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Using Boundary Conditions
to Account for Mean Flow
Effects in a Zero Mach
Number Acoustic Solver
The present study is devoted to the modeling of mean flow effects while computing ther-
moacoustic modes under the zero Mach number assumption. It is first recalled that the
acoustic impedance modeling of a compressor or a turbine must be prescribed under an
energetical form instead of the classical acoustic variables. Then we demonstrate the fea-
sibility to take into account the coupling between acoustic and entropy waves in a zero
Mach number framework to capture a family of low frequency entropic modes. The pro-
posed approach relies on a new delayed entropy coupled boundary condition (DECBC)
and proves able to capture a family of low frequency entropic mode even though no mean
flow term is included in the fluctuating pressure equation. [DOI: 10.1115/1.4007198]

1 Introduction

Lean premixed combustor systems in aero-engines are promis-
ing devices to meet the future NOx emission reduction require-
ments. However, they are also more prone to combustion
instabilities compared to classical combustors [1]. These oscilla-
tions of the flow may lead to many undesirable effects, such as
large-amplitude structural vibrations, flame flashback or blowoff,
or an abnormally high temperature of the wall of the combustor.
In the best case, the consequences would be a simple loss of per-
formance or a premature fatigue of materials. In the worst case, a
spectacular destruction of the system can occur. Consequently,
there is a need to better understand combustion instabilities and to
be able to predict them at the design level.

Several methods have been developed to study these instabil-
ities, such as low-order methods [2,3] which solve only the unidi-
mensional acoustic problems, or at the opposite the large eddy
simulation (LES) which solves numerically the complete flow
thanks to the reactive Navier-Stokes equations. As an intermedi-
ate, the problem complexity can be reduced by the derivation of
the linearized Euler equations (LEE) which neglect viscous
effects, or by the derivation of the Helmholtz equation when
neglecting the mean flow motion. Although this last method may
be a crude simplification of the problem, this approach combined
with LES proved useful to better understand the structure and
nature of the instabilities observed in academic or industrial
burners [4].

Although it is tempting to restrict the study of the behavior of
thermo-acoustic instabilities to only the combustion chamber, it is
however important to take into account the proper acoustic envi-
ronment of the gas turbine, as for example the presence of a com-
pressor or a high pressure distributor. Since it is difficult to
simulate the whole configuration, a possibility is to reduce the
computational domain to only the flame tube where the mean
Mach number is approximately zero ðM ¼ 0Þ while the compres-
sor and the turbine are modeled by prescribing appropriate
complex valued impedances at the boundaries.

At least two difficulties arise when using a Helmholtz solver
(thus assuming M ¼ 0) for the combustion chamber and boundary
impedances to represent the upstream/downstream environment:

• In order to match the zero Mach number assumption used to
formulate the thermo-acoustic problem, the impedance
should be defined in theory in a section of the combustion
chamber where the Mach number is very small. In practice,
the location of the outlet section is often imposed by geomet-
rical considerations and the effective Mach number at the
boundary is not necessarily very small.

• Three modes of fluctuations can perturb a steady baseline flow
[5]: acoustic perturbations propagates at the speed of sound aug-
mented by the local mean velocity while vortical and entropy
perturbations are simply convected by the mean flow. As a con-
sequence, the zero Mach number assumption necessarily neglect
the convection of entropy or vorticity spots to the downstream.
As shown by many authors [6–9], entropy inhomogeneities gen-
erate acoustic waves when accelerated in a mean flow pressure
gradient, which is the case when the combustor opens onto a
high pressure distributor. Acoustic waves transmitted through
the distributor generate indirect combustion noise, while acous-
tic waves traveling back to the flame may generate a low
frequency resonant mode called rumble [10,11].

It has been demonstrated in a previous study [12] that the zero
Mach number assumption for the mean flow can lead to significant
errors both in the prediction of the frequency and the growth rate
of the thermo-acoustic mode, suggesting that the two points
described above are of major importance. Since accounting for
the nonzero Mach number terms in the equations leads to a drastic
increase of the problem complexity [13], the aim of this paper is
to investigate an alternative approach where the thermo-acoustic
problem in the domain is still solved under the zero Mach number
assumption and the coupling with the convective quantities is
modeled through an appropriate downstream boundary condition.

