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Abstract 

The vast majority of metamodeling demonstrations focuses 
on problems composed of continuous variables. However, 
important engineering design problems often include one or 
more discontinuous variables that require special attention. 
Previous work demonstrated the ability of Non-Uniform 
Rational B-spline HyPerModels to represent highly nonlinear 
functions composed of continuous variables. With minor 
modifications those capabilities can be extended to include 
functions defined by combinations of discontinuous input and 
output variables of different types, including discrete integer 
variables, feasibility variables and membership functions. 
Examples are used to demonstrate these modeling capabilities 
including applications developed from real engineering design 
problems such as the optimal positioning of a construction site 
crane and the optimal lay-up of a composite material I-beam. 

1. INTRODUCTION 
This research builds on previously published results to 

address the specific question of modeling discontinuous 
variables using Non-Uniform Rational B-spline metamodels, 
called Hyperdimensional Performance Models or 
HyPerModels. Turner [2005b] presented methods by which 
HyPerModels can be fit to continuous variables. Reviews of 
this paper raised the issue of whether the same could be 
accomplished for discontinuous variables. Turner [2005c] 
compares the performance of HyPerModels to other types of 
metamodels based solely on speed, accuracy and robustness. In 
Turner [2005a] this performance comparison was extended to 
additional metamodel types and additional HyPerModel 
capabilities were noted. Included among these capabilities are 
unique optimization properties, which form the basis for Turner 
[2006]. Each of these papers is distinct from this work. 
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1.1 INTRODUCTION 
A metamodel is simply a model of models. Metamodels 

are used to encapsulate information from multiple simulations, 
experiments or other metamodels, themselves models of an 
actual system, into a single mathematical approximation, as 
conceptually shown in Fig. 1. In essence, a metamodel is a 
black box representation of an unknown system (or function). 

 

 
Figure 1. Metamodel Concept. Metamodels are a 
representation of a system of models, defined by data from 
one or more experiments, simulations or other metamodels. 
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A metamodel is a surrogate model for other applications, 

providing a fast and accurate data representation of the original 
sources with less expense than required from the original 
sources. Metamodels are increasingly common in engineering 
design applications where multiple model types are integrated 
(e.g. wind tunnel results with CFD and FEM simulations), 
control applications where as-built conditions render prior 
simulations inaccurate (chemical processing) and as objective 
function models in design optimization. [De Veaux, 1993; 
Rong, 1997; Simpson, 1998 & 2004; Sasena, 2002; Chandilla, 
2004; McAllister, 2002]  

For instance, a simulation or experiment results in a data 
point for each run conducted. So a series of simulations or 
experimental runs results in a data set, which is a subset of the 
underlying behavior represented by the simulation and/or 
experiment. A metamodel uses this data set to define a function 
approximating the behavior of the simulation or experiment – 
in effect filling in the spaces between the collected data points. 
Metamodels are particularly useful when data from multiple 
sources needs to be combined into a single representation. 

If a large data set is already available from an exhaustive 
design space search, the data set may be directly sampled to 
create the metamodel. Otherwise, a data set can be obtained 
with adaptive sampling techniques [Sasena, 2002; Turner, 
2004]. 

Several metamodel types are commonly used. Response 
Surface Models (RSMs), including classical curve and surface 
fitting techniques, are the most common. More complex 
techniques, including Kriging and Radial Basis Function 
Models are also employed as metamodels. All of these types 
are intended to represent continuous variables. Metamodels 
such as Multivariate Adaptive Regression Splines (MARS) and 
Non-Uniform Rational B-spline (NURBs) HyPerModels 
include capabilities that allow them to represent continuous and 
discontinuous variables. However, MARS is limited to binary 
integer input variables. [Salford Systems, 2001]  

Many metamodeling surveys have been conducted, 
including De Veaux [1993], Laslett [1994], Barton [1998], 
Wang [1999a], Simpson [2001], Jin [2001], Sasena [2002] and 
Turner [2005c]. The interested reader should refer to these 
research papers for further discussion of the advantages and 
disadvantages of different types of metamodels. 

