
Biometrics 64, 157–163

March 2008
DOI: 10.1111/j.1541-0420.2007.00826.x

Nonparametric Inference on Median Residual Life Function

Jong-Hyeon Jeong1,∗ Sin-Ho Jung,2 and Joseph P. Costantino1

1Department of Biostatistics, University of Pittsburgh,
Pittsburgh, Pennsylvania 15261, U.S.A.

2Department of Biostatistics and Bioinformatics, Duke University,
Durham, North Carolina 27710, U.S.A.

∗email: jeong@nsabp.pitt.edu

Summary. A simple approach to the estimation of the median residual lifetime is proposed for a single
group by inverting a function of the Kaplan–Meier estimators. A test statistic is proposed to compare two
median residual lifetimes at any fixed time point. The test statistic does not involve estimation of the
underlying probability density function of failure times under censoring. Extensive simulation studies are
performed to validate the proposed test statistic in terms of type I error probabilities and powers at various
time points. One of the oldest data sets from the National Surgical Adjuvant Breast and Bowel Project
(NSABP), which has more than a quarter century of follow-up, is used to illustrate the method. The
analysis results indicate that, without systematic post-operative therapy, a significant difference in median
residual lifetimes between node-negative and node-positive breast cancer patients persists for about 10 years
after surgery. The new estimates of the median residual lifetime could serve as a baseline for physicians to
explain any incremental effects of post-operative treatments in terms of delaying breast cancer recurrence
or prolonging remaining lifetimes of breast cancer patients.
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1. Introduction
At a diagnosis of cancer, patients may wish to learn from
their physicians an estimate of their expected survival and
how much their life expectancy may be extended if they un-
dergo a specific cancer treatment regime. For many treatment
regimes, a physician can refer to published Kaplan–Meier
plots from previous randomized clinical trials to provide esti-
mates of survival probabilities or median failure times at the
time of diagnosis. However, when there exists a possibility of
benefiting from a new secondary therapy to be given in the
middle of the follow-up period, patients may also wish to know
their residual life expectancy at several years after the initial
diagnosis, and how much it can be prolonged by adopting the
new therapy. In contrast to the case for the initial diagno-
sis, the estimates of the residual lifetime after being followed
up for a certain number of years cannot be directly obtained
from the Kaplan–Meier plots. The need for such estimates is
becoming more critical in breast cancer as long-term courses
of secondary therapies are now being considered for patients
who remain recurrence free after several years of initial treat-
ment. For example, in recent randomized Phase III clinical
studies on breast cancer (Goss et al., 2003; Coombes et al.,
2004), estrogen receptor positive patients who had been on
tamoxifen for up to 5 years without recurrence of the orig-
inal disease were rerandomized to placebo or an aromatase
inhibitor, either letrozole or exemestane. To advise a patient
who would be interested in participating in this type of study,
a physician would need to explain the potential benefits of the

new secondary course of drug in terms of prolonging the pa-
tient’s remaining lifetime, given the fact that she has survived
for, say, 5 years after originally being treated.

Two natural quantitative measures for the remaining life-
times are the mean residual life function (Chiang, 1960) and
the median residual life function (Schmittlein and Morrison,
1981). Many authors studied the mean residual life function
(Chen, Hollander, and Langberg, 1983; Berger, Boos, and
Guess, 1988; Oakes and Dasu, 1990; Maguluri and Zhang,
1994; Chen et al., 2005), but not much work can be found
in the literature on inference for censored survival data via
the median residual life function. Wang and Hettmansperger
(1990) proposed a confidence interval approach to compare
two quantiles from failure time distributions under censoring.
Su and Wei (1993) introduced a nonparametric test statistic
to improve Wang and Hettmansperger’s procedure that re-
quires estimation of the probability density function of failure
times under censoring to evaluate the variance of the median
failure time. Both methods, however, were intended only for
comparing the remaining lifetimes of patients at the origin of
the follow-up period. Earlier, Berger et al. (1988) proposed a
modified test statistic based on Fligner and Rust’s (1982) ap-
proach to compare two median residual lifetimes under censor-
ing. Unlike Su and Wei’s procedure, however, their approach
also involves a nonparametric estimation of the probability
density function of the failure time distribution under censor-
ing, which is the major drawback in the median-based infer-
ence procedures for censored survival data. In this article, we
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propose a method for estimating the median residual lifetimes
consistently in a single group and generalize the results of Su
and Wei (1993) to compare the median residual lifetimes be-
tween two groups at any fixed time point during the follow-up
period.

