
A Greedy Algorithm for Constructing a Low-Width
Generalized Hypertree Decomposition

Kaoru Katayama
Tokyo Metropolitan University
6-6 Asahigaoka, Hino, Tokyo,

Japan 191-0065
kaoru@tmu.ac.jp

Tatsuro Okawara
Tokyo Metropolitan University
6-6 Asahigaoka, Hino, Tokyo,

Japan 191-0065
okawara-

tatsuro@sd.tmu.ac.jp

Yuka Ito
∗

Rakuten,Inc.
4-12-3 Higashishinagawa,

Shinagawa, Tokyo,
Japan 140-0002

yuka.a.ito@mail.rakuten.co.jp

ABSTRACT
We propose a greedy algorithm which, given a hypergraph H and a
positive integer k, produces a hypertree decomposition of width less
than or equal to 3k−1, or determines that H does not have a gen-
eralized hypertree-width less than k. The running time of this algo-
rithm is O(mk+2n), where m is the number of hyperedges and n is
the number of vertices. If k is a constant, it is polynomial. The con-
cepts of (generalized) hypertree decomposition and (generalized)
hypertree-width were introduced by Gottlob et al. Many important
NP-complete problems in database theory or artificial intelligence
are polynomially solvable for classes of instances associated with
hypergraphs of bounded hypertree-width. Gottlob et al. also de-
veloped a polynomial time algorithm det-k-decomp which, given
a hypergraph H and a constant k, computes a hypertree decom-
position of width less than or equal to k if the hypertree-width of
H is less than or equal to k. The running time of det-k-decomp
is O(m2kn2) in the worst case, where m and n are the number of
hyperedges and the number of vertices, respectively. The proposed
algorithm is faster than this. The key step of our algorithm is check-
ing whether a set of hyperedges is an obstacle to a hypergraph hav-
ing low generalized hypertree-width. We call such a local hyper-
graph structure a k-hyperconnected set. If a hypergraph contains
a k-hyperconnected set with a size of at least 2k, it has hypertree-
width of at least k. Adler et al. propose another obstacle called a
k-hyperlinked set. We discuss the difference between the two con-
cepts with examples.

1. INTRODUCTION
The concepts of hypertree decomposition and hypertree-width were
introduced by Gottlob et al. [5] Many important NP-complete prob-
lems in database theory and artificial intelligence such as the con-
junctive query containment problem are polynomially solvable for
classes of instances associated with hypergraphs of bounded hypertree-
width [5]. Gottlob et al. [7] also introduced the concept of general-
ized hypertree decomposition and generalized hypertree-width.
∗A part of this work was completed while the author was a student
at Tokyo Metropolitan University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2010, March 22–25, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-947-3/10/0003 ...$10.00

We propose a greedy algorithm which, given a hypergraph H and a
positive integer k, produces a hypertree decomposition of width less
than or equal to 3k−1, or determines that H does not have general-
ized hypertree-width less than k. Since a hypertree decomposition
is also a generalized hypertree decomposition by definition, our al-
gorithm produces a generalized hypertree decomposition. The run-
ning time of our algorithm is O(mk+2n), where m is the number
of hyperedges and n is the number of vertices. If k is a constant,
the running time of our algorithm is polynomial. Gottlob et al. [9]
also develped a polynomial time algorithm called det-k-decomp
which, given a hypergraph H and a positive integer k as a constant,
computes a hypertree decomposition of width less than or equal
to k if the hypertree-width of H is less than or equal to k. If the
hypertree-width of H is more than k, H is rejected. The running
time of det-k-decomp is O(m2kn2) in the worst case and our al-
gorithm is faster than det-k-decomp.

The key step of our algorithm is checking whether a set of hyper-
edges is an obstacle to a hypergraph with low generalized hypertree-
width. We call such a local hypergraph structure a k-hyperconnected
set, where k is a positive integer. We show that, if a hypergraph con-
tains a k-hyperconnected set of size 2k, the generalized hypertree-
width of the hypergraph is at least k. If a given set of hyperedges
is not a k-hyperconnected set, our algorithm finds a set of hyper-
edges called a separator, which separates two different subsets of
the given set of hyperedges. This follows the approach used by
Kleinberg and Tardos [12] for designing an algorithm for construct-
ing a low-width tree decomposition of a graph. The tree decompo-
sition algorithm runs in O(f (k)mn) time, where f (k) is a function
that depends only on a positive integer k, and m, n are the num-
ber of edges and vertices of a graph, respectively. In both algo-
rithms, the running time is dominated by the time required to check
whether a (hyper)graph contains an obstacle to a (hyper)graph hav-
ing low (hyper)tree-width. In the tree decomposition algorithm,
this can be done efficiently using an algorithm for network flow in
O(f (k)m) time. On the contrary, in our hypertree decomposition
algorithm, it requires more time, O(mk+1n), because every possi-
bility is checked.

Adler et al. [1] proposed another obstacle, a k-hyperlinked set,
to a hypergraph with low generalized hypertree-width. A similar
greedy algorithm to ours can be constructed with the concept of a k-
hyperlinked set. We show the difference between a k-hyperconnected
set and a k-hyperlinked set with examples. Although several al-
gorithms for constructing a hypertree decomposition have already
been proposed, as we mention in the next section, to our knowledge
there is no other algorithm with the same approach to hypertree de-

174

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357557298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

composition, which is trying to find an obstacle to a hypergraph
having low generalized hypertree-width.