The basic equations are recalled in Sec. 2, while in Sec. 3 the
proper way to couple a Helmholtz solver with an analytical and/or
numerical tool for the computation of the upstream/downstream
boundary impedance is discussed. In Sec. 4 we demonstrate the
feasibility to take into account the coupling between acoustic and
entropy waves in a zero Mach number framework and to capture a
family of low frequency entropic modes. The analysis focuses on
the configuration of a simple tube containing a flame and where a
shocked nozzle is located downstream.

2 Mathematical Formalism

This study is conducted in the frequency domain, i.e.,
g0ðx; tÞ ¼ < ĝðxÞe�jxtf g for any fluctuating quantity; it also
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focuses on unidimensional configurations so that only purely lon-
gitudinal acoustic and entropy convection effects are present.
Consequently, vorticity perturbations and their interactions
with the acoustics are neglected in the remainder of the whole
study.

2.1 Linearized Euler Equations for the Eigenvalue
Problem. For a homogeneous reacting mixture with constant
heat capacities Cp and Cv, the linearized harmonic form of conser-
vation equations for mass, momentum, and energy in a quasi-1D
domain of cross section area SðxÞ read, respectively,
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ŝ

Cv
¼ p̂

p0

� c
q̂
q0

(4)

Assuming that the unsteady heat release amplitude q̂ is modeled
as a linear operator, i.e., q̂ ¼ qq̂q̂þ qûûþ qŝŝ, Eqs. (1)–(3) define
an eigenvalue problemMW ¼ jxW, whereM is:
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qŝ

2
666666664

3
777777775

(5)

and ðx;WÞ the eigenpair, the eigenvector being W ¼ ðq̂; û; ŝÞT ,
S the varying area section, and T ¼ ðc� 1ÞT0.

2.2 Plane Waves in an Homogeneous Media. In the case of
a 1D domain with homogeneous baseline flow, the following
expressions can be obtained [14] for the complex amplitudes,

p̂ðxÞ ¼ Aþejkþx þ A�e�jk�x (6)

ûðxÞ ¼ 1

q0c0

½Aþejkþx � A�e�jk�x� (7)

ŝðxÞ ¼ rejksx (8)
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where Aþ and A� are the amplitudes of the forward and backward
propagating acoustic waves, respectively, r is the amplitude of
the forward propagating entropic wave, k ¼ x=c0 is the acoustic
wave number, and M is the Mach number. It should be noted that
Eq. (8) represents an idealistic situation where the spatial diffu-
sion of entropy spots is neglected. Although this situation is not
supported by previous studies [15], it is judged appropriate for
this proof of concept study.

Injecting the above expression of entropy into Eq. (4) leads to
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Equations (6), (7), and (11) describe the harmonic small amplitude
perturbations in the domain. Relations between complex valued
amplitudes Aþ, A�, and r are prescribed by boundary conditions
and jump relations through the interfaces.

3 Influence of the Boundary Impedance on Thermo-

Acoustic Eigenfrequencies

When studying the acoustic behavior of a combustor by com-
puting the eigenmodes thanks to a Helmholtz solver, appropriate
boundary conditions must be used in order to represent the acous-
tic environment. Upstream/downstream impedances can be
deduced from transfer functions describing the response of acous-
tic elements to acoustic or entropic perturbations, either analyti-
cally under the compact hypothesis [16] or numerically by solving
the LEEs [17]. The impedance should be defined in a section of
the combustion chamber where the Mach number is very small,
consistently with the zero Mach number assumption which is
valid when M� Lf =La, where Lf is the thickness of the reaction
zone and La is the typical acoustic wavelength. Since this is not
always the case in practice, there is a need to quantify the errors
inherent to this practice when the outlet/inlet Mach number is not
very small.

The configuration considered is shown in Fig. 1(a). It consists
of two connected tubes of section S1 and S2. The subscripts 1 and
2 refer to parameters in the left and right tube, respectively. Only
isentropic fluctuations are considered (the inlet boundary condi-
tion is s0 ¼ 0 and there is no entropy source within the flow
domain).