The new estimation and testing procedures will be applied
to one (B-04) of the oldest National Surgical Adjuvant Breast
and Bowel Project (NSABP) data sets, which, with more than
25 years of follow-up, is often viewed as a natural history of
prognosis in breast cancer because the patients were treated
with surgery (± radiotherapy) without any subsequent sys-
tematic chemo- or hormonal therapies. Although it is well
known that the detection of disease in the axillary lymph
nodes is an important prognostic factor in breast cancer, the
issue of association of the nodal status with the pattern of
a patient’s remaining lifetime has not been addressed in the
literature. In this article, novel information on effects of the
nodal status on the median residual lifetimes of breast cancer
patients is evaluated from the NSABP B-04 data set, con-
ditional on the length of follow-up time. This information
could serve as a baseline for physicians to explain any addi-
tive effects of post-operative therapies in terms of extending
the patients’ remaining life years in both node-negative and
node-positive breast cancer patients.

In Section 2, we propose an approach to the estimation of
the median residual lifetime by solving an equation that in-
volves Kaplan–Meier estimators (Kaplan and Meier, 1958),
and derive the variance of the estimating function. In Sec-
tion 3, we propose a two-sample test statistic and associated
confidence interval for the ratio of two median residual life-
times. In Section 4, simulation studies are performed to assess
the proposed testing procedure in terms of empirical type I
error probabilities and powers. In Section 5, the developed
methodology is applied to the NSABP B-04 data.

2. Estimation of Median Residual Lifetime:
One-Sample Case

In one sample, the median residual life function at time t is
defined as

θt = median(T − t |T ≥ t), (1)

which implies the median of remaining lifetimes among sur-
vivors beyond time t. The function (1) satisfies the relation
P (T − t ≥ θt | T ≥ t) = 1/2, implying that P (T ≥ t + θt) =
(1/2) P (T ≥ t). The function θt has been extensively
studied for noncensored cases by many authors, especially
Schmittlein and Morrison (1981), Arnold and Brockett (1983),
Csörgö and Horvath (1983), Gupta and Langford (1984),
Joe and Proschan (1984), Csörgö and Csörgö (1987), Alam
and Kulasekera (1993), Song and Cho (1995), among others.
Gupta and Langford (1984) noted that θt does not uniquely
determine S(t) = P(T ≥ t), but here we propose a method
that models S(t) first and then infer θt at a fixed time point
t0. Therefore, in the sequel, θt0 implies the median residual
life function evaluated at a specific time t0.

In this section, a simple approach to consistent estimation
of the median residual lifetime under censoring is proposed for
a single group by inverting a function of Kaplan–Meier estima-
tors. The asymptotic distribution of the estimating equation
that yields the estimator of the median residual life function is

derived via martingale representation of the Kaplan–Meier es-
timator. This variance formula will be used later to construct
a test statistic for comparing two median residual lifetimes.

2.1 Notations
Suppose that nk (k = 1, 2) patients are randomized to a group
k. Let n = n1 + n2. In group k, let Tki , (i = 1, . . . , nk ) be
failure times with survivor function Sk (t) and cumulative haz-
ard function Λk(t) = −logSk (t). Because of early termination
of study or loss to follow-up, Tki ’s may not be observed. In
conjunction with the failure time Tki , let Cki be the censoring
time. Then, for a patient i from group k, we observe {(Xki ,
∆ki), i = 1, . . . ,nk}, where Xki = min(Tki, Cki) and ∆ki =
I(Tki ≤ Cki ). We assume that censoring times are indepen-
dent of failure times. Let Yki (t) = I(Xki ≥ t) and Nki (t) =
∆kiI(Xki ≤ t) be the at-risk and death processes, respectively,
for patient i in group k. We also define Yk =

∑nk

i=1 Yki and
Nk =

∑nk

i=1Nki.