This paper is organized as follows: In Section 2, we discuss related
work. In Section 3, we give definitions of hypergraphs and hyper-
tree decompositions. In Section 4, we introduce the concept of a
k-hyperconnected set as an obstacle to a low-width (generalized)
hypertree decomposition and show the relation between the size of
a k-hyperconnected set and the hypertree-width. We describe the
algorithm check_k-hyperconnected which, given a hypergraph,
a set of hyperedges and a positive integer k, checks whether the
given set of hyperedges is a k-hyperconnected set. We also explain
the difference between a k-hyperconnected set and a k-hyperlinked
set with examples. Then, in Section 5, we introduce the algorithm
low-width-ghd which, given a hypergraph and a positive inte-
ger k, constructs a (generalized) hypertree decomposition or reports
that the hypergraph does not have the hypertree-width less than k.
We also evaluate the running time of low-width-ghd. Finally, we
conclude the paper in Section 6.

2. RELATED WORK
Gottlob et al. [5] proposed the alternating algorithm k-decomp,
which, given a hypergraph H a positive integer k, constructs a hy-
pertree decomposition of minimal width less than or equal to k, if
the hypertree-width of H is less than or equal to k. If the hypertree-
width of H is more than k, k-decomp rejects H. They also pre-
sented the algorithm opt-k-decomp [6], which is another algo-
rithm for computing a hypertree decomposition of minimal width
less than or equal to k, given a hypergraph and a positive integer k.
The running time of opt-k-decomp is O(m2kn2), where m is the
number of hyperedges and n is the number of vertices. If k is a con-
stant, it is polynomial. Gottlob et al. [9] developed the algorithm
det-k-decomp which, given a hypergraph H and a positive integer
k as a constant, computes a hypertree decomposition of width less
than or equal to k if the hypertree-width of H is less than or equal
to k. If the hypertree-width of H is more than k, H is rejected.
The running time of det-k-decomp is O(m2kn2) in the worst case,
where m and n are the number of hyperedges and vertices in the
hypergraph, respectively. Gottlob et al. [8] showed that deciding
whether a hypergraph has generalized hypertree-width at most 3 is
NP-complete.

Scarcello et al. [14] proposed modified versions of opt-k-decomp
for computing a hypertree decomposition with cost functions. Der-
maku et al. [2] used heuristics for generating tree decompositions
and partitioning hypergraphs to produce hypertree decompositions.
Harvey et al. [11] introduced the reduced normal form of a hyper-
tree decomposition and improved opt-k-decomp.

Adler et al. [1] explored the relationship between hypertree width
and various hypergraph invariants. Many structural decomposition
methods of a hypergraph are proposed besides generalized hyper-
tree decomposition. Grohe et al. [10] introduced the concept of
fractional hypertree decomposition which is a generalization of
generalized hypertree decomposition. Gottlob et al. [4] and Mik-
lós [13] compared them.

3. PRELIMINARIES
We describe definitions of hypergraphs and (generalized) hypertree
decompositions and introduce two properties of a (generalized) hy-
pertree decomposition.

3.1 Hypergraph

 v2

v4

v5

 v3

 v1

 v6

 v7

 v8

v10

 v11

e1

e6e2

e5

e4

e3

e7

e8

v9

Figure 1: Connected hypergraph H

A hypergraph is a pair H = (V (H),E(H)), where V (H) is a finite
set of vertices and E(H) is a set of hyperedges. A hyperedge is
a subset of V (H), which is not an empty set. We merely call a
hyperedge an edge. For a set of edges E ⊆ E(H), ver(E) stands for
⋃

e∈E e. We assume ver(E(H)) = V (H).

Let a and b be two vertices in V (H). a is adjacent to b if an
edge e ∈ E(H) exists such that {a,b} ⊆ e. A path(a,b) is a se-
quence v0(= a),v1,v2, . . . ,vh(= b) of vertices such that vi is ad-
jacent to vi+1 (0 ≤ i ≤ h− 1). A hypergraph H is connected if,
for any pair of two vertices a,b ∈ V (H), a path(a,b) exists. We
deal with only connected hypergraphs in this paper. Let W be a
subset of V (H). a is [W]-adjacent to b if an edge e ∈ E(H) ex-
ists such that {a,b} ⊆ e\W . A [W]-path(a,b) is a sequence v0(=
a),v1,v2, . . . ,vh(= b) of vertices such that vi is [W]-adjacent to vi+1
(0 ≤ i ≤ h− 1). A set of vertices C ⊆ V (H) is [W]-connected if,
for any pair of two vertices a,b ∈ C, there is a [W]-path(a, b).
A [W]-component is a maximal [W]-connected non-empty set of
vertices. Let F be a subset of E(H). A [F]-fragment is a maxi-
mal set of edges that share the vertices with a [ver(F)]-component,
that is, {e ∈ E(H)|e∩ [ver(F)]-component � /0}. For a set of ver-
tices C, let a set of edges cov(C) be {e ∈ E(H)|e∩C � /0}, and a
family of subsets of cov(C), cov∗(C) be {F ⊆ cov(C)|∀e ∈ F : e �
ver(cov(C)\e)}.

