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ABSTRACT
We propose a greedy algorithm which, given a hypergraph H and a
positive integer k, produces a hypertree decomposition of width less
than or equal to 3k−1, or determines that H does not have a gen-
eralized hypertree-width less than k. The running time of this algo-
rithm is O(mk+2n), where m is the number of hyperedges and n is
the number of vertices. If k is a constant, it is polynomial. The con-
cepts of (generalized) hypertree decomposition and (generalized)
hypertree-width were introduced by Gottlob et al. Many important
NP-complete problems in database theory or artificial intelligence
are polynomially solvable for classes of instances associated with
hypergraphs of bounded hypertree-width. Gottlob et al. also de-
veloped a polynomial time algorithm det-k-decomp which, given
a hypergraph H and a constant k, computes a hypertree decom-
position of width less than or equal to k if the hypertree-width of
H is less than or equal to k. The running time of det-k-decomp
is O(m2kn2) in the worst case, where m and n are the number of
hyperedges and the number of vertices, respectively. The proposed
algorithm is faster than this. The key step of our algorithm is check-
ing whether a set of hyperedges is an obstacle to a hypergraph hav-
ing low generalized hypertree-width. We call such a local hyper-
graph structure a k-hyperconnected set. If a hypergraph contains
a k-hyperconnected set with a size of at least 2k, it has hypertree-
width of at least k. Adler et al. propose another obstacle called a
k-hyperlinked set. We discuss the difference between the two con-
cepts with examples.

1. INTRODUCTION
The concepts of hypertree decomposition and hypertree-width were
introduced by Gottlob et al. [5] Many important NP-complete prob-
lems in database theory and artificial intelligence such as the con-
junctive query containment problem are polynomially solvable for
classes of instances associated with hypergraphs of bounded hypertree-
width [5]. Gottlob et al. [7] also introduced the concept of general-
ized hypertree decomposition and generalized hypertree-width.
∗A part of this work was completed while the author was a student
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We propose a greedy algorithm which, given a hypergraph H and a
positive integer k, produces a hypertree decomposition of width less
than or equal to 3k−1, or determines that H does not have general-
ized hypertree-width less than k. Since a hypertree decomposition
is also a generalized hypertree decomposition by definition, our al-
gorithm produces a generalized hypertree decomposition. The run-
ning time of our algorithm is O(mk+2n), where m is the number
of hyperedges and n is the number of vertices. If k is a constant,
the running time of our algorithm is polynomial. Gottlob et al. [9]
also develped a polynomial time algorithm called det-k-decomp
which, given a hypergraph H and a positive integer k as a constant,
computes a hypertree decomposition of width less than or equal
to k if the hypertree-width of H is less than or equal to k. If the
hypertree-width of H is more than k, H is rejected. The running
time of det-k-decomp is O(m2kn2) in the worst case and our al-
gorithm is faster than det-k-decomp.

The key step of our algorithm is checking whether a set of hyper-
edges is an obstacle to a hypergraph with low generalized hypertree-
width. We call such a local hypergraph structure a k-hyperconnected
set, where k is a positive integer. We show that, if a hypergraph con-
tains a k-hyperconnected set of size 2k, the generalized hypertree-
width of the hypergraph is at least k. If a given set of hyperedges
is not a k-hyperconnected set, our algorithm finds a set of hyper-
edges called a separator, which separates two different subsets of
the given set of hyperedges. This follows the approach used by
Kleinberg and Tardos [12] for designing an algorithm for construct-
ing a low-width tree decomposition of a graph. The tree decompo-
sition algorithm runs in O( f (k)mn) time, where f (k) is a function
that depends only on a positive integer k, and m, n are the num-
ber of edges and vertices of a graph, respectively. In both algo-
rithms, the running time is dominated by the time required to check
whether a (hyper)graph contains an obstacle to a (hyper)graph hav-
ing low (hyper)tree-width. In the tree decomposition algorithm,
this can be done efficiently using an algorithm for network flow in
O( f (k)m) time. On the contrary, in our hypertree decomposition
algorithm, it requires more time, O(mk+1n), because every possi-
bility is checked.

Adler et al. [1] proposed another obstacle, a k-hyperlinked set,
to a hypergraph with low generalized hypertree-width. A similar
greedy algorithm to ours can be constructed with the concept of a k-
hyperlinked set. We show the difference between a k-hyperconnected
set and a k-hyperlinked set with examples. Although several al-
gorithms for constructing a hypertree decomposition have already
been proposed, as we mention in the next section, to our knowledge
there is no other algorithm with the same approach to hypertree de-
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composition, which is trying to find an obstacle to a hypergraph
having low generalized hypertree-width.

