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A cognitive radio (CR) device likely consists of a low-cost low noise amplifier (LNA) due to the mass-production reason.
Nevertheless, the operation of a low-cost LNA becomes highly nonlinear causing intermodulation (IM) interference. The most
important task of CR devices is to sense the wideband spectrum to increase opportunistic throughput. In noncooperative secondary
networks, the IM interference usually can be ignored for the narrowband spectrum sensing, while the IM interference needs to be
taken into account along with interference from other CR devices in the wideband case. Our contribution is to study the effects of
a nonlinear LNA for the second case in environments modeled by Poisson field of interferers reflecting more realistic scenario. As
shown in the simulation results, the performance of the receiver is degraded in all the cases due to the nonlinearity of LNA. The
adaptive threshold setting based on the multivariate Gaussian mixture model is proposed to improve the receiver performance.

1. Introduction

The number of wireless devices is growing constantly. One
common reason is the increasing mobile penetration; that is,
the costs of access and devices, for example, smart phones
and tablets, are coming down. No matter what the device
is, it utilizes radio frequency (RF) spectrum as its channels
for its communications. As a result, RF spectrum plays a
very important role in wireless communications.The current
RF allocation, which is used by the federal communications
commission (FCC), defines specific RF bands for specific
uses. For example, there are RF bands allocated for cellular
communications, military communications, marine, ampli-
tude modulation (AM)/frequency modulation (FM), and so
forth. This method of frequency allocation results in heavy
utilization of some RF bands and very poor utilization of
some other RF bands [1]. Hence, the efficient utilization
of RF spectrum is a major challenge in today’s wireless
communication systems.

CR is a software defined radio (SDR) that has the ability
to sense the environment and adjust its RF parameters to
provide opportunistic access to secondary user (SU) on the
frequency band of primary user (PU). In the context of CR,
PUs or licensed users are those who have legacy right for
the frequency band and SUs are those who opportunistically
access the frequency band of PU. Since CRs are secondary
users, one of the requirements of CR is to reliably detect the
existence of PU in a given frequency band before actually
utilizing that band for communication purpose. The other
requirement is that when utilizing the frequency band of PU,
it is very important for CR that they do not interfere with the
PU. This requirement leads to the spectrum sensing as the
first and most crucial task of CR.

The CR front-end can support either narrowband or
wideband spectrum sensing. In narrowband spectrum sens-
ing, a very narrowband of spectrum is sensed to decide if
what is sensed is really signal with noise or just noise. If
the band consists of signal with noise the secondary user
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is prohibited to use that band and is allowed if the band
consists of only noise. While in the present CR performs
narrowband spectrum sensing, in the long run, the CR
needs to perform sensing over wide range of frequency
increasing the overall opportunistic throughput [2]. Wide-
band spectrum sensing senses spectral opportunities in a
wide range of frequency. Determining spectral holes in
wideband spectrum can be done using channel by channel
scanning approach [3]. But this method of detecting spec-
trum holes requires an RF front-end with many tunable nar-
row band-pass filters. This results in higher implementation
complexity. As a result, a direct conversion receiver (DCR)
has become very common as receiver for wideband spec-
trum sensing. Although superheterodyne receiver is also an
alternative solution, several advantages of DCR, for instance,
the circumvention of the image problem, no use of image
filter, and surface acoustic wave (SAW) filter [4], over the
superheterodyne technique make it suitable for CRs. There-
fore, theDCR is generally preferred over the superheterodyne
receivers.

A received signal in wideband spectrum sensing has
high dynamic range; as a result, the receiver operates at
the nonlinear region. This causes nonlinear distortion and
adversely affects the sensing decision of the spectrum sensing
algorithms.The components that give rise to the nonlinearity
property in theDCRare anRFfilter, an LNA, and amixer.The
nonlinear distortion is caused by IM and cross-modulation
(XM) terms that occur when the signal passes through the
nonlinear components of the receiver. These terms might fall
within the region of the desired signal in case of the wideband
spectrum sensing. It is noted that these IM distortion (IMD)
terms cannot be filtered out as in the narrowband sensing case
since these terms overlap with the PU signal being sensed.
Among other components in the DCR, the most significant
source of nonlinearity is LNA [5].