EXAMPLE 1. Consider connected hypergraph H in Figure 1.
The set of vertices V (H) is {v1,v2, . . . ,v11} and the set of edges
E(H) is {e1,e2, . . . ,e8}where e3 = {v3,v5,v6,v7} and e6 = {v1,v6,v8}.
For a set of vertices W = {v3,v5,v6,v7,v8}, the [W]-components
are {v1,v2,v4} and {v9,v10,v11}. For a set of vertices C = {v9,v10,v11},
a set of edges cov(C) is {e4,e5,e7,e8} and a family of subsets of
cov(C), cov∗(C) is {{e5,e7},{e5,e8}}. For a set of edges F =
{e3,e6}, the [F]-fragments are {e1}, {e2} and {e4,e5,e7,e8}.

3.2 Hypertree Decomposition
A hypertree decomposition of a hypergraph H is a triple 〈T,χ,λ 〉.
T = (V (T),E(T)) is a rooted tree, where V (T) is a finite set of
nodes, and E(T) is a set of edges of T . χ : V (T)→ 2V (H) and
λ : V (T)→ 2E(H) are functions associating a set of vertices χ(t)⊆
V (H) and edges λ (t)⊆ E(H) to each node t respectively. We call
v ∈ V (H) a vertex and t ∈ V (T) a node. For any t ∈ V (T), T t de-
notes the maximal subtree of T rooted at t. For a subtree T ′ of T , we
use χ(T ′) and λ (T ′) to denote

⋃

n∈V (T ′) χ(n) and
⋃

n∈V (T ′) λ (n),

175

respectively.

DEFINITION 1. (Hypertree Decomposition) [5] A hypertree de-
composition of a hypergraph H is a triple 〈T,χ,λ 〉, which satisfies
all the following conditions:

1. for each edge e ∈ E(H) , t ∈V (T) exists such that e⊆ χ(t);

2. for each vertex v∈V (H), the set {t ∈V (T)|v∈ χ(t)} induces
a connected subtree of T ;

3. for each t ∈V (T), χ(t)⊆ ver(λ (t));

4. for each t ∈V (T), ver(λ (t))∩χ(T t)⊆ χ(t).

The width of a hypertree decomposition 〈T,χ,λ 〉 is the largest size
of λ (t) over every node t of T . The hypertree-width of a hypergraph
H is the minimum width over all hypertree decompositions of H.
The hypertree-width of an acyclic hypergraph is 1.

A generalized hypertree decomposition of a hypergraph H is a triple
〈T,χ,λ 〉, which satisfies conditions 1,2, and 3 of Definition 1. The
width of a generalized hypertree decomposition 〈T,χ,λ 〉 is the largest
size of λ (t) over every node t of T . The generalized hypertree-
width of a hypergraph H is the minimum width over all generalized
hypertree decompositions of H. The generalized hypertree-width
of a hypergraph is less than or equal to the hypertree-width. [1].

DEFINITION 2. (Normal Form) [8] A generalized hypertree de-
composition 〈T,χ,λ 〉 of a hypergraph H is in normal form, if, for
each vertex t ∈V (T) and each child s of t, all the following condi-
tions hold:

1. there is exactly one [χ(t)]-component Ct such that χ(T s) =
Ct ∪ (χ(s)∩χ(t));

2. χ(s)∩Ct � /0, where Ct is the [χ(t)]-component satisfying
condition 1;

3. ver(λ (s))∩χ(t) ⊆ χ(s).

The hypertree decomposition constructed with our algorithm is in
normal form, as shown later in Proposition 7.

EXAMPLE 2. Figure 2 shows a normal form (generalized) hy-
pertree decomposition of hypergraph H in Figure 1. The width of
this (generalized) hypertree decomposition is 2.

A hypergraph is separated by deleting vertices assigned to a node
or common vertices assigned to two connected nodes in the (gen-
eralized) hypertree decomposition.

PROPOSITION 1. Suppose that there are subtrees T1,T2, . . . ,Td
when a node p is deleted from tree T of a (generalized) hypertree
decomposition 〈T,χ,λ 〉 of a hypergraph H. Then for any pair i, j ∈
{1,2, . . . ,d}(i � j),(χ(Ti) \ χ(p))∩ (χ(Tj) \ χ(p)) = /0 and {e ∈
E(H)|{u,v} ⊆ e,u ∈ χ(Ti) \ χ(p),v ∈ χ(Tj) \ χ(p)} = /0 (Figure
3).

{e3, e4}{v3,v5,v6,v7,v8,v9}

{e5}{v5,v9,v10} {e7, e8}{v6,v9,v11}

{e3, e6}{v1,v3,v5,v6,v7,v8}

{e1}{v1,v2,v3} {e2}{v1,v4,v5}

Figure 2: Normal form hypertree decomposition of H

χ(p)

u
v

No edge

χ(T1)χ(T2)

χ(T3) χ(T4)

Figure 3: Subtrees T1,T2, . . . ,Td by deleting node p from a (gen-
eralized) hypertree decomposition. There is no edge which con-
tains vertices u and v when χ(p) is deleted from hypergraph.

PROOF. Omitted.