The eigenmodes of this simple configuration are computed by
four different methods to assess the errors made when the
boundary Mach number increases and deduce the proper way to
prescribe boundary impedance.

3.1 Method A0: Numerical Results From the LEEs. The
LEEs presented in Sec. 2.1 are solved numerically so as to provide
a reference solution accounting for mean flow effects and the
complete geometry [12].

3.2 Method A1: Global Acoustic Model. The forward and
backward waves traveling in both tubes lead to four unknown Aþ1 ,
A�1 , Aþ2 , and A�2 . These waves are solutions of an homogeneous
linear system of equations obtained by requiring that the boundary
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conditions and jump relations are fulfilled. The two boundary con-
ditions form a first set of relations between wave amplitudes. A
constant mass-flow rate m01 ¼ 0 is imposed at the inlet x ¼ 0 of
the domain, while the outlet at x ¼ L is modeled by an acoustic
open-end, so that p02 ¼ 0. Introducing the plane wave decomposi-
tion of pressure and velocity fluctuations leads to

Aþ1 1þM1ð Þ � A�1 1�M1ð Þ ¼ 0 at x ¼ 0 (12)

Aþ2 ejkþ
2

L þ A�2 e�jk�
2

L ¼ 0 at x ¼ L (13)

As explained in [14] the jump relations for the section change
located at x ¼ l can be expressed by integrating over an infinitesi-
mal control volume the conservation of mass (Eq. (1)) where the
time averaged mass flux term has been subtracted, and energy
(Eq. (3)) as long as the specific stagnation enthalpy within the vol-
ume remains invariant. The following set of equations is then
obtained:
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One obtains the algebraic system MW ¼ 0, where M is defined
as
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where Mþ1 ¼ ð1þM1Þ, M�1 ¼ ð1�M1Þ, Mþ2 ¼ ð1þM2Þ,
M�2 ¼ ð1�M2Þ, and W ¼ ðAþ1 ;A�1 ;Aþ2 ;A�2 Þ

T
. The dispersion

relation is then obtained by requiring the matrixM to be singular,
producing the solution of the acoustical problem.

3.3 Method A2: Modeling of the Section Change by an
Impedance. As shown in Fig. 1(b) the computational domain is
reduced to the region between the inlet x ¼ 0 where the boundary
condition is still m01 ¼ 0 and x ¼ lz < l where the impedance Zac

is imposed. The algebraic system described at Eq. (16) reduces to
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The impedance Zac is defined by

Zac ¼
1þ Rac

1� Rac
(18)

where Rac ¼ A�1 =Aþ1 is the coefficient of reflection defined as the
ratio between the reflected and the incident wave. The transfer
function of the modeled part of the domain lz < x < Lð Þ can be
found by setting Aþ1 to unity so as to express A�1 . After cumber-
some but straightforward algebra, Eq. (16) leads to
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3.4 Method A3: Zero Mach Number Domain. Method A3
is similar to method A2 as described above. The only difference is
the use in the computational domain of a wave number k derived
under the zero Mach number assumption instead of k6 and M1 is
set to zero in Eq. (17). The relation Aþ1 � A�1 ¼ 0 is now imposed
at x ¼ 0. Moreover, the expression of the impedance Zac and the
reflection coefficient Rac remains unchanged. Thus, Eq. (17)
becomes

1 �1

ð1� ZacÞejk1lZ ð1þ ZacÞe�jk1lZ

� �
Aþ1
A�1

� �
¼ 0 (22)

3.5 Results. Thermodynamic and geometrical parameters
used for the computation of eigenmodes are presented in Table 1.
The temperature T1 and pressure P1 are imposed to the computa-
tion, while these parameters with the subscript 2 are deduced from
the steady mean flow equations.

Results are presented in Table 2. As expected, comparisons
between method A0 and the global acoustical model (method A1)
give very satisfying results. Real and imaginary parts of the fre-
quency of the first eigenmode are both very close when computed
at different inlet Mach number M1. The small but existing differ-
ence can be explained by the fact that the length of the section
change between S1 and S2 is not zero in the LEE solver but close
to x ¼ 0:5 mm.