1.2. METAMODEL DIMENSIONALITY 
The dimensionality of a metamodel is a combination of the 

number of inputs (input dimensionality) and the number of 
outputs (output dimensionality). The input dimensions are the 
independent variables in a function while the output dimensions 
are the dependent variables from a function. In the case of a 
HyPerModel, the input dimensionality directly relates to the 
control point network dimensionality and the overall 
dimensionality directly relates to the control point coordinate 
dimensionality. Thus, the dimensionality of the metamodel also 
is related to its complexity. Metamodels are used to represent 
N-dimensional data sets; however, most examples presented in 
published works are limited to 3D or simpler functions that can 
be plotted with conventional techniques. 
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2. NURBS FUNDAMENTALS 
Many Computer-Aided Design/Engineering (CAD/CAE) 

software systems use NURBs-based representations to describe 
geometric objects. However, until the work by Turner [2002], 
the literature shows little evidence for any similar development 
effort for NURBs-based metamodels. Turner [2005a] 
demonstrates that NURBs-based HyPerModels have attractive 
metamodel properties. 

The mathematical basis for HyPerModels is derived from 
that of NURBs. For convenience, the fundamental NURBs 
equations are shown in this section. Equation 1, defines a 
planar NURBs curve, p(u), as: 
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where b is a vector defining the location of the ith of nC control 
points, wi is a positive scalar defining the weight of the ith 
particular control point, and Ni,k(u) is the B-spline basis 
function given as a function of u. The parameter u defines a 
position along the curve length, which is equivalent to a point 
on the curve defined by the vector p(u). The B-spline basis 
function is a recursive function defined by Eqs. 2 and 3, 
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where x is the knot vector, a parametric value sequence 
defining the control point influence region within the NURBs 
metamodel. For the ith control point, that region of influence is 
defined by the metamodel order, k. The B-spline basis function 
exhibits the behaviors defined by Eqs. 41, 5 and 6. 
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subject to the constraint  2 Ck n≤ ≤  (6) 
NURBs metamodels use the control point locations, 

control point weights (effectively a homogeneous coordinate of 
the control point), knot vectors, and the curve order, k, to 
produce a highly flexible curve definition. [Gopi, 1997] 

Turner [2005a; 2005b] developed the HyPerFit algorithm 
to define HyPerModels using NURBs. Since the 
implementation of this algorithm allows continuous and 
discontinuous variables to be represented simultaneously, the 

                                                 
1 Mathematically, the division in Eq. 4 is undefined. However, the 

convention in NURBs applications is to define 0 over 0 division as 0 
for computational purposes. This definition is justified by the fact 
that 0 over 0 division occurs in the basis function definitions only 
when the basis function is inactive in the region queried. 
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next section reviews the fundamentals of the HyPerFit 
algorithm.  

3. NURBS HYPERFIT ALGORITHM 
Much of this section is based on work presented in Turner 

[2005b] but is reproduced here for convenience. The goals for 
metamodeling are somewhat different from the goals for 
geometric data fitting and surface reconstruction. The main 
requirement is a method that quickly generates accurate 
representations of data sets of unknown and arbitrary topology. 
The method should lend itself to representing spaces of 
arbitrary (and changing) dimensions, which the tensor product 
NURBs formulation readily supports. An overview of our 
fitting algorithm is given below and in Fig. 2: 

 

Figure 2. HyPerFit Algorithm.  The basic fitting algorithm 
used in HyPerMaps to define a HyPerModel iteratively adds 
control points to the control net to reduce the maximum error 
in the metamodel. The model is refined until a stopping 
criterion is achieved. 

 

1) Establish an initial linear model, with control 
points at each corner and an open knot vector. 
Control point weights are calculated based on the 
local data neighborhood near each control point. 
(This involves matching control points with their 
nearest data neighbors.) The control point 
locations are found through the solution of a 
simultaneous equation set. 

2) Compare metamodel predictions to existing data 
set (used for fitting). Identify the maximum error 
location, compare this error to the user tolerance, 
and check the unused data set’s correlation to the 
model data. Stop if the model has converged. 

3) Insert a new primary control point at the 
equivalent parametric location. 
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4) Insert secondary control points as necessary to 
maintain the grid. 

5) Increase the order as appropriate. 
6) Recalculate the knot vector based on an open knot 

vector. Find internal knots by finding the 
midpoint between interior control points. 

7) Calculate control point weights. 
8) Calculate control point locations. 
9) Repeat step 2 as necessary. 

3.1. DATA PARAMETERIZATION 
With a NURBs-based metamodel, several different 

variable types are used, unlike CAD applications where 
different coordinate system variables are a single variable type. 
The input (independent) metamodel variables are normalized to 
range from 0 to 1. These normalized variables correspond to the 
parametric NURBs coordinates and thus are known as 
parameterized coordinates. The metamodel output corresponds 
to the dependent variables and need not be normalized. These 
variables may be either continuous or a combination of 
continuous and discontinuous variables. 