PROPOSITION 2. Suppose that there are subtrees Tp and Tt when
an edge (p,t) ∈ E(T)(p,t ∈ V (T)) is deleted from tree T of a
(generalized) hypertree decomposition 〈T,χ,λ 〉 of a hypergraph
H. Then by deleting χ(p)∩ χ(t) from H, H is disconnected into
two components, χ(Tp)\ (χ(p)∩ χ(t)) and χ(Tt)\ (χ(p)∩ χ(t)).
That is, (χ(Tp) \ (χ(p)∩ χ(t)))∩ (χ(Tt) \ (χ(p)∩ χ(t))) = /0 and
{e∈E(H)|{u,v} ⊆ e,u∈ χ(Tp)\(χ(p)∩χ(t)),v∈ χ(Tt)\(χ(p)∩
χ(t))}= /0 (Figure 4).

PROOF. Omitted.

4. OBSTACLES TO LOW GENERALIZED
HYPERTREE-WIDTH

The key step in designing our algorithm is trying to find an obstacle
to a hypergraph having low generalized hypertree-width. We call
such an obstacle a k-hyperconnected set, which is a set of edges
of the hypergraph. The notion of a k-hyperconnected set is an
adaptation of k-connectedness for a graph to our setting [3]. We
show the relation between the size of a k-hyperconnected set in a
hypergraph and the hypertree-width of the hypergraph. We pro-
pose the algorithm check_k-hyperconnected to decide whether
a subset of edges of a hypergraph is a k-hyperconnected set, given
a hypergraph and a positive integer k. The running time of k-
hyperconnected set is O(mk+1n). If k is a constant, it is polynomial.

176

u
v

No edge

χ(p) χ(t)

χ(p) I χ(t)

χ(Tp)
χ(Tt)

Figure 4: Subtrees Tp and Tt by deleting the edge between
node p and node t from a (generalized) hypertree decomposi-
tion. There is no edge which contains vertices u and v when
χ(p)∩χ(t) is deleted from hypergraph.

4.1 k-hyperconnected set
We give the definition of a k-hyperconnected set and prove a propo-
sition for its algorithmic use.

DEFINITION 3. (separator) Let Y and Z be a pair of subsets of
E(H) of a hypergraph H such that |Y | = |Z| and Y � Z. A subset
of E(H), S is a separator for a pair of Y and Z if it satisfies all the
following conditions:

1. |S|< |Y |= |Z|;
2. there is no [ver(S)]-path from ver(Y) to ver(Z).

We say that S separates Y and Z, or that Y and Z are separable with
S.

DEFINITION 4. (k-hyperconnected set) Let X be a subset of
E(H) of a hypergraph H and k be a positive integer. Let Y and
Z be an arbitrary pair of two subsets of X such that |Y |= |Z|. X is
a k-hyperconnected set, if it satisfies all the following conditions:

1. |X | ≥ k;

2. X does not contain separable subsets Y and Z, where |Y | =
|Z| ≤ k. In other words, there is no separator S ⊆ E(H),
which separates Y and Z such that |S|< |Y |= |Z| ≤ k.

We call an edge, which is included in X, an X-edge.

Intuitively, a k-hyperconnected set is highly self-entwined. It does
not have any small parts that can easily split off from each other.
A k-hyperconnected set cannot be separated by deleting less than k
edges.

PROPOSITION 3. If a hypergraph H contains a k-hyperconnected
set with a size of at least 2k, H has the generalized hypertree width
of at least k.

PROOF. Suppose that a hypergraph H contains a k-hyperconnected
set X with a size of at least 2k, and it has a generalized hypertree
decomposition 〈T,χ,λ 〉 of a width less than k. There is a node t of
T that satisfies the following conditions:

1. Let Xt be a subset of X-edges {x ∈ X |x ⊆ χ(T t)}. |Xt | is

more than or equal to � |X |
2
�;

2. t is as far from the root of T as possible.

Clearly, χ(t) contains all vertices of at least one X-edge, and node
t is not a leaf of T because the set of edges X with a size of at
least 2k cannot be contained in a node of the generalized hypertree
decomposition of a width less than k. Now we divide X into three
distinct subsets, Xp = X \Xt , Xt = {x ∈ X |x⊆ χ(t)}, and Xc = Xt \
Xt . There is no [χ(t)]-path between any pair of vertices in Xp and
Xc from Proposition 1. The size of Xp and Xc is less than or equal to
k. Two subsets, Y and Z, of E(H), where |Xt |< |Y |= |Z| ≤ k, can
be made from Xp and Xc by adding edges in Xt . Then Xt separates
Y and Z. This means that X is not a k-hyperconnected set and
contradicts the assumption.

4.2 Comparing with k-hyperlinked set
Adler et al. [1] define the concept of a k-hyperlinked set for a set
of edges of a hypergraph. Hyperlinkedness of a hypergraph is the
largest integer k for which the hypergraph contains a k-hyperlinked
set. It is an adaptation of the linkedness of a graph. A k-hyperlinked
set also an obstacle to a hypergraph having low generalized hypertree-
width. We show that the size of a k-hyperlinked set is also associ-
ated with the generalized hypertree-width of the hypergraph, and
compare the two notions using examples. Adler et al. [1] prove
that the hyperlinkedness of a hypergraph is less than or equal to the
generalized hypertree-width of the hypergraph.

DEFINITION 5. (X-big) [1] Let H be a hypergraph and X be a
subset of E(H). A subset of vertices V (H), C is X-big, if it satisfies
the following condition:

|{e ∈ X |e∩C � /0}|> |X |
2

.

An X-big component is a maximal set of X-big vertices in which
each vertex is adjacent to another one.