Comparisons between methods A1 and A2 prove that truncat-
ing the computational domain while modeling the unresolved part

Table 1 Thermodynamic and geometrical parameters used in
the configuration

S1 S2 T1 P1 c r L l lZ

0:05 m2 0:1 m2 300 K 101325 Pa 1:4 287 SI 1 m 0:99 m 0:98 m

Fig. 1 Configuration A investigated in Sec. 3. (a) The complete
geometry is computed. (b) Only a part of the tube 1 is computed
while the rest of the domain is modeled through downstream
impedance.
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through an impedance gives exactly the same results. Based on
this observation, the influence of the zero Mach number assump-
tion can be isolated. Computations with method A3 are chosen so
as to represent the extreme case where 98% of the domain is
solved with a zero mean flow. It is obvious that in such configura-
tion the real part of the frequency fM computed with Mach number
effects will be very close to the one (f0) computed at very low
Mach number. As shown in [12] a relation between frequencies
can be found, so that fM � ð1�M2Þf0. Verification of this relation
with results of Table 2 is rather straightforward. The imaginary
parts computed from method A3 suggest that energy is entering
into the domain while the Mach number increases. This observa-
tion is in contradiction with results from the reference methods
which show that the first mode is always damped fi < 0ð Þ. The
solid line in Fig. 2 shows the modulus evolution of the reflection
coefficient for different inlet Mach numbers M1 (note that jRacj
does not depend on the frequency according to Eq. (19)). It is
obvious that nonphysical energy growth is generated because the
ratio between the reflected wave and the incoming wave is supe-
rior to unity. As explained in [18], jRacj can exceed unity at a criti-
cal Strouhal number where vortical energy is generated
downstream of an abrupt change in the geometry of a pipe. As
vorticity is neglected in the present study, another explanation
must be provided.

3.6 Boundary Conditions: From a Nonstationary Flow
Formalism to a Zero Mach Number Formulation. As shown
by many authors [6,19], the classical derivation of acoustic distur-
bances must be reformulated to take into account the convection
of mechanical work by the mean flow. The starting point is to find
an appropriate expression of the energy flux through a boundary
[9], using fluctuating stagnation enthalpy J0 and mass flow rate m0

as state variables. A mathematical proof of the accuracy of such a
choice for generalized acoustic field may be found in [20].

Defining first the total enthalpy J ¼ CpT þ 1
2
u2 and the mass

flow rate m ¼ qu, the linearized isentropic fluctuating part of
these variables reads

Ĵ ¼ p̂

q0

þ u0û (23)

m̂ ¼ q0ûþ u0q̂ with q̂ ¼ p̂

c2
0

(24)

Reformulation of Eqs. (23) and (24) with the plane wave expan-
sion of the pressure (Eq. (6)) and velocity (Eq. (7)) leads to

Ĵ ¼ Jþ þ J� ¼ Aþð1þMÞejkþx

q0

þ A�ð1�MÞe�jk�x

q0

(25)

m̂ ¼ mþ þ m� ¼ Aþð1þMÞejkþx

c0

� A�ð1�MÞe�jk�x

c0

(26)

The methodology to express in a general manner a boundary
condition in the zero-Mach number framework is described as
follows:

1. The boundary condition must be prescribed first with ener-
getic variables without neglecting the mean flow, defining
then a functional f ðĴ; m̂; ŝÞ ¼ 0 linking the fluctuating varia-
bles Ĵ (total enthalpy), m̂ (mass), and ŝ (entropy). Expanded
each fluctuating quantity into waves (see Eqs. (25), (26), and
(8)), the boundary condition is written under the form,

gðJþ; J�;mþ;m�;rÞ ¼ 0 (27)

2. When the computational domain is represented under the
zero Mach number assumption, the functional f ðĴ; m̂; ŝÞ ¼ 0
describing the boundary condition remains unchanged. How-
ever, the energetic variables Ĵ, m̂, and ŝ must be then
expressed at the limit when M ! 0. It comes

Ĵ ¼ p̂

q0

m̂ ¼ q0û ŝ ¼ 0 (28)

As far as the waves are concerned, Eqs. (25) and (26) become
when M! 0,

Jþ ¼ Aþejkx

q0

; J� ¼ A�e�jkx

q0

mþ ¼ Aþejkx

c0

; m� ¼ �A�e�jkx

c0

(29)