3.2. HYPERMODEL ORDER AND DEGREE 
A NURBs metamodel initially uses an order of k=2, 

producing a linear model between bounding control points. As 
a third control point is added, the order is increased to k=3, 
producing a quadratic model. Previous trials [Legault, 2000; 
Turner, 2000] suggest that higher order models higher than 
quadratic produce little benefit, while diluting the local 
influence of control points. Consequently, model order is not 
increased further. If an input variable is defined as an integer 
variable, the order in that parametric direction is defined as 
k=2, producing a linear model in that parametric direction. 

3.3. PARAMETRIC CONTROL POINT LOCATIONS 
Unlike CAD/CAM/CAE applications, the parametric 

coordinates are determined independently of the dependent 
output coordinates of the control points. For instance, in a 2D 
planar plot where y=f(x), y is a dependent coordinate and x is an 
independent coordinate that we parameterize so that: 

max min

xu x
x x

= =
−

, (7) 

where u is the parametric coordinate of the NURBs model, x is 
the parameterized (input) coordinate related to the normalized 
independent coordinate, x. Note that u∈[0,1]. 

HyPerFit is initially “seeded” with a hypersurface 
generated from the corner control points. All of the initial 
control points lie at extreme values (0 or 1) of the 
parameterized input coordinates. Subsequent control points are 
iteratively identified based on the maximum root-mean square 
(RMS) error detected between the metamodel and the data set.  
This scheme begins with a minimal control net and inserts 
control points at the parametric location of maximum RMS 
error, along with additional control points so as to maintain a 
hypersquare of control points. Future versions of the algorithm 
will relax this constraint to maintain a hyperrectangular grid of 
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control points. The maximum RMS error location determines 
the parametric coordinates of all inserted control points for each 
iteration. Thus, for a 2D problem, the number of control points 
grows as mD, where m=2, 3, 4… and D = 2, as shown in the 
example given in Fig. 3. 

Once inserted, each control point is associated with its 
nearest neighboring data points. We assume that the nearest 
data point to each control point can be used to estimate the 
control point’s dependent coordinate position. The local 
neighborhood of control points is used with a local kriging 
model to estimate the weight of the control point. 
 

   
m = 2 

# CPs = m2 = 4 
Iteration = 0 

(“seed” mesh) 

m = 3 
# CPs = m2 = 9 

Iteration = 1 
 

m = 4 
# CPs = m2 = 16 

Iteration = 2 
 

 
Figure 3. HyPerMaps Control Point Addition Scheme.  
The iterative control point (CP) addition scheme for a planar 
2D input problem. The approach is readily extensible from 1 
to N input dimensions. 

3.4. ESTIMATING CONTROL POINT WEIGHTS 
Each control point is associated with a predefined number 

(we use 10 in the examples below) of neighborhood data points 
selected by their proximity to the control point using only the 
parameterized coordinates. Using this neighborhood an 
appropriate control point weight is estimated with 

( )( )min max minw w w w= + − T -1r R r , (8) 

recalling that  [ ]0,1u x= ∈  (9) 

so  ( )0 1≤ ≤T -1r R r  (10) 
and therefore min max0 w w w< ≤ ≤  (11) 

where w is the weight of the control point, wmin is the minimum 
weight value, wmax is the maximum weight value, r is a vector 
derived from the spatial correlation function, R(xCP, ui), relating 
the parametric control point location (xCP) to the location of 
each nearby neighbor data points (ui), defined in Eq. 12. The 
matrix R is derived from the spatial correlation function, R(ui, 
uj), relating the location of data point ui to the location of data 
point uj, defined as: 

( , )
p

i CPu x
CP iR x u e θ− −=  (12) 
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where θ defines the range of influence of the data and p defines 
the rate at which the influence of distant points will decrease. 
Reasonable parameter values can be obtained from wmin and the 
number of control points respectively, according to the 
relations defined in Eqs. 13 and 14. 

( )minln wθ =  (13) 
( )( )ln ln

1ln
C

C
p

n

=
⎛ ⎞⎜ ⎟
⎝ ⎠

 
(14) 

where C is a coefficient (C>1.0) defining the minimum weight 
of influence at the nearby neighborhood boundary. Values of 
wmin=0.1, wmax=1.0, and C=2 have yielded good results, and 
result in weights that range from 0.1 for a control point with 
little data near its location, to a value of 1.0 for a control point 
with many nearby and even coincident neighbors. In essence, 
the weight estimates confidence that can be placed in a control 
point location. Multiple dimensions can be handled through a 
tensor product of the single dimension weights. 