This paper is organized as follows: In Section 2, we discuss related
work. In Section 3, we give definitions of hypergraphs and hyper-
tree decompositions. In Section 4, we introduce the concept of a
k-hyperconnected set as an obstacle to a low-width (generalized)
hypertree decomposition and show the relation between the size of
a k-hyperconnected set and the hypertree-width. We describe the
algorithm check_k-hyperconnected which, given a hypergraph,
a set of hyperedges and a positive integer k, checks whether the
given set of hyperedges is a k-hyperconnected set. We also explain
the difference between a k-hyperconnected set and a k-hyperlinked
set with examples. Then, in Section 5, we introduce the algorithm
low-width-ghd which, given a hypergraph and a positive inte-
ger k, constructs a (generalized) hypertree decomposition or reports
that the hypergraph does not have the hypertree-width less than k.
We also evaluate the running time of low-width-ghd. Finally, we
conclude the paper in Section 6.

2. RELATED WORK
Gottlob et al. [5] proposed the alternating algorithm k-decomp,
which, given a hypergraph H a positive integer k, constructs a hy-
pertree decomposition of minimal width less than or equal to k, if
the hypertree-width of H is less than or equal to k. If the hypertree-
width of H is more than k, k-decomp rejects H. They also pre-
sented the algorithm opt-k-decomp [6], which is another algo-
rithm for computing a hypertree decomposition of minimal width
less than or equal to k, given a hypergraph and a positive integer k.
The running time of opt-k-decomp is O(m2kn2), where m is the
number of hyperedges and n is the number of vertices. If k is a con-
stant, it is polynomial. Gottlob et al. [9] developed the algorithm
det-k-decomp which, given a hypergraph H and a positive integer
k as a constant, computes a hypertree decomposition of width less
than or equal to k if the hypertree-width of H is less than or equal
to k. If the hypertree-width of H is more than k, H is rejected.
The running time of det-k-decomp is O(m2kn2) in the worst case,
where m and n are the number of hyperedges and vertices in the
hypergraph, respectively. Gottlob et al. [8] showed that deciding
whether a hypergraph has generalized hypertree-width at most 3 is
NP-complete.

Scarcello et al. [14] proposed modified versions of opt-k-decomp
for computing a hypertree decomposition with cost functions. Der-
maku et al. [2] used heuristics for generating tree decompositions
and partitioning hypergraphs to produce hypertree decompositions.
Harvey et al. [11] introduced the reduced normal form of a hyper-
tree decomposition and improved opt-k-decomp.

Adler et al. [1] explored the relationship between hypertree width
and various hypergraph invariants. Many structural decomposition
methods of a hypergraph are proposed besides generalized hyper-
tree decomposition. Grohe et al. [10] introduced the concept of
fractional hypertree decomposition which is a generalization of
generalized hypertree decomposition. Gottlob et al. [4] and Mik-
lós [13] compared them.

3. PRELIMINARIES
We describe definitions of hypergraphs and (generalized) hypertree
decompositions and introduce two properties of a (generalized) hy-
pertree decomposition.

3.1 Hypergraph
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Figure 1: Connected hypergraph H

A hypergraph is a pair H = (V (H),E(H)), where V (H) is a finite
set of vertices and E(H) is a set of hyperedges. A hyperedge is
a subset of V (H), which is not an empty set. We merely call a
hyperedge an edge. For a set of edges E ⊆ E(H), ver(E) stands for
⋃

e∈E e. We assume ver(E(H)) = V (H).

Let a and b be two vertices in V (H). a is adjacent to b if an
edge e ∈ E(H) exists such that {a,b} ⊆ e. A path(a,b) is a se-
quence v0(= a),v1,v2, . . . ,vh(= b) of vertices such that vi is ad-
jacent to vi+1 (0 ≤ i ≤ h− 1). A hypergraph H is connected if,
for any pair of two vertices a,b ∈ V (H), a path(a,b) exists. We
deal with only connected hypergraphs in this paper. Let W be a
subset of V (H). a is [W]-adjacent to b if an edge e ∈ E(H) ex-
ists such that {a,b} ⊆ e\W . A [W]-path(a,b) is a sequence v0(=
a),v1,v2, . . . ,vh(= b) of vertices such that vi is [W ]-adjacent to vi+1
(0 ≤ i ≤ h− 1). A set of vertices C ⊆ V (H) is [W]-connected if,
for any pair of two vertices a,b ∈ C, there is a [W ]-path(a, b).
A [W]-component is a maximal [W ]-connected non-empty set of
vertices. Let F be a subset of E(H). A [F]-fragment is a maxi-
mal set of edges that share the vertices with a [ver(F)]-component,
that is, {e ∈ E(H)|e∩ [ver(F)]-component � /0}. For a set of ver-
tices C, let a set of edges cov(C) be {e ∈ E(H)|e∩C � /0}, and a
family of subsets of cov(C), cov∗(C) be {F ⊆ cov(C)|∀e ∈ F : e �
ver(cov(C)\e)}.

