ∂tu)G

− 2σ1−α

σ̇

(
∂tu−∇ logG · ∇u− ασ̇

2σ u
)2
G− σ1−α

σ̇ DG∇u · ∇u G

+∂t

[
σ1−α

σ̇ |∇u|2G− ασ−α

2 u2G
]

,

and the identity in Lemma 2 follows upon integrating (2.4) over Rn × [0, 1].

When a ∈ (0, 1) and taking respectively in lemma 3 as G and σ the functions
Ga = (t+ a)−n/2e−|x|

2/4(t+a) and σa = (t+ a)e−(t+a)/3 , we have

(2.5) 1
3e (t+ a) ≤ σa(t) ≤ t+ a , 1

3e ≤ σ̇a(t) ≤ 1 and DGa
≥ 1

3I
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when t ∈ (0, 1) and (x, t) ∈ Rn × (0, 1). With these choices, the integrations by
parts done in the derivation of Lemma 3 are valid when u ∈ C∞0 (Rn × [0, 1)) and
u(x, 0) ≡ 0 on Rn, and from Lemma 3, (2.5) and the Cauchy-Schwarz’s inequality

(2.6) ‖σ−α
a G1/2

a ∇u‖L2(Rn×(0,1)) . ‖σ−α
a G1/2

a (∆u+ ∂tu) ‖L2(Rn×(0,1)) .

Multiplying the identity

(∆ + ∂t)(u2) = 2u(∆u+ ∂tu) + 2|∇u|2

by σ−2α
a Ga, then integrating by parts the operator ∆ + ∂t acting on u2 over the

other terms in the corresponding integral over Rn × (0, 1), and using the Cauchy-
Schwarz’s inequality to handle the cross term, (2.5) and (2.6), we derive that the
following inequality holds when α > 0

√
α‖σ−α−1/2

a G1/2
a u‖L2(Rn×(0,1)) + ‖σ−α

a G1/2
a ∇u‖L2(Rn×(0,1))

. ‖σ−α
a G1/2

a (∆u+ ∂tu) ‖L2(Rn×(0,1)) .

This proves the Carleman inequality (1.4) upon replacing α by α− n
4 and observing

that the previous inequality is invariant under translations of the space-variable.

Lemma 4. Assume that u satisfies in Rn \BR × [0, 1]

(2.7) |∆u+ ∂tu| ≤ ε (|u|+ |∇u|) , |u(x, t)| ≤ eε|x|2 ,

and u(x, 0) ≡ 0 in Rn \ BR for some R ≥ 1. Then, there is ε(n) > 0 such that, u
is identically zero in Rn \BR × [0, ε] when ε ≤ ε(n).

Proof.
In order to obtain this result we first show that there exists ε(n) > 0 and a

constant N = N(n) such that any such function verifies in Rn \B6R × [0, 1
N ]

(2.8) |u(y, s)|+ |∇u(y, s)| ≤ Ne−|y|
2/(Ns)

(
1 + ‖u‖L∞(B4R\BR×[0,1])

)
,

when ε ≤ ε(n).
Assuming that u verifies (2.7), |y| ≥ 6R, a ∈ (0, 1) and that r ≥ 4|y| is

a large number, we will apply the first Carleman inequality (1.4) to ur(x, t) =
u(x, t)ϕ(t)ψr(x), where ϕ ∈ C∞(R) and ψr ∈ C∞0 (Rn) satisfy ϕ = 1 for t ≤ 1/2,
ϕ = 0 for t ≥ 3/4, ψr = 1 for 3R ≤ |x| ≤ 2r, ψr = 0 for |x| ≤ 2R and |x| ≥ 3r,
0 ≤ ϕ,ψ ≤ 1, and taking α = k, k ∈ N, in (1.4) . With these definitions we have

(2.9)
‖σ−k−1/2

a e−|x−y|2/8(t+a)ur‖2 + ‖σ−k
a e−|x−y|2/8(t+a)∇ur‖2

. ‖σ−k
a e−|x−y|2/8(t+a) (∆ + ∂t) (ur)‖2 .