A second set of weights is computed – one for monitoring 
the certainty with which we can identify a control point 
location, and another unitary “pseudoweight” used for the 
geometric fitting. Nonunitary pseudoweights are particularly 
useful for sequential sampling applications.  

3.5. HYPERMODEL KNOT VECTORS 
Consistent with the independent (input) variable 

parameterization, open knot vector(s), defined by the curve 
order and control point locations are used to define the 
HyPerModel. Intermediate values, which begin to emerge once 
nC>k in a particular direction, are defined as the intermediate 
values between the interior control points. For example, the 
first intermediate knot location in Fig. 4, a k=3 curve defined 
by nC=4 control points, lies halfway between control points 2 
and 3 in the parameterized coordinate space. Note that the knot 
vector is defined in the NURBs parametric coordinate space. A 
knot vector exists in each parametric direction, and this vector 
is applicable throughout the NURBs hyperobject. In n-
dimensional terms, these knot vectors are stored as a knot 
matrix with each column corresponding to an orthogonal 
parameterized (input) variable coordinate. 

3.6. DEPENDENT CONTROL POINT LOCATIONS 
With the model order, the parameterized control point 

locations, the control point weights, and the knot vectors 
determined, the only remaining unknowns are the dependent 
control point coordinates defining the metamodel outputs. 
Since each control point has an identified nearest neighbor data 
point that is the best approximation of the model at the 
parametric control point location, xCP, a set of simultaneous 
equations can be defined (Eq. 15), such that 

( ) { } ( ){ }CP NNx u=⎡ ⎤⎣ ⎦N b p  (15) 
where N is the basis function matrix at a control point location, 
b is a vector of the independent control point coordinate 
locations, and p is a vector of the desired metamodel (output) 
values  at  the  control point location based on the best available  
This material is declared a work of the U.S. Government and is not 
subject to copyright protection in the United States. 

Approved for public release; distribution is unlimited 
Copyright © 2006 by ASME

 http://www.asme.org/about-asme/terms-of-use



Downloa
 
 

 

 

 

 
Figure 4. HyPerMaps Knot Vector Calculation.  The 
evolution of the knot vector, from two control points (first 
row), to three control points (second row), to four control 
points (third row) and five control points (fourth row) along 
with the corresponding set of NURBs curves and the knot 
vector. As control points are added, the knot vector localizes 
the influence of individual control points. 
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information, the independent coordinate values of the nearest 
neighbor data point, uNN. Note that xCP and uNN only exist in the 
parameterized coordinate space. uNN should lie within the 
region influenced by the associated control point. The terms in 
the basis function matrix are simply the solutions to Eq. 16. 
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Eqs. 15 and 16 are expressions of Eq. 1 as a set of 
simultaneous equations. Our control point fitting algorithm is 
based on algorithms described by Rogers [1990], and by Piegl 
[1997] that allow each parameterized coordinate to be fit 
individually, reducing the size of N at the expense of having to 
invert a smaller N in each parametric coordinate. 

For each iteration, the solution of a set of ni linear 
equations with ni unknowns is required where ni is the number 
of control points in the ith parametric coordinate direction. This 
problem can be solved with standard matrix inversion 
algorithms such as an LU-factorization algorithm that 
decomposes N, into a lower triangular matrix L and an upper 
triangular matrix U for forward and backward substitution 
algorithms and matrix pivoting to maintain the population of 
the diagonals of N. [Griffiths, 1991] 

3.7. HYPERFIT CONVERGENCE 
Since HyPerFit is iterative, convergence criteria are 

necessary. The user defines three metrics that are used to test 
for convergence:  

1) Model correlation calculated with Pearson’s r2 
[Crow, 1960],  

2) Maximum RMS error threshold, and  
3) Minimum RMS error threshold.  

Model correlation is restricted to data set elements not 
primarily associated with control point locations so as to avoid 
biasing the correlation metric. The unused sample set size must 
be at least as large as the used sample set size in order to be 
considered statistically significant. 

Any data points whose RMS error is less than the 
minimum threshold are considered well approximated by the 
current metamodel iteration. However, it is possible to meet the 
global correlation metric and simultaneously exhibit large local 
RMS errors. Consequently, the maximum RMS error threshold 
prevents convergence due to correlation if significant local 
RMS errors still exist. RMS error is only a function of the 
dependent metamodel coordinates and is expressed as a 
percentage of full scale in the data set.  