Thus, the functional relationship representing the boundary condi-
tion under the zero Mach number assumption becomes

g
Aþejkx

q0

;
A�e�jkx

q0

;
Aþejkx

c0

;�A�e�jkx

c0

; 0

� �
¼ 0 (30)

As an illustration, this methodology is now applied to the bound-
ary conditions used in the present study:

Boundary Condition. m̂ ¼ 0: For that case, the functional
f ðĴ; m̂; ŝÞ ¼ 0 is m̂ ¼ 0. Reformulating this condition using waves
Jþ, J�, mþ, m� and introducing the limiting behavior when
M ! 0 leads to

mþ þ m� ¼ 0 (31)

Aþ

c0

� A�

c0

¼ 0 (32)

At the boundary where m̂ ¼ 0, the input energetical reflection
coefficient Re defined as the ratio between the reflected wave Aþ

Fig. 2 Modulus of the reflection coefficient as a function of
inlet Mach number M1. Solid line: Acoustical formulation.
Dashed line: Energetical formulation.

Table 2 Results for the first eigenmode with methods A0, A1,
A2, A3 with Rac and A3* with Re , for different inlet Mach number
M1

M1 0:0005 0:1

A0 87:154� 0:007i 86:37� 1:360i
A1 87:233� 0:007i 86:367� 1:364i
A2 87:233� 0:007i 86:367� 1:364i
A3 (Rac) 87:233þ 0:0208i 87:226þ 4:194i
A3* (Re) 87:233� 0:0007i 87:226� 1:377i
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and the incident wave A� becomes Re ¼ 1, which may be viewed
as Re ¼ Rac where Rac is the classical acoustical reflection coeffi-
cient, which is þ1 for û ¼ 0. This result explains in a proper way
the validity of û1 ¼ 0 as a choice for the input boundary condition
in method A3.

Boundary Condition. p̂ ¼ 0: Combining Eqs. (23) and (24)
with p̂ ¼ 0 leads to the functional f ðĴ; m̂; ŝÞ ¼ 0,

Ĵ � u0

q0

m̂ ¼ 0 (33)

Reformulating with waves and using the limiting behaviors
Eq. (29) leads to

Jþ þ J�ð Þ ¼ u0

q0

mþ þ m�ð Þ (34)

Aþ 1�Mð Þ ¼ �A� 1þMð Þ (35)

At the boundary where p̂ ¼ 0, the energetical reflection coefficient
Re defined as the ratio between the reflected wave A� and the inci-
dent wave Aþ becomes Re ¼ � 1�Mð Þ= 1þMð Þð Þ which may be
viewed as

Re ¼
1�M

1þM

� �
Rac (36)

where Rac is the classical acoustical reflection coefficient, which
is �1 for p̂ ¼ 0. This latter result can be directly applied to
Eq. (19). Injection of Re into 18 leads to an energetical impedance
which takes the form of a ratio between stagnation enthalpy and
mass fluctuations,

Ze ¼
q1

c1

Ĵ

m̂
(37)

The dashed line in Fig. 2 shows the evolution of jRej as a function
of inlet Mach number M1. As discussed in [18], the reflection
coefficient Re defined with the acoustical energy formulation is
always equal or inferior to unity, suggesting that the continuity of
the energy at the control surface is respected.

Computation of eigenmodes are now performed with Re instead
of Rac. Results are presented in Table 2 under the column A3�.
Eigenfrequencies computed with a reflection coefficient based on
the acoustic energy description are very close to the ones com-
puted with the reference methods (A0 and A1). As the real part of
the frequency remains unchanged whatever the choice of the for-
mulation of R, it suggests that the absorption of acoustical energy
is included only through the formulation of the impedance. The
small discrepancies between the reference solution and method
A3 with Rac are related to the length of the domain where the
Mach number is neglected. Actually, it can be shown that the fre-
quency tends to the reference solution when lZ approaches x ¼ 0.
Such results demonstrate that the impedance must be prescribed
under an energetical form in order to obtain an appropriate repre-
sentation of the whole configuration in the case where the domain
is computed under the zero Mach number assumption.