DEFINITION 6. (k-hyperlinked set) [1] Let H be a hypergraph
and k be a positive integer. A subset of E(H), X is a k-hyperlinked
set, if the hypergraph (V (H)\ver(S),{e∩(V (H)\ver(S))|e∈E(H)})
has an X-big component for any set S ⊆ E(H) where |S| < k. We
call an edge, which is included in X, an X-edge as in Definition 4.

PROPOSITION 4. If a hypergraph H contains a k-hyperlinked
set with a size of at least 2k, H has a generalized hypertree width
of at least k.

PROOF. This proposition can be proven by the same idea of
Proposition 3.

We show the difference between a k-hyperlinked set and a k-hyperconnected
set with the following examples.

EXAMPLE 3. A hypergraph H and a subset X = X1 ∪ X2 of
E(H) are defined as in Figure 5. In this case X is a 1-hyperconnected

177

v1

v2

v3

v4

v5

v6

v7

v8

v9 v10 v11

v12

X1

X2

S

e1

e2

e3

e12

e11e10

e9

e8

e6

e5

e4

e7

Figure 5: Hypergraph for example 3. X = X1 ∪ X2 is a 1-
hyperconnected set and a 2-hyperlinked set.

set and a 2-hyperlinked set. Let two sets of edges, Y and Z, such
that |Y | = |Z| = 2 be subsets of X1 and X2, respectively. Since
there is no [ver(S)]-paths(y,z) for any pair of vertices, y ∈ Y and
z ∈ Z, X is a 1-hyperconnected set. On the other hand, in a hyper-
graph (V (H)\ e,{e∩ (V (H)\ e)|e ∈ E(H)}) constructed by delet-
ing any edge e ∈ E(H) from H, the number of remaining edges in
X is larger than |X |/2 = 9/2. But, in a hypergraph (V (H)\ (e1 ∪
e7),{e∩(V (H)\(e1∪e7))|e∈ E(H)}) constructed by deleting two
edges, e1 and e7, from H, the number of remaining edges in X is 2
and less than |X |/2 = 9/2. This means that X is a 2-hyperlinked
set.

EXAMPLE 4. A hypergraph H and a subset X of E(H) are de-
fined as in Figure 6. In this case X is a 3-hyperconnected set
and a 2-hyperlinked set. Any two subsets Y and Z each of size
3 of X cannot be separated by deleting any set of edges of size
2. This means that X is a 3-hyperconnected set at least. Since
there are no two different subsets each of size 4 of X, we cannot
choose separable subsets for a separator of size 3. Therefore X is
not a 4-hyperconnected set. On the other hand, in a hypergraph
(V (H)\ e,{e∩ (V(H)\ e)|e ∈ E(H)}) constructed by deleting any
edge e ∈ E(H) from H, the number of remaining edges in X is
larger than |X |/2 = 2. But, in a hypergraph (V (H)\(e2∪e3),{e∩
(V (H) \ (e2 ∪ e3))|e ∈ E(H)}) constructed by deleting two edges,
e2 and e3 from H, the number of remaining edges in X is |X |/2 = 2.
This means that X is a 2-hyperlinked set.

4.3 Finding Separator
We describe the algorithm check_k-hyperconnected which, given
a hypergraph H, a subset X of edges of H and a positive integer k,
determines whether X is a k-hyperconnected set. If X is not a k-
hyperconnected set, check_k-hyperconnected returns a set of
edges as a separator for a pair of two separable subsets in X . We
can develop a similar algorithm using the notion of a k-hyperlinked
set.

A simple way to do this is to check whether there is a separator
for every pair of subsets of each size less than or equal to k of X .
However, it is not easy to find such a separator. Therefore, we
check whether a pair of separable subsets, Y and Z, of X exists for
every subset with a size of less than k of E(H) conversely. If the
size of X is more than or equal to 2k−1, it is necessary to check it

v1

v2

v3

v4

v5v6v7

v8

v9

v10

e1

e2

e3

e4

e5

e6

X

S

v1

v2

v3

v4

v5v6v7

v8

v9

v10

e1

e2

e3

e4

e5

e6

X

S

Figure 6: Hypergraph for example 4. X is a 3-hyperconnected
set and a 2-hyperlinked set.

X1

Y

Z

X2

S
X1

Y

Z

X2

S

Figure 7: X-edges in X \ (Y ∪Z∪S) are added to S to make the
size of S be k−1. Edges in S∩X are added to Y and Z to make
their size be k.

only for every subset of size k− 1 of E(H) because if a separator
with a size of less than k−1 is found, we can make it be k−1 by
adding edges in X \ (Y ∪Z∪S) (Figure 7). That is, every separator
is contained in subsets of size k−1 of E(H). In the case where the
size of a separator S is k−1, each size of separable subsets Y and Z
must be more than k−1 to satisfy the first condition in Definition
3. When candidate sets Y and Z for separable subsets are found for
a subset S of size k− 1 of E(H), but each size of Y and Z is less
than or equal to k−1, we may increase the size by adding the same
edges in S∩X to Y and Z (Figure 7). If we can make the size be
k, the set of edges, Y , Z, and S become separable subsets and the
separator.

check_k-hyperconnected repeats the following steps for every
subset S of size k− 1 of E(H), as shown in Algorithm 1, un-
less it finds a separator of size k− 1 or that a given X is a k-
hyperconnected set, that is, X does not contain separable subsets Y
and Z of each size less than or equal to k. We do not check whether
the size of X is more than or equal to 2k−1 since the size of X is al-

178

ways more than 2k in the algorithm using check_k-hyperconnected,
which constructs a low-width (generalized) hypertree decomposi-
tion. In Algorithm 1, we use variables Y , Z, and S to denote candi-
dates of two separable subsets of X and a separator for the subsets,
respectively.