Correlation can occur if  

1) The model achieves its correlation goals with a 
maximum RMS error less than the maximum 
RMS error threshold, or  

2) If all data points are represented by less than the 
minimum RMS error threshold and no additional 
data is available.  
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Sequential sampling techniques can be integrated with the 

metamodel fitting process to collect data requested by the 
metamodel in this case.  

3.8. HYPERMODEL REFINEMENT 
HyPerFit initially defines a sparse control net and 

iteratively adds control points. In some cases, a control point 
added in a prior iteration should be removed because a 
subsequently added control point renders it unnecessary or even 
undesirable. This is particularly true when sequential sampling 
is used to generate a data set. Trials have shown that reverting 
to a sparse control net and completely rebuilding the 
metamodel from the collected data set allows sub-optimal 
control points to be removed, improving the accuracy of the 
HyPerModel.  

4. HYPERMODEL VARIABLE TYPES 
Many engineering design problems include combinations 

of continuous variables and discontinuous variables. Examples 
of continuous variables include part dimensions, operating 
temperatures, fluid flow rates, etc. Examples of discontinuous 
variables include material types, the dimensions of standardized 
parts (screws, bolts, etc), design feasibility, etc.  

Discontinuous variables can occur in several ways. There 
are discrete or integer input variables (such as bolt size) where 
the variable can take on only a certain value. The terms, integer 
and discrete, are used interchangeably even though the discrete 
values may or may not take on integer values. Input variables 
can also be discontinuous if a void exists within the range of a 
continuous variable. Voids commonly occur when constraints 
are applied to the design problem. An example of a void might 
be a requirement for a train to maintain a velocity of at least 15 
miles per hour or a velocity less than 8 miles per hour. 

Discontinuous variables also exist as outputs to a design 
problem. For instance, an output that describes the feasibility of 
a design could be expressed as a binary output variable with 
two states: feasible and infeasible. Mathematically, such 
variables are expressed as step functions. More complex 
feasibility evaluations with multiple states can also be modeled 
as multiple step functions. These formulations are more 
generally known as membership functions. 

5. DISCONTINUOUS VARIABLE HYPERMODELS 
RSMs, kriging models, and RBFs are designed to deal with 

continuous variables. They have no provisions to explicitly deal 
with discontinuous input variables. MARS can incorporate 
binary input variables into its models [Salford Systems, 2001] 
but HyPerModels have more flexibility. HyPerModels with 
discrete integer input values or input variable voids also can be 
defined using membership functions or discrete integer output 
variables. 

5.1. INTEGER INPUT VARIABLES 
There are two ways to represent integer input variables 

with a HyPerModel: as multiple outputs (each corresponding to 
a particular integer value) or by embedding the integer values 
within the control point network structure. Defining the integer 
 6
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variables as multiple outputs reduces the HyPerModel input 
dimensionality, which also reduces the computational effort 
involved in defining the model. In effect, each possible integer 
value takes on a distinct output dimension. However, if there 
are already multiple performance indices in the problem, 
treating one or more integer variables as performance indices 
can dramatically increase the problem output dimensionality. 

The alternative is to embed the integer variables into the 
control point network structure. This is accomplished by 
establishing control points at each integer value in the integer 
coordinate(s) of the problem, and by restricting the 
HyPerModel order in this direction to k=2. A HyPerModel of 
order k=2 in a particular direction, defines a model that will 
linearly interpolate between control points in this direction. 
Thus, the control point network defines the integer values for 
any integer coordinate direction(s) and constrains any optimum 
locations to coincide with integer values due to the linear 
constraint on the HyPerModel in the same direction(s). 

The six-hump camel back function [Adorio, 2005] defined 
in Eq. 17 can be converted into an integer modeling problem by 
restricting x1 to the set {-1, -½, 0, ½, 1}. Thus x1 is defined as a 
discrete (integer) variable. The resulting metamodel is shown in 
Fig. 5. The similarity demonstrated between the actual function 
and the metamodel approximation is a highly desirable 
outcome of using a metamodel. However, the two 
representations are not identical with deviations measured 
through the global correlation coefficient, r2 = 99.9%. 

( )
6

2 4 2 40
17 0 1 0 0 0 1 1 1

0

1

, 4 2.1 4 4
3

for 2 2
and { 1, 0.5,0,0.5,1}

xf x x x x x x x x

x
x

= − + + − +

− ≤ ≤
= − −

 (17) 

The “rows” in the control point network correspond to 
integer values in the metamodel. Consequently, the metamodel 
is defined by a set of curves, rather than a continuous surface. 
The metamodel between the rows is a linear interpolation 
defined by a k=2 curve, while the metamodel along the row, is 
locally quadratic, defined by a k=3 curve. 