2.2 Estimation
To simplify the notations, we consider one-sample case by
dropping the subscript k in this section. The survivor function
of the residual lifetime for a patient who has survived beyond
time t 0, i.e., (T − t0 | T > t0), is given as S(t | t0) = S(t +
t0)/S(t0) for t 0 ≥ 0. Hence, the median of the residual lifetime
distribution at t0 can be estimated by solving the equation
û(θt0) = 0 for θt0 , where

û(θt0) = Ŝ(t0 + θt0) −
1

2
Ŝ(t0) (2)

and Ŝ(t) is the Kaplan–Meier estimator of S(t) from survival
data {(Xi , ∆i), 1 ≤ i ≤ n}. Let θ̂t0 denote the solution. Then,

by Theorem 3.4.2 of Fleming and Harrington (1991), Ŝ(t) is
uniformly consistent to S(t) over 0 ≤ t ≤ ξ, where ξ = sup{t :
y(t) > 0}, y(t) = S(t)G(t), and G(t) = P(C ≥ t). Hence, for
t0 + θt0 < ξ, û(θt0) uniformly converges to

u(θt0) = S(t0 + θt0) −
1

2
S(t0). (3)

Now let θt0,0 denote the true value of the median residual life-
time at time t 0. Then we have u(θt0,0) = 0, and consequently

θ̂t0 is a consistent estimator of θt0,0.
By Corollary 3.2.1 of Fleming and Harrington (1991), at

the true value θt0,0,

û(θt0,0) = −
n∑

i=1

S(t0 + θt0,0)

∫ t0+θt0,0

0

dMi(s)

Y (s)

+
1

2
S(t0)

n∑
i=1

∫ t0

0

dMi(s)

Y (s)
+ op(n

−1/2),

where Mi(t) = Ni(t) −
∫ t

0 Yi(s) dΛ(s) is a martingale
(Theorem 1.3.2, Fleming and Harrington 1991), so that
E{dMi(t) | Ft−} = 0 for a filtration {Ft : t ≥ 0}. Because
n−1Y(t) uniformly converges to y(t) over [0, ξ], we have

û(θt0,0) =

n∑
i=1

εi + op(n
−1/2),



Nonparametric Inference on Median Residual Life Function 159

where

εi = −S(t0 + θt0,0)

∫ t0+θt0,0

0

dMi(s)

ny(s)

+
1

2
S(t0)

∫ t0

0

dMi(s)

ny(s)
. (4)

By the definition of the median residual life function at the
true value θt0,0, we have S(t0 + θt0,0) = (1/2)S(t0), which sim-
plifies (4) further to

εi = −1

2
S(t0)

∫ t0+θt0,0

t0

dMi(s)

ny(s)
.

Because ε1, . . . , εn are independent random variables with
mean 0, by the central limit theorem, û(θt0,0) is approximately
normal with mean 0 and variance σ2

t0
that can be consis-

tently estimated by σ̂2
t0

=
∑n

i=1 ε̂
2
i . Here ε̂i is obtained from

εi by replacing the unknown parameters by their consistent
estimators, i.e.,

ε̂i = −Ŝ(t0 + θ̂t0)

∫ t0+θ̂t0

0

dM̂i(s)

Y (s)
+

1

2
Ŝ(t0)

∫ t0

0

dM̂i(s)

Y (s)
,

or

ε̂i = −1

2
Ŝ(t0)

∫ t0+θ̂t0

t0

dM̂i(s)

Y (s)
,

where M̂i(t) = Ni(t) −
∫ t

0 Yi(s) dΛ̂(s) and Λ̂(t) =
∫ t

0 Y
−1

(s) dN(s) is the Nelson–Aalen estimator (Nelson, 1972; Aalen,
1978) of the cumulative hazard function. Hence, a 100 × (1 −
α)% confidence interval for θt0 can be obtained by{

θt0 : σ̂−2
t0
û(θt0)

2 < χ2
1,1−α

}
, (5)

where χ2
1,1−α is the 100 × (1 − α)th percentile of the

χ2-distribution with 1 degree of freedom.