EXAMPLE 1. Consider connected hypergraph H in Figure 1.
The set of vertices V (H) is {v1,v2, . . . ,v11} and the set of edges
E(H) is {e1,e2, . . . ,e8}where e3 = {v3,v5,v6,v7} and e6 = {v1,v6,v8}.
For a set of vertices W = {v3,v5,v6,v7,v8}, the [W ]-components
are {v1,v2,v4} and {v9,v10,v11}. For a set of vertices C = {v9,v10,v11},
a set of edges cov(C) is {e4,e5,e7,e8} and a family of subsets of
cov(C), cov∗(C) is {{e5,e7},{e5,e8}}. For a set of edges F =
{e3,e6}, the [F]-fragments are {e1}, {e2} and {e4,e5,e7,e8}.

3.2 Hypertree Decomposition
A hypertree decomposition of a hypergraph H is a triple 〈T,χ,λ 〉.
T = (V (T ),E(T )) is a rooted tree, where V (T ) is a finite set of
nodes, and E(T ) is a set of edges of T . χ : V (T )→ 2V (H) and
λ : V (T )→ 2E(H) are functions associating a set of vertices χ(t)⊆
V (H) and edges λ (t)⊆ E(H) to each node t respectively. We call
v ∈ V (H) a vertex and t ∈ V (T ) a node. For any t ∈ V (T ), T t de-
notes the maximal subtree of T rooted at t. For a subtree T ′ of T , we
use χ(T ′) and λ (T ′) to denote

⋃

n∈V (T ′) χ(n) and
⋃

n∈V (T ′) λ (n),
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respectively.

DEFINITION 1. (Hypertree Decomposition) [5] A hypertree de-
composition of a hypergraph H is a triple 〈T,χ,λ 〉, which satisfies
all the following conditions:

1. for each edge e ∈ E(H) , t ∈V (T ) exists such that e⊆ χ(t);

2. for each vertex v∈V (H), the set {t ∈V (T )|v∈ χ(t)} induces
a connected subtree of T ;

3. for each t ∈V (T ), χ(t)⊆ ver(λ (t));

4. for each t ∈V (T ), ver(λ (t))∩χ(T t)⊆ χ(t).

The width of a hypertree decomposition 〈T,χ,λ 〉 is the largest size
of λ (t) over every node t of T . The hypertree-width of a hypergraph
H is the minimum width over all hypertree decompositions of H.
The hypertree-width of an acyclic hypergraph is 1.

A generalized hypertree decomposition of a hypergraph H is a triple
〈T,χ,λ 〉, which satisfies conditions 1,2, and 3 of Definition 1. The
width of a generalized hypertree decomposition 〈T,χ,λ 〉 is the largest
size of λ (t) over every node t of T . The generalized hypertree-
width of a hypergraph H is the minimum width over all generalized
hypertree decompositions of H. The generalized hypertree-width
of a hypergraph is less than or equal to the hypertree-width. [1].

DEFINITION 2. (Normal Form) [8] A generalized hypertree de-
composition 〈T,χ,λ 〉 of a hypergraph H is in normal form, if, for
each vertex t ∈V (T ) and each child s of t, all the following condi-
tions hold:

1. there is exactly one [χ(t)]-component Ct such that χ(T s) =
Ct ∪ (χ(s)∩χ(t));

2. χ(s)∩Ct � /0, where Ct is the [χ(t)]-component satisfying
condition 1;

3. ver(λ (s))∩χ(t) ⊆ χ(s).

The hypertree decomposition constructed with our algorithm is in
normal form, as shown later in Proposition 7.

EXAMPLE 2. Figure 2 shows a normal form (generalized) hy-
pertree decomposition of hypergraph H in Figure 1. The width of
this (generalized) hypertree decomposition is 2.

A hypergraph is separated by deleting vertices assigned to a node
or common vertices assigned to two connected nodes in the (gen-
eralized) hypertree decomposition.

PROPOSITION 1. Suppose that there are subtrees T1,T2, . . . ,Td
when a node p is deleted from tree T of a (generalized) hypertree
decomposition 〈T,χ,λ 〉 of a hypergraph H. Then for any pair i, j ∈
{1,2, . . . ,d}(i � j),(χ(Ti) \ χ(p))∩ (χ(Tj) \ χ(p)) = /0 and {e ∈
E(H)|{u,v} ⊆ e,u ∈ χ(Ti) \ χ(p),v ∈ χ(Tj) \ χ(p)} = /0 (Figure
3).