1. Choose a subset S of size k−1 from E(H).

2. Let L be {e ∈ X |e ⊆ ver(S)}. If |L| ≥ k, return the subset S
as a separator and stop.

Any edge e in L can belong to both Y and Z because e\ver(S)
is an empty set, and there is no [ver(S)]-path from e to other
vertices. Therefore, if |L| ≥ k, we can construct Y , Z, and S,
which satisfy the conditions of Definition 3, by choosing k
edges from L as Y , k edges from X as Z, and the subset S as
a separator.

3. Divide the set of the [S]-fragments into two subsets, Y and Z.

4. If there are more than or equal to k X-edges in each of Y ∪L
and Z∪L, return the subset S as a separator and stop.
If each Y ∪L and Z∪L includes more than or equal to k X-
edges, we can make separable subsets Y ′ and Z′, which sat-
isfy the conditions of Definition 3, by choosing k edges from
L as Y ′, and k edges from X as Z′. In this case, the subset S
separates Y ′ and Z′.

PROPOSITION 5. The running time of check_k-hyperconnected
is O(

(m
k−1

)

m2n).

PROOF. Let k be a positive integer as a constant, and m,n be the
number of edges |E(H)| of a hypergraph H and the number of ver-
tices |V (H)|, respectively. The number of subsets of E(H), where
each of their sizes is k−1, is

(m
k−1

)

. For each subset S of size k−1
of E(H), we enumerate the number of edges {e ∈ X |e ⊆ ver(S)}.
This takes O(mn) time. Finding the set of [S]-fragments and di-
viding it into two subsets take O(m2n) time. Thus, the whole run-
ning time of check_k-hyperconnected is O(

(m
k−1

)

m2n). Since
O(

(m
k−1

)

) is O(mk−1), a less accurate but more readable upper bound
of the running time is O(mk+1n).

5. CONSTRUCTING A LOW-WIDTH HYPER-
TREE DECOMPOSITION

We propose an algorithm for constructing a (generalized) hyper-
tree decomposition of H of width less than or equal to 3k− 1 or
detemines that H does not have a generalized hypertree-width less
than k, where k is a positive integer as a constant. The following
procedure repeatedly decomposes a hypergraph by deleting a set
of edges and constructs a (generalized) hypertree decomposition
〈T,χ,λ 〉. The proposed algorithm is described formally in Algo-
rithm 2 and 3. Figure 8 and 9 show decomposed components of a
hypergraph, and Figure 10 shows the constructed hypertree decom-
position corresponding to Figure 8 and 9.

1. Arbitrarily select a set of edges less than or equal to 2k− 1
from E(H) and make the root r of T .

For the root r of T , the selected set of edges is assigned to
λ (r), and all vertices included in the edges are assigned to
χ(r). In Figure 10, a set of edges E and a set of vertices
χ(E) are assigned to λ (r) and χ(r), respectively.

Algorithm 1 check_k-hyperconnected
Input: a hypergraph H = (V (H),E(H)), a subset X of E(H), and
a positive integer k
Output: a separator S ⊆ E(H) for a pair of subsets of X , or a
message “X is a k-hyperconnected set”.

1: for each subset S of size k−1 of E(H) do
2: let L be {e ∈ X |e⊆ ver(S)}
3: if |L| ≥ k then
4: return S
5: end if
6: find all [S]-fragments F1,F2, . . . ,Fd in H
7: arrange F1,F2, . . . ,Fd in descending order of the number of

X-edges contained in each [S]-fragment
8: Y ← F1
9: Z← F2

10: for i = 3 to d do
11: if |{e ∈ X |e ∈ Y}| ≤ |{e ∈ X |e ∈ Z}| then
12: Y ← Y ∪Fi
13: else
14: Z← Z∪Fi
15: end if
16: end for
17: if (|L|+ |{e∈ X |e∈Y}| ≥ k) and (|L|+ |{e∈ X |e∈ Z}| ≥ k)

then
18: return S
19: end if
20: end for
21: return “X is a k-hyperconnected set”

2. For each [χ(r)]-component Cr, make a child node t of the
root r.

By Proposition 1 and 2, we can deal with each [χ(r)]-component
Cr independently. Figure 8 shows that there are two [χ(r)]-
components Cr1 and Cr2 . To decompose a [χ(r)]-component
Cr further, we choose an arbitrary edge et from cov(Cr).
For child node t corresponding to Cr , we add the edge et
and et to λ (t) and χ(t) respectively. To ensure that con-
dition 2 of Definition 1 is satisfied when some vertices in
Br = ver(cov(Cr))∩ χ(r) are included in a child node of t
in the later process, we add vertices Br to χ(t). Figure 8
shows that there are four vertices in Br1 . We also add a set of
edges EAr ∈ cov∗(Ar) where Ar = Br \et , and a set of vertices
ver(EAr) to λ (t) and χ(t), respectively, to satisfy condition 3
of Definition 1. Figure 8 shows that there are three vertices in
Ar1 and two edges in EAr1

. In Figure 10, Br1 is not contained
in χ(t) since it is included in et ∪ ver(EAr1

). Since ver(λ (t))
is equal to χ(t), condition 4 of Definition 1 is also satisfied.