3. Two-sample Test Statistic and Confidence Interval
Now suppose we want to compare median residual lifetimes
between two groups at time t0. For group k, let θk,t0 be the me-
dian residual lifetime at time t0. For convenience, suppose we
are interested in making inference on the ratio of two median
residual lifetimes, i.e., τt0 = θ2,t0/θ1,t0 . A statistical hypothe-
sis can be formulated as H0 : τt0 = τt0,0 versus H1 : τt0 �= τt0,0,
where τt0,0 is a specified value of τt0 under the null hypothesis.
When τt0,0 = 1, it will be tested whether two median residual
lifetimes at a given time t0 are equal or not. For group k, let
the estimating function be

ûk(θk,t0) = Ŝk(t0 + θk,t0) −
1

2
Ŝk(t0).

Noting that θ2,t0 = τt0,0θ1,t0 under H0 : τt0 = τt0,0, we will
consider a two-sample test statistic for τt0

Wt0(τt0,0, θ1,t0) =
û2

1(θ1,t0)

σ̂2
1,t0

+
û2

2(τt0,0θ1,t0)

σ̂2
2,t0

, (6)

where σ̂2
k,t0

is the variance estimate of ûk(θk,t0) derived in
Section 2.2. We note that the statistic (6) reduces to Su and
Wei’s (1993) when t 0 = 0.

Following similar arguments as in Su and Wei (1993), for
any given time t 0 it can be generally shown that Qt0(τt0,0) =

infθ1,t0
Wt0(τt0,0, θ1,t0) follows asymptotically χ2

1-distribution
(see Web Appendix). We reject H0 : τt0 = τt0,0 with type I
error α if Qt0(τt0,0) > χ

2
1,1−α. As stated in Su and Wei (1993),

an important advantage of using this type of statistic is that
there is no need for estimating the underlying probability den-
sity function of failure times under censoring to make infer-
ence about the ratio of the two median residual lifetimes.

From (6), a 100 × (1 − α)% confidence interval for τt0 can
be obtained from{

τt0 : inf
θ1,t0

Wt0(τt0 , θ1,t0) < χ
2
1,1−α

}
. (7)

Note that, to achieve a confidence interval from (7), the statis-
tic Wt0(τt0 , θ1,t0) needs to be minimized over θ1,t0 for each
fixed value of τt0 . Thus, values of τt0 associated with the min-
imum values of the statistic that exceeds the absolute values
of χ2

1,1−α will be the lower and upper limits of the confidence
interval.

To accommodate heterogeneity in the population such as
age at diagnosis of breast cancer, a stratified test statistic can
be also constructed. Denoting l to be the number of strata,
the stratified test statistic can be formed as

Rt0(τt0,0) =

l∑
j=1

Q
(j)
t0

(τt0,0), (8)

where Q
(j)
t0

(τt0,0) is the statistic Qt0(τt0,0) that corresponds to
the jth stratum. The statistic Rt0(τt0,0) will asymptotically
follow a χ2-distribution with l degrees of freedom.