{e3, e4}{v3,v5,v6,v7,v8,v9}

{e5}{v5,v9,v10} {e7, e8}{v6,v9,v11}

{e3, e6}{v1,v3,v5,v6,v7,v8}

{e1}{v1,v2,v3} {e2}{v1,v4,v5}

Figure 2: Normal form hypertree decomposition of H

χ(p)

u
v

No edge

χ(T1)χ(T2)

χ(T3) χ(T4)

Figure 3: Subtrees T1,T2, . . . ,Td by deleting node p from a (gen-
eralized) hypertree decomposition. There is no edge which con-
tains vertices u and v when χ(p) is deleted from hypergraph.

PROOF. Omitted.

PROPOSITION 2. Suppose that there are subtrees Tp and Tt when
an edge (p,t) ∈ E(T )(p,t ∈ V (T )) is deleted from tree T of a
(generalized) hypertree decomposition 〈T,χ,λ 〉 of a hypergraph
H. Then by deleting χ(p)∩ χ(t) from H, H is disconnected into
two components, χ(Tp)\ (χ(p)∩ χ(t)) and χ(Tt)\ (χ(p)∩ χ(t)).
That is, (χ(Tp) \ (χ(p)∩ χ(t)))∩ (χ(Tt) \ (χ(p)∩ χ(t))) = /0 and
{e∈E(H)|{u,v} ⊆ e,u∈ χ(Tp)\(χ(p)∩χ(t)),v∈ χ(Tt)\(χ(p)∩
χ(t))}= /0 (Figure 4).

PROOF. Omitted.

4. OBSTACLES TO LOW GENERALIZED
HYPERTREE-WIDTH

The key step in designing our algorithm is trying to find an obstacle
to a hypergraph having low generalized hypertree-width. We call
such an obstacle a k-hyperconnected set, which is a set of edges
of the hypergraph. The notion of a k-hyperconnected set is an
adaptation of k-connectedness for a graph to our setting [3]. We
show the relation between the size of a k-hyperconnected set in a
hypergraph and the hypertree-width of the hypergraph. We pro-
pose the algorithm check_k-hyperconnected to decide whether
a subset of edges of a hypergraph is a k-hyperconnected set, given
a hypergraph and a positive integer k. The running time of k-
hyperconnected set is O(mk+1n). If k is a constant, it is polynomial.
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u
v

No edge

χ(p) χ(t)

χ(p) I χ(t)

χ(Tp)
χ(Tt)

Figure 4: Subtrees Tp and Tt by deleting the edge between
node p and node t from a (generalized) hypertree decomposi-
tion. There is no edge which contains vertices u and v when
χ(p)∩χ(t) is deleted from hypergraph.

4.1 k-hyperconnected set
We give the definition of a k-hyperconnected set and prove a propo-
sition for its algorithmic use.

DEFINITION 3. (separator) Let Y and Z be a pair of subsets of
E(H) of a hypergraph H such that |Y | = |Z| and Y � Z. A subset
of E(H), S is a separator for a pair of Y and Z if it satisfies all the
following conditions:

1. |S|< |Y |= |Z|;
2. there is no [ver(S)]-path from ver(Y ) to ver(Z).

We say that S separates Y and Z, or that Y and Z are separable with
S.

DEFINITION 4. (k-hyperconnected set) Let X be a subset of
E(H) of a hypergraph H and k be a positive integer. Let Y and
Z be an arbitrary pair of two subsets of X such that |Y |= |Z|. X is
a k-hyperconnected set, if it satisfies all the following conditions:

1. |X | ≥ k;

2. X does not contain separable subsets Y and Z, where |Y | =
|Z| ≤ k. In other words, there is no separator S ⊆ E(H),
which separates Y and Z such that |S|< |Y |= |Z| ≤ k.

We call an edge, which is included in X, an X-edge.

Intuitively, a k-hyperconnected set is highly self-entwined. It does
not have any small parts that can easily split off from each other.
A k-hyperconnected set cannot be separated by deleting less than k
edges.

PROPOSITION 3. If a hypergraph H contains a k-hyperconnected
set with a size of at least 2k, H has the generalized hypertree width
of at least k.

PROOF. Suppose that a hypergraph H contains a k-hyperconnected
set X with a size of at least 2k, and it has a generalized hypertree
decomposition 〈T,χ,λ 〉 of a width less than k. There is a node t of
T that satisfies the following conditions:

1. Let Xt be a subset of X-edges {x ∈ X |x ⊆ χ(T t)}. |Xt | is

more than or equal to � |X |
2
�;

2. t is as far from the root of T as possible.

Clearly, χ(t) contains all vertices of at least one X-edge, and node
t is not a leaf of T because the set of edges X with a size of at
least 2k cannot be contained in a node of the generalized hypertree
decomposition of a width less than k. Now we divide X into three
distinct subsets, Xp = X \Xt , Xt = {x ∈ X |x⊆ χ(t)}, and Xc = Xt \
Xt . There is no [χ(t)]-path between any pair of vertices in Xp and
Xc from Proposition 1. The size of Xp and Xc is less than or equal to
k. Two subsets, Y and Z, of E(H), where |Xt |< |Y |= |Z| ≤ k, can
be made from Xp and Xc by adding edges in Xt . Then Xt separates
Y and Z. This means that X is not a k-hyperconnected set and
contradicts the assumption.