4 Accounting for Entropy Convection in a Zero Mach

Mean Flow

The acoustic waves generation when entropy inhomogeneities
are accelerated in a nonuniform flow is a well-known phenom-
enon that has been extensively studied over the past decades.
Early analytical investigations deal with the development of the
jet noise theory, extending the work of Lighthill to nonuniform
density flows [6–8]. However, these analytical solutions were lim-
ited to low Mach number flows and focused on the derivation of a
formulation for the far-field sound radiation into free space by

inhomogeneities swept out of the nozzle orifice. In a different
way, Marble and Candel [16] proposed a one-dimensional theory
based on the compact assumption (the nozzle dimensions are
small in comparison with the shortest wave length that appears in
the flow field). The nozzle may be viewed as a duct discontinuity
and simple relations between upstream/downstream acoustic and
entropy waves can be written. Validation of such a theory has
been provided recently [21] by comparisons with experiments.

The effect on thermoacoustic instabilities of the presence of a noz-
zle at the combustor exit is not obvious. As reviewed by [22] some
authors found no difference on the thermoacoustic modes of their
combustor whatever the type of exit used, while other authors [23]
reported that a strong low-frequency instability occurred when the
open exit was replaced by a chocked nozzle. As explained by [22],
the behavior of such an instability depends to the first order on the
geometry. The spatial dispersion of entropy fluctuations by the com-
bustor aerodynamics [15] or the constructive/destructive phase
dependency [10] play an important role for the establishment of a
coupling between acoustic and entropy modes.

The configuration depicted in Fig. 3 has been chosen in order to
exhibit the presence of an entropy mode among acoustic modes.
A flame is located at x ¼ xf , which constitutes an interface
between cold gas and hot gas. A chocked nozzle is located at
x ¼ L while the sonic throat where the Mach number reaches
unity is located at x ¼ xth. A similar methodology to the previous
section is employed by comparing three methods.

4.1 Method B0: Numerical Reference Method. Method B0
is strictly the same as method A0 presented above in Sec.2.1 [12].
Both the combustor and the nozzle are computed. The thickness
of the flame is 0:005 m.

4.2 Method B1: Global Thermoacoustic Model. Five equa-
tions are required to express the global thermoacoustic model. The
flame is considered infinitely small, allowing the integration of con-
servation equations (1)–(3) over the discontinuity. At a first approxi-
mation and in the case where the two connected ducts share the same
cross section S, this leads to the following set of jump relations [2]:

q1û1 þ u1q̂1 ¼ q2û2 þ u2q̂2 (38)

p̂1 þ 2q1u1û1 þ u2
1q̂1 ¼ p̂2 þ 2q2u2û2 þ u2

2q̂2 (39)

CpT01 q1û1 þ q̂1u1ð Þ þ q1u1 CpT̂1 þ u1û1

� �
¼ CpT02 q2û2 þ q̂2u2ð Þ þ q2u2 CpT̂2 þ u2û2

� �
(40)

where Eq. (3) has been reformulated to express the total energy
under a conservative form and the total unsteady heat release has
been neglected. The mean stagnation temperature is
T0i ¼ Ti þ 1

2
u2

0i=Cp where the subscript i ¼ 1; 2 refers to cold and
hot gas, respectively.

The inlet and outlet boundary conditions form the last two
equations that are closing the problem. At x ¼ 0, the boundary
condition imposed is m̂1 ¼ 0. As recalled by [21], the compact
relation that models the supersonic chocked nozzle at x ¼ L reads

Fig. 3 Configuration B investigated in Sec. 4
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û2ðLÞ
c2

� c� 1

2

� �
M2

p̂2ðLÞ
cP2

� 1

2
M2

ŝ2ðLÞ
Cp
¼ 0 (41)

Using the usual plane wave expansions and Eqs. (38)–(41), the
eigenfrequencies of the problem are computed by solving
detðMÞ ¼ 0, whereM is the matrix,