4. A Simulation Study
4.1 Type I Errors
A simulation study has been performed first to validate the
proposed test statistic in terms of type I error probabilities at
the significance level of 0.05 and median lengths of 95% con-
fidence intervals for τt0 = θ2,t0/θ1,t0 . Failure times were gener-
ated from a Weibull distribution with the survival function

S(t) = exp{−(ρt)η}, (9)

where ρ and η are scale and index parameters, respectively.
By setting u(θt0) in (3) equal to zero and solving it for θt0

after replacing S(·) with the survival function of Weibull dis-
tribution in (9), we obtain the median residual life function
at time t0

θt0 =
1

ρ

{
log(2) + (ρt0)

η
}1/η − t0, t0 ≥ 0. (10)

When the true distribution is exponential, i.e., η = 1, the
function (10) reduces to (1/ρ) log(2), which does not depend
on t0.

Using the probability integral transformation under the
Weibull distribution, we have generated failure times for both
groups from

Ti = (1/ρ){− log(1 − Ui)}1/η, i = 1, . . . , n, (11)

where U is a random variable following the uniform distribu-
tion between 0 and 1. The censoring distribution was assumed
to follow a uniform distribution between c and 15, where c de-
termines the censoring proportion and the maximum follow-
up period was limited to 15 years. The parameter values for
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Table 1
Empirical 95% coverage probabilities and ML of empirical 95% confidence intervals of the two-sample test statistic

for comparing median residual lifetimes

Censoring proportion

n 0% (ML) 10% (ML) 20% (ML) 30% (ML)

t0 = 0 50 0.978 (0.66) 0.978 (0.65) 0.981 (0.68) 0.976 (0.74)
100 0.971 (0.44) 0.970 (0.44) 0.971 (0.48) 0.977 (0.50)
200 0.968 (0.30) 0.966 (0.30) 0.974 (0.32) 0.975 (0.34)

t0 = 1 50 0.980 (0.83) 0.979 (0.84) 0.981 (0.90) 0.976 (0.96)
100 0.971 (0.56) 0.973 (0.56) 0.976 (0.61) 0.979 (0.65)
200 0.961 (0.38) 0.961 (0.38) 0.968 (0.41) 0.973 (0.44)

t0 = 2 50 0.974 (1.04) 0.973 (1.06) 0.977 (1.17) 0.976 (1.24)
100 0.974 (0.71) 0.976 (0.71) 0.976 (0.78) 0.978 (0.83)
200 0.969 (0.47) 0.971 (0.48) 0.974 (0.52) 0.976 (0.56)

t0 = 3 50 0.984 (1.31) 0.986 (1.34) 0.977 (1.51) 0.979 (1.62)
100 0.979 (0.88) 0.981 (0.91) 0.981 (0.99) 0.982 (1.07)
200 0.964 (0.60) 0.967 (0.62) 0.971 (0.68) 0.976 (0.73)

t0 = 4 50 0.981 (1.66) 0.980 (1.81) 0.979 (1.96) 0.979 (2.16)
100 0.978 (1.08) 0.975 (1.14) 0.977 (1.29) 0.984 (1.39)
200 0.966 (0.73) 0.973 (0.78) 0.976 (0.86) 0.973 (0.94)

t0 = 5 50 0.967 (2.11) 0.976 (2.46) 0.962 (2.75) 0.964 (2.94)
100 0.968 (1.39) 0.973 (1.56) 0.977 (1.77) 0.977 (1.87)
200 0.970 (0.93) 0.974 (1.04) 0.977 (1.17) 0.977 (1.26)

ρ and η have been chosen as 0.2 and 2, so that the true mean
and variance of failure times are 4.43 and 5.37, respectively.
One thousand samples were simulated under this scenario.

Table 1 summarizes (i) empirical 95% coverage probabili-
ties of the null hypothesis and (ii) the median lengths (MLs)
of empirical 95% confidence intervals, at different time points
(t0) for various sample sizes (n) per group and censoring pro-
portions. The maximum of different time points in Table 1
has been determined as the maximum time point that allows
the median failure time to exist among the observed survival
times beyond that point. For each sample, the empirical cover-
age probability was calculated as the percentage of Qt0(τt0,0)
being less than or equal to χ2

1,1−α when τt0,0 = 1, i.e., under
H0. The length of empirical 95% confidence interval for τt0 was
estimated for each sample by using (7). The median value of
the 1000 interval lengths was reported as the ML for each
case.