On the other hand,

(2.10) | (∆ + ∂t) (ur)| ≤ ε (|ur|+ |∇ur|) + |ϕ′u|
+ ϕ [|u| (|∆ψr|+ |∇ψr|) + 2|∇ψr||∇u|] ,
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and from (2.9) it is possible to hide the first term on the right hand side of (2.10) in
the left hand side of (2.9) when ε is sufficiently small, and obtaining that for k ≥ 0

(2.11)

‖σ−k−1/2
a e−|x−y|2/8(t+a)ur‖2 + ‖ σ−k

a e−|x−y|2/8(t+a)∇ur‖2
. ‖ σ−k

a e−|x−y|2/8(t+a)u‖L2(Rn\BR×[ 12 , 3
4 ])

+‖ σ−k
a e−|x−y|2/8(t+a) (|u|+ |∇u|) ‖L2(B3R\B2R×[0, 3

4 ])

+‖ σ−k
a e−|x−y|2/8(t+a) (|u|+ |∇u|) ‖L2(B3r\B2r×[0, 3

4 ]) .

The standard L∞-bounds for the gradient of subsolutions to parabolic equations
[13] imply that there is a constant depending on n and k such that

‖ σ−k
a e−|x−y|2/8(t+a) (|u|+ |∇u|) ‖L2(B3r\B2r×[0, 3

4 ])

. a−ke−r2
‖u‖L∞((B4r\Br)×[0,1]) ,

and from the growth condition (2.7), the right hand side of this inequality tends to
zero as r → +∞ when ε < 1/16. Then, letting first r → +∞ and then a → 0 in
(2.11), it follows from (2.5) that there is a universal constant N = N(n) such that
for k ≥ 0
(2.12)

‖t−k−1/2e−|x−y|2/8tu‖L2(Rn\B2R×[0, 1
2 ]) + ‖t−ke−|x−y|2/8t∇u‖L2(Rn\B2R×[0, 1

2 ])

≤ Nk‖e−|x−y|2/8tu‖L2(Rn\BR×[ 12 , 3
4 ])

+Nk‖t−ke−|x−y|2/8t (|u|+ |∇u|) ‖L2(B3R\B2R×[0, 3
4 ]) .

From (2.7),

(2.13) ‖e−|x−y|2/8tu‖L2(Rn\BR×[ 12 , 3
4 ]) . ‖eε|x|2−

|x−y|2
6 ‖L2(Rn) . e|y|

2
.

On the other hand, e−|x−y|2/8t ≤ e−|y|
2/16t when x ∈ B3R \B2R and from Stirling’s

formula [1]

max
t>0

t−ke−|y|
2/16t = |y|−2k(16k)ke−k ≤ |y|−2kNkk! ,

and from this fact and the standard L∞-bounds for the gradient of subsolutions to
parabolic inequalities [13] we have
(2.14)
‖t−ke−|x−y|2/8t (|u|+ |∇u|) ‖L2(B3R\B2R×[0, 3

4 ]) ≤ Nkk!|y|−2k‖u‖L∞(B4R\BR×[0,1]) .

Then, (2.12), (2.13), (2.14) and (2.7) imply that there is a constant N = N(n) such
that, for |y| ≥ 6R and k ≥ 0

‖t−ke−|x−y|2/8tu‖L2((Rn\B2R×[0, 1
2 ]) ≤ Nk(k!|y|−2k‖u‖L∞(B4R\BR×[0,1]) + e|y|

2
) ,

and multiplying this inequality by |y|2k/
(
(2N)kk!

)
and adding up in k ≥ 0

(2.15)
‖e|y|

2/(4Nt)e−|x−y|2/8(t+a)u‖
L2((Rn\B2R×[0,

1
8N ])

. 1 + ‖u‖L∞(B4R\BR×[0,1]) .
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Then, from standard estimates for subsolutions of parabolic inequalities [13]

(2.16) |u(y, s)|+
√
s|∇u(y, s)| . 1

s
n
2 +1

∫ 2s

s

∫
B√s(y)

|u|dX ,

and the claim (2.8) follows from (2.15) and (2.16).
Now, we apply the second Carleman inequality (1.5) to ua,r = uψa,r, where 0 <

a < 1, r > 0 is a large number, ψa,r ∈ C∞0 (Rn) verifies ψa,r = 0 for |x| ≤ (1 + a)R
or |x| ≥ 2r and ψa,r = 1 for (1 + 2a)R ≤ |x| ≤ r, and choosing T = 4ε, where
0 < ε ≤ 1/(10N) and N is the constant in (2.8). In particular, we have