Mþ1 ejkþ
1

xf �M�1 e�jk�
1

xf �Mþ2
c1

c2

ejkþ
2

xf M�2
c1

c2

e�jk�
2

xf M2

c1

c2

Mþ2
1 ejkþ

1
xf �M�2

1 e�jk�
1

xf �Mþ2
2 ejkþ

2
xf M�2

2 e�jk�
2

xf M2
2

M31 M32 M33 M34

M3
2

2

Mþ1 �M�1 0 0 0

0 0 T mejkþ
2

L �T pe�jk�
2

L �M2

2
ejksðL�xf Þ

2
6666666666664

3
7777777777775

(42)

M31 ¼
c1

c2

Mþ1 M1 þ 1=ðc� 1Þ þM2
1=2

� 	� �
ejkþ

1
xf

M32 ¼
c1

c2

M�1 M1 � 1=ðc� 1Þ �M2
1=2

� 	� �
e�jk�

1
xf

M33 ¼ � Mþ2 M2 þ 1=ðc� 1Þ þM2
2=2

� 	� �
ejkþ

2
xf

M34 ¼ � M�2 M2 � 1=ðc� 1Þ �M2
2=2

� 	� �
e�jk�2 xf

with Mþ1 ¼ ð1þM1Þ, M�1 ¼ ð1�M1Þ, Mþ2 ¼ ð1þM2Þ,
M�2 ¼ ð1�M2Þ, Tm ¼ ð1� c� 1ð Þ=2ð ÞM2Þ and T p ¼ ð1þ c�ðð
1Þ=2ÞM2Þ.

4.3 Method B2: Delayed Entropy Coupled Boundary
Condition Approach. Combining Eqs. (11), (38), and (40), and
taking the limit u! 0 while the product u2ŝ remains finite [2],
one obtains the following expression for the entropy produced by
the flame:

ŝ2ðxf Þ ¼ �
C2

p T02 � T01ð Þ c� 1ð Þ
u2c2

2

q1

q2

û1ðxf Þ (43)

Entropy fluctuations at the exit x ¼ L may be analytically
expressed by the addition of a time delay that mimics the mean
flow convective effect,

ŝ2ðLÞ ¼ ŝ2ðxf Þejxss with ss ¼
L� xf

u2

(44)

The methodology explained in the previous section is applied to
Eq. (41), by reformulating this boundary condition thanks to an
energetical and isentropic functional f ðĴ; m̂; ŝÞ ¼ 0. It becomes

m̂
c2 þ 1=2ðc� 1ÞM2u2

ð1�M2
2Þ

� �
� Ĵ

q2M2 þ 1=2ðc� 1ÞM2q2

ð1�M2
2Þ

� �

� 1

2
M2q2c2

2

ŝ2

Cp
¼ 0

Reformulating this equation by using waves and injecting the
limiting behaviors Eq. (29) leads to

Aþ

1þM2

1� 1

2
c� 1ð ÞM2

� �
� A�

1�M2

1þ 1

2
c� 1ð ÞM2

� �
¼ 0

(45)

This condition handles properly the acoustic reflection that arises
when a nozzle is connected to a domain computed under the zero

Mach number assumption. However, it does not represent the en-
tropy/acoustic coupling since r was set to zero in agreement with
Eq. (29). This is the objective of the DECBC approach to model
the effect of the accelerated entropy fluctuations on the acoustics
within the zero Mach number region. To this purpose, the mod-
eled entropy at the domain exit, Eq. (44), is injected into Eq. (45)
while keeping the energetical form given by the functional at Eq.
(45). Expressing û1ðxf Þ in terms of waves Aþ1 and A�1 allows us to
write the following condition at x ¼ L:

Aþ1 bejk1xf
� 	

� A�1 be�jk1xf
� 	

þ Aþ2

ð1� c� 1

2
M2Þejk2L

1þM2

2
64

3
75

� A�2

ð1þ c� 1

2
M2Þe�jk2L

1�M2

2
64

3
75 ¼ 0

(46)

with

b ¼ 1

2
Cp
ðT2 � T1Þðc� 1Þ

c1c2

ejxss (47)

As in the previous section, the proper inlet boundary condition
leads to Aþ1 � A�1 ¼ 0. Finally, the problem defined by the matrix
of Eq. (42) reduces to Eq. (48),

ejk1xf

q1c1

� e�jk1xf

q1c1

� ejk2xf

q2c2

e�jk2xf

q2c2

ejk1xf �e�jk1xf �ejk2xf �e�jk2xf

1 �1 0 0

bejk1xf �be�jk1xf

ð1� c� 1

2
M2Þejk2L

1þM2

�
ð1þ c� 1

2
M2Þe�jk2L

1�M2

2
666666666664

3
777777777775

(48)

Consistently with the no flow approximation, Mach numbers M1

and M2 do not appear in the first two rows which describe the
wave propagation within the cold and burnt gases.