4.2 Comparing with k-hyperlinked set
Adler et al. [1] define the concept of a k-hyperlinked set for a set
of edges of a hypergraph. Hyperlinkedness of a hypergraph is the
largest integer k for which the hypergraph contains a k-hyperlinked
set. It is an adaptation of the linkedness of a graph. A k-hyperlinked
set also an obstacle to a hypergraph having low generalized hypertree-
width. We show that the size of a k-hyperlinked set is also associ-
ated with the generalized hypertree-width of the hypergraph, and
compare the two notions using examples. Adler et al. [1] prove
that the hyperlinkedness of a hypergraph is less than or equal to the
generalized hypertree-width of the hypergraph.

DEFINITION 5. (X-big) [1] Let H be a hypergraph and X be a
subset of E(H). A subset of vertices V (H), C is X-big, if it satisfies
the following condition:

|{e ∈ X |e∩C � /0}|> |X |
2

.

An X-big component is a maximal set of X-big vertices in which
each vertex is adjacent to another one.

DEFINITION 6. (k-hyperlinked set) [1] Let H be a hypergraph
and k be a positive integer. A subset of E(H), X is a k-hyperlinked
set, if the hypergraph (V (H)\ver(S),{e∩(V (H)\ver(S))|e∈E(H)})
has an X-big component for any set S ⊆ E(H) where |S| < k. We
call an edge, which is included in X, an X-edge as in Definition 4.

PROPOSITION 4. If a hypergraph H contains a k-hyperlinked
set with a size of at least 2k, H has a generalized hypertree width
of at least k.

PROOF. This proposition can be proven by the same idea of
Proposition 3.

We show the difference between a k-hyperlinked set and a k-hyperconnected
set with the following examples.

EXAMPLE 3. A hypergraph H and a subset X = X1 ∪ X2 of
E(H) are defined as in Figure 5. In this case X is a 1-hyperconnected
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Figure 5: Hypergraph for example 3. X = X1 ∪ X2 is a 1-
hyperconnected set and a 2-hyperlinked set.

set and a 2-hyperlinked set. Let two sets of edges, Y and Z, such
that |Y | = |Z| = 2 be subsets of X1 and X2, respectively. Since
there is no [ver(S)]-paths(y,z) for any pair of vertices, y ∈ Y and
z ∈ Z, X is a 1-hyperconnected set. On the other hand, in a hyper-
graph (V (H)\ e,{e∩ (V (H)\ e)|e ∈ E(H)}) constructed by delet-
ing any edge e ∈ E(H) from H, the number of remaining edges in
X is larger than |X |/2 = 9/2. But, in a hypergraph (V (H)\ (e1 ∪
e7),{e∩(V (H)\(e1∪e7))|e∈ E(H)}) constructed by deleting two
edges, e1 and e7, from H, the number of remaining edges in X is 2
and less than |X |/2 = 9/2. This means that X is a 2-hyperlinked
set.

EXAMPLE 4. A hypergraph H and a subset X of E(H) are de-
fined as in Figure 6. In this case X is a 3-hyperconnected set
and a 2-hyperlinked set. Any two subsets Y and Z each of size
3 of X cannot be separated by deleting any set of edges of size
2. This means that X is a 3-hyperconnected set at least. Since
there are no two different subsets each of size 4 of X, we cannot
choose separable subsets for a separator of size 3. Therefore X is
not a 4-hyperconnected set. On the other hand, in a hypergraph
(V (H)\ e,{e∩ (V(H)\ e)|e ∈ E(H)}) constructed by deleting any
edge e ∈ E(H) from H, the number of remaining edges in X is
larger than |X |/2 = 2. But, in a hypergraph (V (H)\(e2∪e3),{e∩
(V (H) \ (e2 ∪ e3))|e ∈ E(H)}) constructed by deleting two edges,
e2 and e3 from H, the number of remaining edges in X is |X |/2 = 2.
This means that X is a 2-hyperlinked set.

4.3 Finding Separator
We describe the algorithm check_k-hyperconnected which, given
a hypergraph H, a subset X of edges of H and a positive integer k,
determines whether X is a k-hyperconnected set. If X is not a k-
hyperconnected set, check_k-hyperconnected returns a set of
edges as a separator for a pair of two separable subsets in X . We
can develop a similar algorithm using the notion of a k-hyperlinked
set.