(2.17) ‖eα(4ε−t)(|x|−R)+|x|2ua,r‖L2(QR,4ε) + ‖eα(4ε−t)(|x|−R)+|x|2∇ua,r‖L2(QR,4ε)

≤ ‖eα(4ε−t)(|x|−R)+|x|2 (∆ + ∂t) (ua,r)‖L2(QR,4ε) + ‖e|x|
2
∇ua,r(., 4ε)‖L2(Rn) .

As before,
(2.18)
| (∆ + ∂t) (ua,r)| ≤ ε (|ua,r|+ |∇ua,r|) + |u| (|∆ψa,r|+ |∇ψa,r|) + 2|∇ψa,r||∇u| ,

and the first term on the right hand side of (2.18) can be hidden in the left hand
side of (2.17) when ε is sufficiently small. These imply that the following inequality
holds with a constant depending on a > 0

e10αεaR‖u‖L2(Br\B(1+10a)R×[0,ε]) . e8αεr+4r2
‖|u|+ |∇u|‖L2(B2r\Br×[0,4ε])

+e8αεaR‖|u|+ |∇u|‖L2(B(1+2a)R\B(1+a)R×[0,4ε])

+‖e|x|
2
u(., 4ε)‖L2(B2r\B(1+a)R) + ‖e|x|

2
∇u(., 4ε)|‖L2(B2r\B(1+a)R) .

This inequality and (2.8) imply that for some constant depending on a and ε

‖u‖L2(Br\B(1+10a)R×[0,ε]) . eαr−r2
+ e−2αεaR .

Then, letting first r → +∞, then α→ +∞ and finally a→ 0+ in the last inequality,
gives that u ≡ 0 in Rn \BR × [0, ε].

In general, when u satisfies the assumptions in theorem 1, there is δ > 0 such
that the function u(δx, δ2t)/M , also denoted u, verifies (2.7) in Rn \BR× [0, T ] for
some new R ≥ 1 and T ≥ 1 and with ε as small as we like. If T ≥ 1, Lemma 4 gives
that u ≡ 0 in Rn \BR× [0, ε]. Then, u(x, t+ε) satisfies (2.7) in Rn \BR× [0, T −ε],
and if T − ε ≥ 1 we get that u ≡ 0 in Rn \BR × [0, 2ε]. Proceeding in this way, we
find a ≥ 0 such that, u ≡ 0 in Rn \ BR × [0, a] and 0 < T − a ≤ 1. Setting a0 = a
and uk(x, t) = u(

√
T − ak x, (T − ak)t + ak) when k ≥ 0, uk verifies (2.7), and

Lemma 4 implies that u ≡ 0 in Rn \ BR × [0, ak+1], where ak+1 = (1− ε)ak + Tε.
The sequence {ak} is non-decreasing and 0 < ak < T for all k ≥ 0. These two facts
imply that limk→+∞ ak = T , and prove the theorem.
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[13] Ladyženskaja O.A., Solonnikov V.A., Uralceva N.N., Linear and quasilinear equations of
parabolic type, Translations of Mathematical Monographs, Amer. Math. Soc., 1968.

[14] Lin F.H., A uniqueness theorem for parabolic equations, Comm. Pure Appl. Math. 42 (1988),

125–136.
[15] Littman W., Boundary control theory for hyperbolic and parabolic partial differential equa-

tions with constant coefficients, Annali Scuola Norm. Sup. Pisa Serie IV, 3 (1978), 567–580.

[16] Micu S., Zuazua E., On the lack of null-controllability of the heat equation on the half space,
Portugaliae Mathematica 58, 1 (2001), 1–24.

[17] Poon C.C., Unique continuation for parabolic equations, Comm. in Pde’s 21 (1996), 521–539.

[18] Saut J.C., Scheurer E., Unique continuation for evolution equations, J. Differential Equations
66 (1987), 118–137.
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