3. For each [χ(r)∪ χ(t)]-component Ct formed from a [χ(r)]-
component Cr , make a child node s of t in the same way to
step 2 above.

Figure 9 shows that there are three [χ(r)∪ χ(t)]-component
Ct1 ,Ct2 ,Ct3 formed from an [χ(r)]-component Cr1 .

The tree 〈T,χ,λ 〉 constructed from the above procedure satisfies
all the conditions of Definition 1 and is a (generalized) hypertree
decomposition.

To determine whether the hypertree decomposition of the required
size can be constructed, for each child node of r, we check the size

179

r

Cr1

Cr2

Ar1

etEAr1

Br1

Figure 8: [χ(r)]-components Cr1 and Cr2. Br1 is vertices in χ(r)
that are also contained in ver(Cr1). Ar1 is vertices in Br1 that is
not included in et . EAr1

is element of cov∗(Ar1).

of λ (t) = {et}∪EAr after the above step 2. Here, there is clearly
a set of edges EAr ∈ cov∗(Ar) less than or equal to 2k−1 because
Ar ⊆ ver(λ (r)) and |λ (r)| ≤ 2k−1. If the size of λ (t) is less than or
equal to 2k−1, node t can be treated the same as root r, and we go
through the procedure. If the size of λ (t) is 2k, we check whether
λ (t) is a k-hyperconnected set with check-k_hyperconnected
described in Section 4. There are the following two cases.

• λ (t) = {et}∪EAr is a k-hyperconnected set

The hypergraph does not have a generalized hypertree-width
less than k by Proposition 3. hd-decomp returns the message
and halts.

• λ (t) = {et}∪EAr is not a k-hyperconnected set

There is a separator S⊆ E(H) of size k−1 and two separable
sets of edges Y,Z ⊆ λ (t) of size k each. Figure 11 shows this
situation in a [χ(r)]-component. To decompose the [χ(r)]-
component, we add S∩ cov(Cr) to λ (t) and ver(S∩ cov(Cr))
to χ(t). Since the size of S∩ cov(Cr) is less than the size of
S, the size of λ (t) = EAr ∪{et}∪ (S∩cov(Cr)) is less than or
equal to 3k−1, which is the width we want.

To continue to the same process further for each [χ(r)∪
χ(t)]-component Ct , the size of EAt ∈ cov∗(At) needs to be
less than or equal to 2k− 1 as the size of EAr . Since there
is no [χ(S)]-path between [χ(r)∪χ(t)]-components, a set of
vertices ver(cov(Ct)) has common vertices with either ver(Y ∪
S) or ver(Z ∪S) (Figure 11). At is a subset of ver(cov(Ct)).
Therefore cov∗(At) is included in a subset of either Y ∪S or
Z∪S. Since both size of Y ∪S and Z∪S is less than or equal
to 2k−1, the size of EAt ∈ cov∗(At) is also less than or equal
to 2k−1.

Algorithm 2 low-width-ghd
Input: a hypergraph H = (V (H),E(H)), a positive integer k
Output: a hypertree decomposition 〈T,χ,λ 〉 of H, which has a
width less than or equal to 3k−1, or a message “H does not have
generalized hypertree-width less than k”

1: arbitrarily select a set of edges E with the size less than or equal
to 2k−1 from E(H)

2: create root node r of tree T
3: λ (r)← E
4: χ(r)← ver(E)
5: for each [χ(r)]-component Cr do
6: create_node(r, cov(Cr), k, 〈T,χ,λ 〉)
7: end for
8: return 〈T,χ,λ 〉

Algorithm 3 create_node
Input: a hypergraph H, a node r, a set of edges cov(Cr), a positive
integer k and a tree 〈T,χ,λ 〉
Output: a tree 〈T,χ,λ 〉 or a message “H does not have general-
ized hypertree-width less than k”

1: Br← ver(cov(Cr))∩χ(r)
2: select an edge et from cov(Cr)
3: Ar← Br \et
4: find a set of edges EAr ∈ cov∗(Ar)
5: create a child node t of r in T
6: λ (t)←{et}∪EAr

7: χ(t)← et ∪ ver(EAr)
8: if |λ (t)|= 2k then
9: if check_k-hyperconnected (H,λ (t),k) = “λ (t) is a k-

hyperconnected set” then
10: return “H does not have generalized hypertree-width

less than k”
11: else
12: S← check_k-hyperconnected (H,λ (t),k)
13: λ (t)← λ (t)∪ (S∩ cov(Cr))
14: χ(t)← χ(t)∪ ver(S∩ cov(Cr))
15: end if
16: end if
17: for each [χ(r)∪χ(t)]-component Ct do
18: create_node(t, cov(Ct), k, 〈T,χ,λ 〉)
19: end for
20: return 〈T,χ,λ 〉

180

r

Ct1

Cr2

Ct2 Ct3

t
EAt1

es3

es2

es1

At1

At3

EAt3

Figure 9: Ct1 , Ct2 , and Ct3 are [χ(r)∪ χ(t)]-components formed
from Cr1 .