One can observe that the empirical type I error probabil-
ities (=1-empirical coverage probabilities) approach the true
value of 0.05 as sample size increases at each fixed time point
t0, but tend to be conservative. The conservativeness slightly
increases with the censoring proportion. We note that the re-
sults for t0 = 0 are comparable to ones presented in Su and
Wei (1993). The MLs of empirical 95% confidence intervals are
becoming narrower as sample size increases, but wider as t0
increases, because the variance of the Kaplan–Meier estimator
Ŝk(t) increases in t.

4.2 Powers
Power analyses were performed under the parametric propor-
tional hazards model (Cox, 1972, 1975) with a single covari-
ate. In terms of the survival function, the model specifies

S(t; z) = exp{−(ρt)η exp(βz)},

where z is a group indicator, i.e., z = 0 for the control group
and z = 1 for a treatment group, and β is a corresponding
regression coefficient. Under this model, the median residual
life function is

θt0(z) =
1

ρ

{
exp(−βz) log(2) + (ρt0)

η
}1/η − t0, t0 ≥ 0. (12)

For the control group, failure times were generated from
(11). Failure times for a treatment group were generated from

Ti = (1/ρ){− exp(−β) log(1 − Ui)}1/η, i = 1, . . . , n.

Censoring times were generated from a uniform distribution
between c and 15, as before, where c is a constant controlling
for the censoring proportion. The parameter values for ρ and
η have been similarly fixed as 0.2 and 2. Rejected proportions
of the null hypothesis of H0 : τt0 = 1 were evaluated at the
significance level of 0.05, when the true values of β were 0.6
and 0.9. Note that, at the origin with t0 = 0, β = 0, 0.6,
and 0.9 correspond to the median residual lifetimes of 4.16,
5.62, and 6.53, respectively, from (12). Thus the true values
of τt0 corresponding to β = 0.6 and 0.9 are 1.35 and 1.57
relative to the control group. Table 2 summarizes the results
for the censoring proportions of 10%, 20%, and 30%. Overall,
the power tends to increase notably as sample size increases.
The censoring proportion has a slightly negative impact on
powers. Larger values of the fixed time points are associated
with lower powers, as expected, but again the power goes up
quickly as sample size increases.

5. Application to NSABP B-04 Data
The selection of an appropriate control group for a clinical
study is based on cumulative information for drugs that have
been identified as effective at the time when a study is de-
signed. As a result, it is not easy to find recent breast cancer
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Table 2
Empirical powers of the two-sample test statistic for comparing median residual lifetimes at the significance level of 0.05

Censoring Proportion

10% 20% 30%

n τt0 = 1.35 1.57 1.35 1.57 1.35 1.57

t0 = 0 50 0.408 0.796 0.392 0.769 0.351 0.711
100 0.767 0.983 0.712 0.980 0.639 0.960
200 0.976 0.999 0.964 0.999 0.951 0.999

t0 = 1 50 0.378 0.774 0.349 0.742 0.323 0.673
100 0.722 0.979 0.669 0.965 0.603 0.941
200 0.972 0.999 0.963 0.999 0.936 0.999

t0 = 2 50 0.316 0.676 0.273 0.617 0.245 0.549
100 0.644 0.946 0.584 0.920 0.508 0.884
200 0.931 0.999 0.897 0.999 0.849 0.995

t0 = 3 50 0.245 0.494 0.211 0.448 0.190 0.389
100 0.506 0.830 0.432 0.749 0.379 0.668
200 0.821 0.996 0.769 0.978 0.692 0.964

t0 = 4 50 0.172 0.341 0.157 0.295 0.144 0.284
100 0.337 0.603 0.285 0.509 0.231 0.459
200 0.638 0.896 0.553 0.825 0.490 0.763

studies that include, as one of their study arms, the placebo
group without any post-operative therapy. In that regard,
with more than a quarter century of follow-up, the informa-
tion contained in the NSABP B-04 data is often viewed as the
natural history of breast cancer because the study population
involves breast cancer patients who had been treated with
surgery (± radiotherapy) without any subsequent systematic
chemo- or hormonal therapies.