5.2. VOIDS IN INPUT VARIABLES 
Another possible input discontinuity is the case where a 

void exists in the data set. A region where data does not exist in 
the metamodel defines the void. Again, several approaches are 
available to cope with the void. 

If the presence of the void is not known in advance, one 
possibility is to simply ignore the existence of the void in the 
output dimensions, except for an output dimension that defines 
the feasibility of the location. Regions in voids are associated 
with infeasible solutions in this dimension. This relies on the 
simulation or experiment to be able to detect infeasible 
solutions and produce reasonable output responses. 

Figure 6 shows the result of creating a void within the 
Sasena [2002] sinusoidal function defined by Eq. 18. The 
region 4.5 < x < 6.5 constitutes a void in the design space and 
also defines the corresponding feasibility dimension. Without 
any data provided by the void, the metamodel simply 
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interpolates across the void in the function. However, the 
feasibility dimension captures the absence of data in this void. 

( ) 100
18 10 sin( ) for 0 10xf x x e x= − − ≤ ≤  (18) 

The difficulty in this approach is the reliance on the 
simulation’s ability to detect a void. If no data is needed from 
the region defined by the void to define the metamodel, the 
void may not be detected. Consequently, the metamodel may 
predict a feasible solution in an infeasible region of the 
function. Furthermore, if data is obtained from experimental 
sources, the infeasible nature of the region in the function may 
mean that the data necessary to define the metamodel is 
unavailable. At a minimum, this highlights the need to confirm 
metamodel results with queries to original data sources. 

 

Figure 5. Integer Six-Hump Camel Back Function. If one 
of the axes of the six-hump camel back function is restricted 
to certain integer values, a HyPerModel can be constructed 
by embedding the integer behavior into the control point 
network. The actual function appears as a series of lines 
aligned with individual integer values (top), as does the 
resulting HyPerModel (middle). The lines are also aligned 
with rows in the control point network (bottom). 
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5.3. APPLYING MEMBERSHIP FUNCTIONS 
A feasibility dimension in effect represents a membership 

function. A membership function is simply a function that 
defines which points in a range are members and which points 
are nonmembers of a set. In the case of the feasibility 
dimension in Fig. 6, membership is defined as the set of points 
x such that 0 < x ≤ 0.45 or 0.65 < x < 1, or the regions where 
the feasibility dimension has a value of 1. This is an arbitrary 
convention but is consistent with binary variables in C++ 
programming. 

 

Figure 6. Sasena Sinusoidal Function with Void. The 
metamodel simply interpolates across the void defined in the 
Sasena Sinusoidal Function (top). If the simulation can 
detect that a void exists, a feasibility dimension (bottom) can 
also be defined. 

 
Membership functions also allow the user to incorporate 

prior knowledge, if available, about voids within input variable 
ranges. Thus, the impetus for the simulation to provide all of 
the information about the presence of voids within the input 
variable ranges is decreased. 

In 1D, a membership function is modeled with one or more 
step functions, such as the step function defined by Eq. 19 and 
modeled in Fig. 7. Step functions can be readily extended to 
higher dimensions, such as the 2D multiple step function shown 
in Fig. 8. The multiple steps demonstrate that a membership 
function can simultaneously model membership in several sets. 

( )A.3

6 6
for 0 10

6 11
x

f x if x
x
<⎧

= ≤ ≤⎨ ≥⎩
 (19) 

5.4. INTEGER OUTPUT VARIABLES 
Since the output of a membership function is a discrete 

(integer) value, a reasonable approach to modeling membership 
functions is to restrict the output to integer values. This can be 
accomplished through the application of rounding rules to the 
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continuous output of a HyPerModel, as was done to generate 
the membership model in Fig. 8. 

 

 
Figure 7. Step Function Example.  The actual function 
(top) and the metamodel representation (bottom). Some 
residual variability still exists in the metamodel. 

 
Since the cost of a HyPerModel, in terms of the number of 

control points, to model a membership function with 
continuous outputs can be significant for high dimensional 
input problems, applying these rounding rules within the fitting 
algorithm of the HyPerModel reduces the cost of fitting 
membership functions by reducing the number of control points 
necessary to model the membership function. 