λ(r)=E
χ(r)=ver(E)

r

t
λ(t)={et} U EAr1

χ(t)=ver(et) U ver(EAr1)

λ(s1)={es1} U EAt1

χ(s1)=ver(es1) U ver(EAt1)
s1

Figure 10: Hypertree decomposition for Figure 8 and 9.

PROPOSITION 6. The running time of low-width-ghd is
O(mk+2n).

PROOF. Let k be a positive integer, m be the number of edges
in a hypergraph H, and n be the number of the vertices. The most
costly operation in low-width-ghd is check_k-hyperconnected
in create_node. Since one edge e∈E(H) is selected at most once
in create_node, create_node is called at most m times. From
Proposition 6, check_k-hyperconnected takes O(mk+1n). Thus,
the entire running time of low-width-ghd is O(mk+2n).

PROPOSITION 7. A hypertree decomposition constructed by
low-width-ghd is in normal form.

PROOF. low-width-ghd creates a child node s of t ∈ V (T)
for each [χ(t)]-component and assigns es ∪ ver(EAt) to χ(s) in
create_node, where es is selected arbitrary from cov(Ct) and At
is (ver(cov(Ct))∩ χ(t)) \ es. Thus, conditions 1 and 2 of Defi-
nition 2 are clearly satisfied. Since χ(s) contains all vertices of

3k-1

Y ZS

Ct1 Ct2

Figure 11: [χ(r)∪ χ(t)]-component Ct1 and Ct2 have common
vertices with ver(Y ∪ S) and ver(Z ∪ S), respectively, where S
separates Y and Z.

λ (s) which consists of {es}, EAt and, if λ (t) of size 2k is not a
k-hyperconnected set, S∩ cov(Ct) where S is a separator of λ (t),
condition 3 of Definition 2 is also satisfied.

6. CONCLUSIONS
We have presented a greedy algorithm which, given a hypergraph
H and a positive integer k as a constant, produces a hypertree de-
composition of a width less than or equal to 3k− 1, or reports
that H does not have a generalized hypertree-width of less than k.
The key step of this algorithm is trying to find a k-hyperconnected
set, which is an obstacle to a hypergraph having a low generalized
hypertree-width. The entire running time is O(mk+2n) where m is
the number of edges and n is the number of vertices in a hyper-
graph. If k is a constant, it is polynomial. This algorithm is faster
than det-k-decomp developed by Gottlob et al. in the worst case.

7. ACKNOWLEDGEMENTS
The authors thank the anonymous reviewers for their helpful feed-
back. This work was supported by Grant-in-Aid for Scientific Re-
search(C)(21500104).

8. REFERENCES
[1] I. Adler, G. Gottlob, and M. Grohe. Hypertree width and

related hypergraph invariants. Eur. J. Comb.,
28(8):2167–2181, 2007.

[2] A. Dermaku, T. Ganzow, G. Gottlob, B. J. McMahan,
N. Musliu, and M. Samer. Heuristic methods for hypertree
decomposition. In 7th Mexican International Conference on
Artificial Intelligence(MICAI), pages 1–11, 2008.

[3] R. Diestel. Graph Theory Second Edition. Springer, 2000.
[4] G. Gottlob, N. Leone, and F. Scarcello. A comparison of

structural csp decomposition methods. In IJCAI ’99:
Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence, pages 394–399, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[5] G. Gottlob, N. Leone, and F. Scarcello. Hypertree
decompositions and tractable queries. In PODS ’99:
Proceedings of the eighteenth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 21–32, New York, NY, USA, 1999.
ACM.

181

[6] G. Gottlob, N. Leone, and F. Scarcello. On tractable queries
and constraints. In 10 th International Conference and
Workshop on Database and Expert Systems
Applications(DEXA), pages 1–15, 1999.

[7] G. Gottlob, N. Leone, and F. Scarcello. Robbers, marshals,
and guards: game theoretic and logical characterizations of
hypertree width. In PODS ’01: Proceedings of the twentieth
ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 195–206, New York, NY, USA,
2001. ACM.

[8] G. Gottlob, Z. Miklós, and T. Schwentick. Generalized
hypertree decompositions: Np-hardness and tractable
variants. J. ACM, 56(6):1–32, 2009.

[9] G. Gottlob and M. Samer. A backtracking-based algorithm
for hypertree decomposition. J. Exp. Algorithmics,
13:1.1–1.19, 2009.

[10] M. Grohe and D. Marx. Constraint solving via fractional
edge covers. In SODA ’06: Proceedings of the seventeenth
annual ACM-SIAM symposium on Discrete algorithm, pages
289–298, New York, NY, USA, 2006. ACM.

[11] P. Harvey and A. Ghose. Reducing redundancy in the
hypertree decomposition scheme. In IEEE International
Conference on Tools with Artificial Intelligence (ICTAI),
pages 474–481. IEEE Computer Society, 2003.

[12] J. Kleinberg and E. Tardos. Algorithm Design. Addison
Wesley, 2006.

[13] Z. Miklós. On the parallel complexity of structural CSP
decomposition methods. In H. Broersma, S. Dantchev,
M. Johnson, and S. Szeider, editors, Algorithms and
Complexity in Durham 2007, Proceedings of the third ACiD
Workshop, volume 9 of Texts in Algorithmics, pages
107–118. College Publications London, 2007.

[14] F. Scarcello, G. Greco, and N. Leone. Weighted hypertree
decompositions and optimal query plans. J. Comput. Syst.
Sci., 73(3):475–506, 2007.

182