The NSABP B-04 study was designed to compare radi-
cal mastectomy with a less extensive surgery (total mastec-
tomy) with or without radiation therapy. A total of 1079
women with clinically negative axillary nodes underwent radi-
cal mastectomy, total mastectomy without axillary dissection
but with post-operative irradiation, or total mastectomy plus
axillary dissection if their nodes became positive. A total of
586 women with clinically positive axillary nodes underwent
either radical mastectomy or total mastectomy without ax-
illary dissection but with post-operative irradiation. Fisher
et al. (2002) reported an analysis of the 25-year follow-up up-
date of the B-04 data. About 90% of all patients were either
followed for at least 25 years or were known to have died
before that time. The treatment groups are well balanced in
terms of the percentage of patients with follow-up of less than
25 years. The proportion of patients still alive is very low af-
ter the long-term follow-up, i.e., less than 30% among node-
negative patients and less than 20% among node-positive pa-
tients. The results showed that there were no significant differ-
ences among the three groups of women with negative nodes
or between the two groups of women with positive nodes with
respect to disease-free survival and overall survival, implying
that the total mastectomy worked equivalently as the radical
mastectomy in both node-negative and node-positive breast
cancer patients.

In this example, the median residual lifetimes of breast can-
cer patients from the B-04 data are estimated and compared
retrospectively between node-negative and node-positive pa-
tients. Because there was no significant difference in overall

survival between radical mastectomy and total mastectomy in
each nodal group and the patients were not given any post-
operative therapies, this comparison between the two nodal
groups may be considered not being confounded by any treat-
ment effect. First, we estimate the median residual lifetimes
and their 95% confidence intervals every year in each nodal
group by solving equations (2) and (5). Then, at every other
year, the median residual lifetimes are compared between two
nodal groups by using the confidence interval approach in (7).
Even though the median follow-up time was close to 25 years
in this data set, the results presented here are only through
12 years, which was the maximum time point that allows the
median failure time to exist among survivors in both node-
negative and node-positive groups.

Figure 1 shows the estimated median residual lifetimes and
their pointwise 95% confidence intervals in node-negative and
node-positive patients, respectively. It is interesting to observe
that the median residual lifetimes in both groups are increas-
ing, i.e., during the first 5 years in node-negative group and
during the first 9 years in node-positive group. This may imply
that early deaths of the patients at high risk in both groups
possibly increase the median residual lifetimes among sur-
vivors. It also suggests that there exist notable differences be-
tween the two groups throughout about 10 years, even though
they tend to converge at the tail. Table 3 summarizes the ra-
tios of the two median residual lifetimes and their 95% con-
fidence intervals calculated from (7) at every other year. For
example, at year 4, the median residual life years among node-
negative and node-positive patients were 13.05 and 8.24, re-
spectively, resulting in the ratio of 0.63 with 95% confidence
interval of (0.49, 0.81). Overall, the results indicate that the
median residual lifetimes are significantly different between
node-negative and node-positive breast cancer patients up to
year 8 at the 5% significance level. Equivalently, any statis-
tically significant difference in median residual lifetimes be-
tween the two nodal groups fades away about 10 years after
surgery, if there is no systematic post-operative therapy.
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Figure 1. Estimated median residual lifetimes in node-
negative and node-positive breast cancer patients from
NSABP B-04 data.

Even though it is well known that the nodal status is one
of the most important prognostic factors in breast cancer, the
information achieved here may have value in that (i) there
exists no information on life expectancy among breast cancer
patients in terms of their remaining lifetimes as time pro-
gresses and (ii) the new information can be used as baseline
expectations for evaluating the efficacy of a systematic ther-
apy in terms of prolonging the patients’ remaining lifetimes.