Both step functions demonstrated in Figs. 6 and 7 are 
based on rectangular topologies that compliment the 
rectangular grid topology of the control point network. 
However, voids may exhibit other, much more complex 
topologies that do not necessarily conform to rectangular grids. 
Membership functions defined by such complex topologies also 
can be represented with HyPerModels as demonstrated with the 
examples in Figs. 9 through 11. 
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Figure 8. Multiple Step Function. A 2D step function, 
representing membership in three sets can be accurately 
modeled with a HyPerModel to a correlation of 100%. 

 

Figure 9. Circular Step Function. Representing a circular 
object with a rectangular grid of control points is a 
challenging task for a HyPerModel, but is achieved in this 
case with a correlation of 100%. 

 
What is remarkable about several of these topologies is 

that the resulting HyPerModels also preserve the interior details 
of the membership functions. The mechanical part included 
holes through the central cube and the Stanford Bunny is in fact 
hollow. Figure 12 shows the interior detail within each object. 

Once generated, HyPerModels of the membership 
functions allow set operations to be performed on metamodels. 
In terms of feasibility constraints, for discontinuous input 
variables, the primary interest is in calculating the intersection 
of two sets. This process was used to generate Fig. 12, using 
the set mathematics. Thus, complex voids can be calculated as 
shown in Fig. 13. 

Applying the feasibility calculation to the raw data of a 
metamodel, such as that in Fig. 14, allows the metamodel to be 
restricted to the feasible regions of the problem. The example in 
Fig. 14 is for the crane location problem. In this example, the 
building at a construction site represents an infeasible position 
to locate the crane. The goal is to find the optimum feasible 
location for the crane within the construction site, but the 
building created a void in the construction site. The building is 
defined as an infeasible location by defining a membership 
function and feasibility constraints. The HyPerModel in this 
case was generated with adaptive sampling techniques. 
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Sphere Function (99.4%) 

 
Cone Function (97.5%) 

 
Chain Function (95.1%) 

 
Figure 10. Examples of 3D Membership Functions. Seven 
examples of 3D membership function based on geometric 
objects. The correlation achieved by the HyPerModel (right 
image) to the actual function (left image) is given in 
parenthesis next to the name of each model. Plots are 
generated by only rendering the member points in the model. 

5.5. DISCONTINUOUS HYPERMODEL SUMMARY 
Together, the capabilities of HyPerModels to represent 
discontinuous integer input variables with voids allow 
HyPerModels to represent design functions representing 
complex engineering design problems. For instance, consider 
the design of a multi-laminate composite material I-beam, such 
as that shown in Fig. 15. Typically, composite material design 
is performed with an exhaustive search of a finite material set 
and a finite set of fiber orientations (i.e. 0°, ±15°, ±22.5°, ±30°, 
±45°, ±60°, ±67.5°, ±75°, or ±90°) forming an integer 
(combinatorial) design problem. However, for a two ply design, 
the fiber angle can be considered a continuous variable and the 
material choice a discrete variable. 
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Mechanical Part (99.9%) 

  
Stanford Bunny (89.8%) 

 
 

Figure 11. 3D Membership Function Examples for Real 
Objects. These membership functions are based on a solid 
model of a mechanical part (top) courtesy of the University 
of Texas at Austin Institute for Computational Engineering 
and Sciences and Computational Visualization Center 
[Zhang, 2005], and a 3D surface scan of the Stanford Bunny 
(bottom) courtesy of the Stanford 3D Scanning Repository 
[Stanford, 2005]. Shown are the actual objects (left), the 
actual function data sets (middle) and the HyPerModel 
representation (right). 

 

  
Figure 12. Interior Detail of 3D Membership Functions. 
Both the Mechanical Part (left) and the Stanford Bunny 
(right) include interior details. In the case of the Stanford 
Bunny, the data set represents a shell of points surrounding a 
void in the interior of the Stanford Bunny. The HyPerModel 
models the interiors as well as the exteriors of these objects. 

 
The design objective for this problem is finding the lightest 

composite material configuration that meets or exceeds the 
stiffness of the I-beam to be replaced. This problem can be 
expressed as a Mixed Integer Programming (MIPs) 
optimization problem. Assuming that the geometry of the 
composite I-beam is the same as the original I-beam (in this 
case a W310 × 143 I-beam) only the composite material 
selected and the fiber orientation are unknown variables. Using 
penalty functions, infeasible designs (which would not meet the 
stiffness criterion) can be defined. The resulting design 
function can be represented with a HyPerModel as shown in 
Fig. 16. 
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Figure 13. Intersection Calculation of Metamodels. The 
intersection of membership metamodels can be quickly 
calculated to yield the subset of points that are feasible 
members of both sets, yielding highly complex objects. 