A simple way to do this is to check whether there is a separator
for every pair of subsets of each size less than or equal to k of X .
However, it is not easy to find such a separator. Therefore, we
check whether a pair of separable subsets, Y and Z, of X exists for
every subset with a size of less than k of E(H) conversely. If the
size of X is more than or equal to 2k−1, it is necessary to check it
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Figure 6: Hypergraph for example 4. X is a 3-hyperconnected
set and a 2-hyperlinked set.

X1

Y

Z

X2

S
X1

Y

Z

X2

S

Figure 7: X-edges in X \ (Y ∪Z∪S) are added to S to make the
size of S be k−1. Edges in S∩X are added to Y and Z to make
their size be k.

only for every subset of size k− 1 of E(H) because if a separator
with a size of less than k−1 is found, we can make it be k−1 by
adding edges in X \ (Y ∪Z∪S) (Figure 7). That is, every separator
is contained in subsets of size k−1 of E(H). In the case where the
size of a separator S is k−1, each size of separable subsets Y and Z
must be more than k−1 to satisfy the first condition in Definition
3. When candidate sets Y and Z for separable subsets are found for
a subset S of size k− 1 of E(H), but each size of Y and Z is less
than or equal to k−1, we may increase the size by adding the same
edges in S∩X to Y and Z (Figure 7). If we can make the size be
k, the set of edges, Y , Z, and S become separable subsets and the
separator.

check_k-hyperconnected repeats the following steps for every
subset S of size k− 1 of E(H), as shown in Algorithm 1, un-
less it finds a separator of size k− 1 or that a given X is a k-
hyperconnected set, that is, X does not contain separable subsets Y
and Z of each size less than or equal to k. We do not check whether
the size of X is more than or equal to 2k−1 since the size of X is al-
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ways more than 2k in the algorithm using check_k-hyperconnected,
which constructs a low-width (generalized) hypertree decomposi-
tion. In Algorithm 1, we use variables Y , Z, and S to denote candi-
dates of two separable subsets of X and a separator for the subsets,
respectively.

1. Choose a subset S of size k−1 from E(H).

2. Let L be {e ∈ X |e ⊆ ver(S)}. If |L| ≥ k, return the subset S
as a separator and stop.

Any edge e in L can belong to both Y and Z because e\ver(S)
is an empty set, and there is no [ver(S)]-path from e to other
vertices. Therefore, if |L| ≥ k, we can construct Y , Z, and S,
which satisfy the conditions of Definition 3, by choosing k
edges from L as Y , k edges from X as Z, and the subset S as
a separator.

3. Divide the set of the [S]-fragments into two subsets, Y and Z.

4. If there are more than or equal to k X-edges in each of Y ∪L
and Z∪L, return the subset S as a separator and stop.
If each Y ∪L and Z∪L includes more than or equal to k X-
edges, we can make separable subsets Y ′ and Z′, which sat-
isfy the conditions of Definition 3, by choosing k edges from
L as Y ′, and k edges from X as Z′. In this case, the subset S
separates Y ′ and Z′.

PROPOSITION 5. The running time of check_k-hyperconnected
is O(

( m
k−1

)

m2n).

PROOF. Let k be a positive integer as a constant, and m,n be the
number of edges |E(H)| of a hypergraph H and the number of ver-
tices |V (H)|, respectively. The number of subsets of E(H), where
each of their sizes is k−1, is

( m
k−1

)

. For each subset S of size k−1
of E(H), we enumerate the number of edges {e ∈ X |e ⊆ ver(S)}.
This takes O(mn) time. Finding the set of [S]-fragments and di-
viding it into two subsets take O(m2n) time. Thus, the whole run-
ning time of check_k-hyperconnected is O(

( m
k−1

)

m2n). Since
O(

( m
k−1

)

) is O(mk−1), a less accurate but more readable upper bound
of the running time is O(mk+1n).

5. CONSTRUCTING A LOW-WIDTH HYPER-
TREE DECOMPOSITION

We propose an algorithm for constructing a (generalized) hyper-
tree decomposition of H of width less than or equal to 3k− 1 or
detemines that H does not have a generalized hypertree-width less
than k, where k is a positive integer as a constant. The following
procedure repeatedly decomposes a hypergraph by deleting a set
of edges and constructs a (generalized) hypertree decomposition
〈T,χ,λ 〉. The proposed algorithm is described formally in Algo-
rithm 2 and 3. Figure 8 and 9 show decomposed components of a
hypergraph, and Figure 10 shows the constructed hypertree decom-
position corresponding to Figure 8 and 9.

1. Arbitrarily select a set of edges less than or equal to 2k− 1
from E(H) and make the root r of T .

For the root r of T , the selected set of edges is assigned to
λ (r), and all vertices included in the edges are assigned to
χ(r). In Figure 10, a set of edges E and a set of vertices
χ(E) are assigned to λ (r) and χ(r), respectively.