With regard to interferencemodeling in a CR application,
the interference from a CR network to a PU network has
received a lot more attention in the literature [6, 7]. This
is obvious since the CR users must not interfere with the
PU. The study of interference from PUs to a CR network
has been reported in a number of papers [8, 9]. In [9], they
study the interference to a CR network due to several PUs
and derive outage probability distribution for the entire CR
network. It does not consider the effect of the intranetwork
interference on a single CR sensing node.The performance of
only a single spectrum sensing node due to the intranetwork
interference in noncooperative environment was studied in
[10]. However, this paper assumed that all the interfering
signals are colocated spectrally and did not take into account
the effect of nonlinearity presented in the CR. The effect of
receiver nonidealities has been studied in a number of papers
[11–13].These studies consider narrowband spectrum sensing
and assume that the receiver operates in the linear region.
References [14, 15] consider wideband spectrum sensing and
study the effect of third-order nonlinearity due to LNA in
the performance degradation of the energy detector and
the cyclostationary detector. These papers study only the
effect of IMD terms in the frequency band. However, in
noncooperative CR network consideringwideband spectrum

sensing the frequency band contains interfering signal from
other CRs in addition to IMD terms.

In [10] authors studied the effect of intranetwork inter-
ference in noncooperative environment assuming that the
interfering signals are colocated spectrally which is good but
it does not cover the situation where the interfering signal
may be located on separate frequency bands. Furthermore,
it does not consider the effect of strong in-band interfering
signal on the sensing node due to the nonlinearity of LNA
in DCR. A more realistic study would be to consider the
situation where CRs may be transmitting either on either
separate frequency bands or same frequency band consider-
ing the effect of strong in-band interfering signal. References
[14, 15] investigated effect of IMD on the performance of
sensing node but they do not consider the scenario where
the subband of interest may be degraded further by other
interfering signals in a noncooperative environment which
would be more realistic; for example, the subband at which
the sensing node is detecting the PU signal is degraded not
only by IMDbut also by the interfering signal from other CRs
in a noncooperative network.

Our contribution is to study the performance of detector
in wideband spectrum sensing in noncooperative environ-
ment considering the effect not only of IMD but also due
to the interfering signal from other CRs which has not been
investigated before in [10, 14, 15]. We investigate the perfor-
mance of energy detector for wideband spectrum sensing
considering the effect of nonlinearity in LNA. In particular,
we focus on a noncooperative environment. We consider a
more realistic scenario in a noncooperative network where
the interfering signals are generated based on the Poisson
point process. The Poisson model enables the statistical
characterization of network interferer taking into account the
spatial distribution as well as the density of the interfering
nodes. We model the interference in a wideband spectrum
sensing at a particular subbandnot only by the IMD terms but
also due to the interfering signals from other CRs.Themodel
presented provides more realistic viewpoint for studying the
performance of detector in a noncooperative network that
has not yet been studied in the literature. We identify two
more realistic scenarios in such noncooperative network
and derive the expression for false alarm and detection
probability making use of the central limit theorem (CLT)
for each of the two scenarios. By relaxing our model in
the distribution of interference and IMD terms we model a
very realistic scenario present in a noncooperative network.
Finally, we proposed an adaptive threshold setting method
that is based on modeling the noise after the nonlinear LNA
using multivariate Gaussian mixture model. We investigated
bymodeling the noise signal after LNA; using themultivariate
Gaussian mixture model the performance of detector is
enhanced.

The rest of the paper is organized as follows. In Section 2,
we describe the system model for noncooperative network
along with the interferer and LNA nonlinearity model. In
Section 3, we first derive the expression for the detection and
the false alarm probabilities considering various cases and
then provide the simulation results for those cases. We also
discuss the adaptive threshold setting based on multivariate



Journal of Computer Networks and Communications 3

CRk

CR1

CR2

CR0

rk

R

r1

r2

PUtx

Figure 1: System model.

Gaussian mixture model for improving the performance in
case of LNA nonlinearity. Finally, conclusions are drawn in
Section 4.

2. System Model

The system under consideration is shown in Figure 1. We
consider a circular geographical area with the radius 𝑅 con-
taining 𝐾 number of CRs, a central CR (CR0), and a PU.
The distance between CR0 and 𝐾th CR (CR𝐾) is denoted
by 𝑟𝐾. The distance between CR0 and PU can be varied as
required. The PU is the licensed user and has higher priority
for transmission than CRs. However, the network policy
allows CRs to use the spectrum with the condition that they
must not cause harmful interference to the PU.

2.1. Interferer Modeling. The spatial distribution of network
interferers is modeled as a Poisson point process in a two-
dimensional circular plane. The spatial density of interfering
nodes is denoted by 𝜆IN in the number of CRs per unit
area. The probability that 𝑘 number of nodes interfere at any
particular time follows the Poisson distribution as expressed
in (1).The interfering nodes are defined as the set of terminals
which transmit within the frequency band of interest during
the sensing time and hence effectively contribute to the total
interference.