As suggested by a referee, similar analysis has been per-
formed stratified by age group by using the test statistic (8).
The younger age group included the patients with age less
than or equal to 49, and the older group ones with age greater
than or equal to 50. The results showed that the difference in
median residual lifetimes between node-negative and node-
positive was still statistically significant in favor of the node-
negative group throughout 6 years, with p-values of <0.0001,
<0.0001, 0.00022, and 0.00035 at years 0, 2, 4, and 6, re-
spectively. Here, the maximum of the fixed time points could
be extended only to year 6 for the group comparison, due
to higher censoring proportion in younger age group among
node-negative patients, i.e., about 41% at t0 = 0.

Table 3
Estimated median residual lifetimes in node-negative and node-positive groups, the ratios, and 95% confidence intervals

for the ratios (NSABP B-04 data)

Median residual lifetime

t0 Node-negative Node-positive Ratio 95% CI

0 12.46 6.87 0.55 (0.49, 0.63)
2 12.44 6.93 0.56 (0.47, 0.70)
4 13.05 8.24 0.63 (0.49, 0.81)
6 13.40 8.75 0.65 (0.54, 0.81)
8 12.91 10.19 0.79 (0.66, 0.93)
10 12.48 9.66 0.77 (0.62, 1.00)
12 11.85 9.66 0.82 (0.63, 1.08)

6. Discussion
In this article, we have generalized Su and Wei’s test statis-
tic (1993), so that median residual lifetimes can be compared
at any given time point. The proposed method can be useful
when the efficacy of a drug needs to be evaluated in terms
of prolonging patients’ remaining lifetimes or delaying recur-
rence of an original disease in clinical trials. Simulation results
show that the proposed test statistic performs reasonably well
in terms of type I error probabilities and powers. By apply-
ing the proposed method to the NSABP B-04 data set, we
could estimate the pattern of change in median residual life-
times from each nodal group of breast cancer patients as time
progresses. The results indicate that significant difference in
median residual lifetimes between node-negative and node-
positive breast cancer patients disappears about 10 years after
surgery.

As pointed out by an associate editor, a potential limitation
of statistical modeling by using the median residual lifetimes
could be the effect of the proportion of censored observations,
because the median of failure times in the mixture distribu-
tion of failure and censoring times cannot be theoretically de-
fined when the minimum of the estimated survival curve does
not reach 0.5. As illustrated in our simulation study and real
data example, the median residual lifetimes can be only esti-
mated up to the maximum time point that allows the median
failure time to exist among survivors beyond that point. It
should also be noted that the comparison in median residual
lifetimes between two groups in our example has been per-
formed at each fixed time point, so that the results need to
be interpreted accordingly. To compare the median residual
life functions over the entire follow-up period based on our
results, the issue of multiple comparisons arises, which was
not addressed in this article.

Our theoretical results in Section 2.2 are based on the uni-
form consistency of the Kaplan–Meier estimator Ŝ(t) over
0 < t < ξ = sup{t : S(t)G(t) > 0}, which leads to a condition
that t0 + θt0 < ξ in our case. Here, ξ may be considered as the
maximum follow-up time, which has the lower bound t0 + θt0

assuming that the median residual lifetime θt exists at t = t0.
An important extension would be to develop a regression

model to take into account continuous prognostic factors for a
group comparison. For example, a model can be constructed
to compare median residual lifetimes between two groups at
a given time, adjusting for age at entry, number of positive
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lymph nodes, tumor size, and estrogen receptor level as con-
tinuous variables. In some cases, however, it may be more ap-
propriate to apply the median residual life regression model
not just at fixed time points but over the entire support re-
gion as in Gelfand and Kottas (2003) and Chen et al. (2005),
which requires semiparametric model assumptions such as ac-
celerated life or proportional median residual life. This issue
is under further investigation.

7. Supplementary Materials
The derivation of the distribution of Qt0(τt0,0) in Section 3 is
available under the Paper Information link at the Biometrics
website http://www.tibs.org/biometrics.
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