Algorithm 1 check_k-hyperconnected
Input: a hypergraph H = (V (H),E(H)), a subset X of E(H), and
a positive integer k
Output: a separator S ⊆ E(H) for a pair of subsets of X , or a
message “X is a k-hyperconnected set”.

1: for each subset S of size k−1 of E(H) do
2: let L be {e ∈ X |e⊆ ver(S)}
3: if |L| ≥ k then
4: return S
5: end if
6: find all [S]-fragments F1,F2, . . . ,Fd in H
7: arrange F1,F2, . . . ,Fd in descending order of the number of

X-edges contained in each [S]-fragment
8: Y ← F1
9: Z← F2

10: for i = 3 to d do
11: if |{e ∈ X |e ∈ Y}| ≤ |{e ∈ X |e ∈ Z}| then
12: Y ← Y ∪Fi
13: else
14: Z← Z∪Fi
15: end if
16: end for
17: if (|L|+ |{e∈ X |e∈Y}| ≥ k) and (|L|+ |{e∈ X |e∈ Z}| ≥ k)

then
18: return S
19: end if
20: end for
21: return “X is a k-hyperconnected set”

2. For each [χ(r)]-component Cr, make a child node t of the
root r.

By Proposition 1 and 2, we can deal with each [χ(r)]-component
Cr independently. Figure 8 shows that there are two [χ(r)]-
components Cr1 and Cr2 . To decompose a [χ(r)]-component
Cr further, we choose an arbitrary edge et from cov(Cr).
For child node t corresponding to Cr , we add the edge et
and et to λ (t) and χ(t) respectively. To ensure that con-
dition 2 of Definition 1 is satisfied when some vertices in
Br = ver(cov(Cr))∩ χ(r) are included in a child node of t
in the later process, we add vertices Br to χ(t). Figure 8
shows that there are four vertices in Br1 . We also add a set of
edges EAr ∈ cov∗(Ar) where Ar = Br \et , and a set of vertices
ver(EAr ) to λ (t) and χ(t), respectively, to satisfy condition 3
of Definition 1. Figure 8 shows that there are three vertices in
Ar1 and two edges in EAr1

. In Figure 10, Br1 is not contained
in χ(t) since it is included in et ∪ ver(EAr1

). Since ver(λ (t))
is equal to χ(t), condition 4 of Definition 1 is also satisfied.

3. For each [χ(r)∪ χ(t)]-component Ct formed from a [χ(r)]-
component Cr , make a child node s of t in the same way to
step 2 above.

Figure 9 shows that there are three [χ(r)∪ χ(t)]-component
Ct1 ,Ct2 ,Ct3 formed from an [χ(r)]-component Cr1 .

The tree 〈T,χ,λ 〉 constructed from the above procedure satisfies
all the conditions of Definition 1 and is a (generalized) hypertree
decomposition.

To determine whether the hypertree decomposition of the required
size can be constructed, for each child node of r, we check the size
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r

Cr1

Cr2

Ar1

etEAr1

Br1

Figure 8: [χ(r)]-components Cr1 and Cr2. Br1 is vertices in χ(r)
that are also contained in ver(Cr1). Ar1 is vertices in Br1 that is
not included in et . EAr1

is element of cov∗(Ar1).

of λ (t) = {et}∪EAr after the above step 2. Here, there is clearly
a set of edges EAr ∈ cov∗(Ar) less than or equal to 2k−1 because
Ar ⊆ ver(λ (r)) and |λ (r)| ≤ 2k−1. If the size of λ (t) is less than or
equal to 2k−1, node t can be treated the same as root r, and we go
through the procedure. If the size of λ (t) is 2k, we check whether
λ (t) is a k-hyperconnected set with check-k_hyperconnected
described in Section 4. There are the following two cases.

• λ (t) = {et}∪EAr is a k-hyperconnected set

The hypergraph does not have a generalized hypertree-width
less than k by Proposition 3. hd-decomp returns the message
and halts.

• λ (t) = {et}∪EAr is not a k-hyperconnected set

There is a separator S⊆ E(H) of size k−1 and two separable
sets of edges Y,Z ⊆ λ (t) of size k each. Figure 11 shows this
situation in a [χ(r)]-component. To decompose the [χ(r)]-
component, we add S∩ cov(Cr) to λ (t) and ver(S∩ cov(Cr))
to χ(t). Since the size of S∩ cov(Cr) is less than the size of
S, the size of λ (t) = EAr ∪{et}∪ (S∩cov(Cr)) is less than or
equal to 3k−1, which is the width we want.

To continue to the same process further for each [χ(r)∪
χ(t)]-component Ct , the size of EAt ∈ cov∗(At) needs to be
less than or equal to 2k− 1 as the size of EAr . Since there
is no [χ(S)]-path between [χ(r)∪χ(t)]-components, a set of
vertices ver(cov(Ct )) has common vertices with either ver(Y ∪
S) or ver(Z ∪S) (Figure 11). At is a subset of ver(cov(Ct )).
Therefore cov∗(At) is included in a subset of either Y ∪S or
Z∪S. Since both size of Y ∪S and Z∪S is less than or equal
to 2k−1, the size of EAt ∈ cov∗(At) is also less than or equal
to 2k−1.