Pr (𝐾 = 𝑘) = (𝜇 (𝐴))𝑘 𝑒−𝜇(𝐴)𝑘! , (1)

where 𝜇(𝐴) = 𝜆IN𝜋𝑅2.

The distribution of a CR around the circular area is
considered to be uniform.Hence, the distribution of 𝑟 is given
by

𝑓𝑅 (𝑟) = {{{
2𝑟𝑅2 , for 0 < 𝑟 < 𝑅,
0, otherwise. (2)

2.2. Modeling Nonlinearity due to LNA. During the sensing
time interval of CR0, the other CRs transmit data in various
frequency bands. This is plausible because the CR network
is noncooperative; that is, one CR may not know the status
and location of the other CRs. If CR0 is close to some other
CRs, then strong interference in-band signal is dominated by
CR0. This strong in-band signal forces the LNA to operate
in the nonlinear region. As a result, the spurious frequency
components, such as IM and XM, occur with some other
bands that are possibly in the band of interest.The even-order
nonlinearity terms are outside the frequency range while the
odd-order nonlinearity terms remain within the frequency
range. The complex baseband equivalence of the wideband
signal after the nonlinear LNA is written as follows [18]:

𝑦 [𝑛] = 𝑓 (𝑥 [𝑛]) + 𝑤𝑎 [𝑛] , (3)

where 𝑥[𝑛] is the received complex baseband equivalent
wideband signal and 𝑤𝑎[𝑛] is the additive white Gaussian
noise (AWGN) after the LNA.

The complex baseband equivalent wideband signal in (3)
is written as

𝑥 [𝑛] = 𝑠 [𝑛] + 𝐾∑
𝑘=1

(𝑐𝑘 [𝑛]) + 𝑤𝑏 [𝑛] , (4)

where 𝑠[𝑛] is the PU signal, 𝑐𝑘[𝑛] is the signal from 𝑘th CR,
and 𝑤𝑏[𝑛] is the AWGN before LNA.

Since the third-order nonlinearity often dominates over
the higher order nonlinearity components, a memoryless
polynomial model up to the third-order is used to model
the effect of nonlinearity due to the LNA. The third-order
memoryless polynomial model consists of the nonlinear
coefficients up to the third-order. Thus, 𝑓(𝑥[𝑛]) in (3) can be
written as

𝑓 (𝑥 [𝑛]) = 𝛽1 (𝑥 [𝑛]) + 𝛽2 (𝑥 [𝑛])2 + 𝛽3 (𝑥 [𝑛])3 , (5)

where 𝛽1, 𝛽2, and 𝛽3 are the coefficients of the memoryless
polynomial model.

Considering only odd-order nonlinearity in (5) and using
(3), the final expression for the signal is given by

𝑦 [𝑛] = 𝛽1 (𝑥 [𝑛]) + 𝛽3 (𝑥 [𝑛])3 + 𝑤𝑎 [𝑛] . (6)

The values for 𝛽1, 𝛽2, and 𝛽3 are related to the circuit
specification parameters. 𝛽1 is the small signal gain and its
typical value is 35 dB, the value of 𝛽2 can be calculated using
the second-order intercept point (IP2) coefficient, and the
value of 𝛽3 can be calculated using (7) [16].
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𝐴 IP3 = √4𝛽13𝛽3 ,
𝑃IP3 = 20 log10𝐴 IP3 + 10 dBm,

(7)

where 𝐴 IP3 and 𝑃IP3 are the amplitude and power at third-
order intercept point (IP3) of the LNA.

3. Spectrum Sensing Method

A cyclostationary detection (CD) performs spectrum sensing
by correlating the received signal with its frequency shifted
version. The frequency by which the signal is to be shifted is
called a cyclic frequency. The cyclic frequency is a function
of cyclic feature, for instance, the signal modulation type, its
symbol rate, and the carrier frequency. Depending upon the
presence or the absence of the cyclic feature, the decision is
made to determine the presence or absence of PU signals.
A CD takes advantage of the fact that noise is a wide sense
stationary (WSS) process with no correlation, whereas the
modulated signals are cyclostationary with their spectral
correlation and their Fourier transform, the cyclic spectral
density (CSD) [8].TheCSDof the received signal is computed
as

∞∑
𝜏=−∞

𝑅𝛼𝑦 (𝜏) exp (−𝑗2𝜋𝑓𝜏) , (8)

where the cyclic autocorrelation function (CAF) 𝑅𝛼𝑦(𝜏) is
given by

𝑅𝛼𝑦 (𝜏) = 𝐸 [𝑦 (𝑛 + 𝜏) 𝑦∗ (𝑛 − 𝜏) exp (−𝑗2𝜋𝛼𝑛)] , (9)

where 𝛼 is the cyclic frequency which is assumed to be
known or it can be extracted and be used for identifying the
transmitted signal.