 

 
Figure 14. Infeasible Crane Locations. The building was 
defined as an infeasible position in this problem by using a 
membership function to define crane positions within the 
building as infeasible in both sequential sampling problems. 
A membership function, rather than the simulation defined 
the building location as infeasible. 

 

 
Figure 15. Antisymmetric 2-Ply Design Configuration. 
Antisymmetric composite layups define relations between 
fiber angles for plies arranged about a plane of symmetry. 
This design can be extended to cases involving larger 
numbers of plies. 
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 It is well known in design optimization that the optimal 
solution to a MIP problem is not guaranteed to be the nearest 
integer solution. Nor is this how the optimal solution is located 
using the HyPerModel in Fig. 16 and the optimization 
techniques defined in Turner [2005a; 2006]. However, a 
detailed discussion is beyond the immediate scope of this 
paper. Interested readers are encouraged to review these 
sources for further information on using HyPerModels in 
optimization. 

In addition, a large number of potential designs are now 
rendered infeasible since they would not result in an I-beam 
with sufficient stiffness to meet or exceed that of the original 
metal I-beam. The penalty functions incorporated into the 
design function in Fig. 16 also provide the ability to define a 
membership function that constrains the feasible regions of the 
HyPerModel, resulting in the regions shown in Fig. 17 for a 
Steel (Fe) I-beam replacement.  

 
Actual Design Objective Function 

 
HyPerModel Representation 

 
Figure 16. 2-Ply Design Function Models. The actual 
design objective function (top) and the HyPerModel 
approximation (bottom) indicate that the best designs are 
clustered in a small region of designs.  

 
The HyPerModel of the design objective function includes 

a discrete integer variable (section 5.1) and uses a membership 
function (section 5.3) with an integer output value (section 5.4) 
to produce a void (section 5.2) in the resulting HyPerModel. 
Optimization results for these MIPs problems are given in 
Turner [2005a]. 

Turner [2005a] also developed HyPerModels of 75 trial 
functions defined by continuous variables and achieved an 
average global correlation of 99.0% with a standard deviation 
of 4.94%. The correlations for the 16 functions presented in this 
paper are summarized in Table 1. These functions have an 
overall average correlation of 97.4% with a standard deviation 
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of 4.11%. These values are comparable to those achieved for 
continuous variable functions. 
 

Actual Design Objective Function 

 
HyPerModel Representation 

 
Figure 17. Feasible 2-Ply Design Function Models. The 
actual design objective function (top) and the HyPerModel 
approximation (bottom) after the infeasible designs have 
been eliminated from the metamodel with a membership 
function. 

 
Table 1. Correlation Summary. The 16 functions used in 
this paper achieve an average correlation of 97.4%. The 
functions in italics are membership functions. 

Function Fig. Correlation (%) 
Integer 6-hump camel back 5 99.9 

Sasena Sinusoidal with Void  6 99.8 
Step 7 99.9+ 

Multiple Step 8 99.9+ 
Circular Step 9 99.9+ 

Box n/a 99.9 
Sphere 10 99.4 

Cylinder n/a 99.9+ 
Cone 10 97.5 

Volcano n/a 97.2 
Torus n/a 96.6 
Chain 10 95.1 

Mechanical Part 11 99.9 
Stanford Bunny 11 89.8 
Crane Location 14 85.8 

Steel I-Beam Replacement 16 97.0 
Average  -  97.4 

6. CONCLUSIONS AND FUTURE WORK 
By modifying the original HyPerFit algorithm, NURBs 

HyPerModels can model functions incorporating discontinuous 
variables. The resulting metamodels achieve correlations close 
to that achieved for functions defined by continuous input 
variables in Turner [2005a and 2005b]. The capability to model 
 11
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continuous and discontinuous variables is not matched by 
alternative metamodeling approaches. Thus, HyPerModels 
have a unique advantage in engineering design problems where 
discontinuous variables are common. The ability of 
HyPerModels to accurately represent complex functions 
defined by combinations of continuous and discontinuous 
variables supports unique design optimization and interesting 
modeling capabilities. [Turner, 2005a; 2006]  

Future work is directed at improving the integration of 
these modifications into the current HyPerFit implementation 
in the HyPerMaps software system. Of particular interest is the 
ability for the HyPerModel to determine when an output 
variable exhibits integer behavior without user interaction. 
Additional research directed at examining the ability 
HyPerModels to assist in surface reconstruction from 
unstructured point cloud data also represents a potential avenue 
for further research.  
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