4.4 Results. Thermodynamic parameters used in the compu-
tation of eigenmodes of the configuration B are presented in
Table 3.

Results are presented in Tables 4 and 5. The Mach number M2

downstream of the flame is a free parameter driving the system,
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which is computed directly by the equations with methods B0 and
B1, and prescribed in the boundary condition formulation with
method B2. The behavior of the real part of the first eigenfre-
quency computed with methods B0, B1, and B2 show a strong de-
pendency on the mean flow Mach number. The real part of the
frequency is proportional to the convective time delay of the flow,
suggesting that this eigenmode is of entropic nature. The second
eigenmode computed does not present the same behavior and the
real part of the frequency is approximately the same whichever
the method used or the Mach number prescribed. As shown in
Sec. 3, the influence of increasing the mean flow velocity is to
damp the imaginary part, suggesting the presence of an acoustic
eigenmode.

A good agreement is found between analytical methods B1
and B2 and the numerical reference method B0, except that this
last one mispredicts the imaginary part of the eigenmodes and
underpredicts the real part of acoustic eigenfrequencies. Such
discrepancies can be explained by the fact that method B0 solves
the whole domain (the combustor plus the nozzle), while meth-
ods B1 and B2 are limited by the low-frequency compact model
which does not take into account the length of the nozzle or the
phase shift between incoming and reflected waves [24]. How-
ever, such a simplified model shows at the first order that the use
of a DECBC is able to capture both entropic and acoustic
eigenmodes and to predict them correctly, despite the fact that
the mean flow is neglected during the computation of the
domain. In order to illustrate the effect of the coupling with
entropy, methods B1� and B2� present the computation of
eigenmodes with a purely acoustic boundary condition, i.e., the
coupling with entropy waves has been neglected in Eq. (41) (this
means using Eq. (45) instead of Eq. (46)). Obviously the entropic
mode does not appear in this case. The growth rate of the acous-
tic mode is significantly mispredicted, suggesting that the cou-
pling between entropy and acoustic fluctuations exhibit a strong
unstable thermoacoustic mode, while purely acoustic analysis
shows a stable eigenmode.

5 Conclusions

The present study is devoted to the modeling of mean flow
effect while computing thermoacoustic eigenmodes under the
zero Mach number assumption. It has been shown that

• When the computational domain is represented under the no
flow assumption, the acoustic impedance modeling a com-
pressor or a turbine must be prescribed under an energetical
form rather than from the classical acoustic variables. A sys-
tematic methodology is proposed to generate the proper
reflection coefficient to impose given any physical boundary
condition written without the zero Mach number assumption.

• The coupling between entropy and acoustic waves at the en-
trance of a nozzle generates a low frequency eigenmode and
a shift of higher frequency modes that does not appear when
the mean flow convective effects are neglected. Such phe-
nomena can be taken into account thanks to the proposed
methodology where a zero Mach number formulation is used
together with a delayed entropy coupled boundary condition.

Nomenclature

Aþ, A� ¼ amplitudes of forward and backward acoustic waves
Cp ¼ heat capacity per mass unit at fixed pressure
Cv ¼ heat capacity per mass unit at fixed volume

J ¼ total enthalpy
M ¼ Mach number
R ¼ reflection coefficient
Z ¼ complex impedance
c ¼ sound celerity
k ¼ wave number

m ¼ mass flow rate
p ¼ static pressure
q ¼ heat release per unit volume
s ¼ entropy per mass unit
u ¼ velocity vector
q ¼ density
ĝ ¼ complex amplitude of the fluctuating quantity g

DECBC ¼ delayed entropy coupled boundary condition
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