Algorithm 2 low-width-ghd
Input: a hypergraph H = (V (H),E(H)), a positive integer k
Output: a hypertree decomposition 〈T,χ,λ 〉 of H, which has a
width less than or equal to 3k−1, or a message “H does not have
generalized hypertree-width less than k”

1: arbitrarily select a set of edges E with the size less than or equal
to 2k−1 from E(H)

2: create root node r of tree T
3: λ (r)← E
4: χ(r)← ver(E)
5: for each [χ(r)]-component Cr do
6: create_node(r, cov(Cr), k, 〈T,χ,λ 〉)
7: end for
8: return 〈T,χ,λ 〉

Algorithm 3 create_node
Input: a hypergraph H, a node r, a set of edges cov(Cr), a positive
integer k and a tree 〈T,χ,λ 〉
Output: a tree 〈T,χ,λ 〉 or a message “H does not have general-
ized hypertree-width less than k”

1: Br← ver(cov(Cr))∩χ(r)
2: select an edge et from cov(Cr)
3: Ar← Br \et
4: find a set of edges EAr ∈ cov∗(Ar)
5: create a child node t of r in T
6: λ (t)←{et}∪EAr

7: χ(t)← et ∪ ver(EAr )
8: if |λ (t)|= 2k then
9: if check_k-hyperconnected (H,λ (t),k) = “λ (t) is a k-

hyperconnected set” then
10: return “H does not have generalized hypertree-width

less than k”
11: else
12: S← check_k-hyperconnected (H,λ (t),k)
13: λ (t)← λ (t)∪ (S∩ cov(Cr))
14: χ(t)← χ(t)∪ ver(S∩ cov(Cr))
15: end if
16: end if
17: for each [χ(r)∪χ(t)]-component Ct do
18: create_node(t, cov(Ct ), k, 〈T,χ,λ 〉)
19: end for
20: return 〈T,χ,λ 〉
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At1

At3
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Figure 9: Ct1 , Ct2 , and Ct3 are [χ(r)∪ χ(t)]-components formed
from Cr1 .

λ(r)=E
χ(r)=ver(E)

r

t
λ(t)={et} U EAr1

χ(t)=ver(et) U ver(EAr1)

λ(s1)={es1} U EAt1

χ(s1)=ver(es1) U ver(EAt1)
s1

Figure 10: Hypertree decomposition for Figure 8 and 9.

PROPOSITION 6. The running time of low-width-ghd is
O(mk+2n).

PROOF. Let k be a positive integer, m be the number of edges
in a hypergraph H, and n be the number of the vertices. The most
costly operation in low-width-ghd is check_k-hyperconnected
in create_node. Since one edge e∈E(H) is selected at most once
in create_node, create_node is called at most m times. From
Proposition 6, check_k-hyperconnected takes O(mk+1n). Thus,
the entire running time of low-width-ghd is O(mk+2n).

PROPOSITION 7. A hypertree decomposition constructed by
low-width-ghd is in normal form.

PROOF. low-width-ghd creates a child node s of t ∈ V (T )
for each [χ(t)]-component and assigns es ∪ ver(EAt ) to χ(s) in
create_node, where es is selected arbitrary from cov(Ct ) and At
is (ver(cov(Ct ))∩ χ(t)) \ es. Thus, conditions 1 and 2 of Defi-
nition 2 are clearly satisfied. Since χ(s) contains all vertices of

3k-1

Y ZS

Ct1 Ct2

Figure 11: [χ(r)∪ χ(t)]-component Ct1 and Ct2 have common
vertices with ver(Y ∪ S) and ver(Z ∪ S), respectively, where S
separates Y and Z.

λ (s) which consists of {es}, EAt and, if λ (t) of size 2k is not a
k-hyperconnected set, S∩ cov(Ct ) where S is a separator of λ (t),
condition 3 of Definition 2 is also satisfied.

6. CONCLUSIONS
We have presented a greedy algorithm which, given a hypergraph
H and a positive integer k as a constant, produces a hypertree de-
composition of a width less than or equal to 3k− 1, or reports
that H does not have a generalized hypertree-width of less than k.
The key step of this algorithm is trying to find a k-hyperconnected
set, which is an obstacle to a hypergraph having a low generalized
hypertree-width. The entire running time is O(mk+2n) where m is
the number of edges and n is the number of vertices in a hyper-
graph. If k is a constant, it is polynomial. This algorithm is faster
than det-k-decomp developed by Gottlob et al. in the worst case.
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