An energy detection (ED) is the special case of the CD
with the lag and the cyclic frequency both equal to zero.
Therefore, the test statistics under the ED is given by

𝑅0𝑦 (0) = 1𝑁
𝑁−1∑
𝑛=0

󵄨󵄨󵄨󵄨𝑦 [𝑛]󵄨󵄨󵄨󵄨2 . (10)

Let 𝜆ED be the threshold to be compared; then the probability
of false alarm 𝑃fa and the probability of detection 𝑃𝑑 under
those two mentioned cases are given by

𝑃fa = Pr {𝑅0𝑦 (0) > 𝜆ED | 𝐻0} , (11)

𝑃𝑑 = Pr {𝑅0𝑦 (0) > 𝜆ED | 𝐻1} . (12)

3.1. 𝑃𝑑 and 𝑃𝑓𝑎 without LNA Nonlinearity and Interference.
When the observation interval 𝑁 is sufficiently large, the
test statistics for ED can be approximated as a Gaussian
distribution [19] due to the central limit theorem (CLT). The
test statistics can then be approximated by

𝑓𝑅|𝐻0 (𝑟) ∼ N(𝜎2𝑛 , 2𝜎4𝑛𝑁 ) , (13)
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Figure 2: Third-order IMD term distribution.

where 𝜎2𝑛 is the noise variance and N(𝑎, 𝑏) is a Gaussian
distribution with mean 𝑎 and variance 𝑏.

𝑓𝑅|𝐻1 (𝑟) ∼ N(𝜎2𝑦, 2𝜎4𝑦𝑁 ) , (14)

where 𝜎2𝑦 = 𝜎2𝑠 + 𝜎2𝑛 is the total variance of signal plus noise
and 𝜎2𝑠 is the signal variance.

Using (12) and (14) we derive 𝑃𝑑 as (15) and using (11) and
(13) we derive 𝑃fa as (16):

𝑃𝑑 = 𝑄(√𝑁2 ( 𝜆(𝜎2𝑛 + 𝜎2𝑠 ) − 1)) , (15)

where the signal to noise ratio (SNR) is defined as 𝜎2𝑠 /𝜎2𝑛 , and
𝑃fa = 𝑄( 𝜆 − 𝜎2𝑛𝜎2𝑛/√𝑁/2) , (16)

where𝑄(⋅) is the𝑄-function.Under𝐻0 hypothesis, for a fixed𝑃fa, the threshold is derived as

𝜆ED = 𝜎2𝑛 (1 + 𝑄−1 (𝑃fa)√𝑁/2 ) , (17)

where 𝑄−1(⋅) is the inverse 𝑄-function. 𝜆ED in (17) indicates
that the threshold estimation is dependent on the noise
variance, the signal variance, the number of the samples, and
the required false alarm probability.

3.2. Distribution of IMD Terms. The IMD is common and
critical in the wideband spectrum sensing. The distribution
of IMD term plays a vital role in the detection performance
of any detector. The fitting of the IMD distribution with the
stable distribution yields the following parameters: 𝛼 close
to 1, 𝛽 close to 0, and 𝛾 and 𝛿 equal to 0. For simplicity,
we approximate this distribution as a Gaussian distribution.
The effect of IMD on the performance of detector is shown
through several graphs in Section 3. The distribution of IMD
term is shown in Figure 2.
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Table 1: Simulation parameters for non-Poisson field of interferer.

Parameters Values
SNR −15 : 30 dB
SBR (signal to blocker ratio) −24 :−30 dB
IMD 2 : 10 dB𝛽1 56.23 [16]𝛽3 −7497.33 [16]𝜌 (noise power uncertainty) 0.001 dB [17]

3.3. 𝑃𝑑 and 𝑃𝑓𝑎 with LNA Nonlinearity. It is assumed that
the signal, the IMD term, and the noise are all mutually
statistically independent and tend to a Gaussian distribution
for large 𝑁. Using the CLT we approximate the test statistics
under two hypotheses as

𝑓𝑅|𝐻0 (𝑟) ∼ N(𝜎2𝑛 + 𝜎2imd, 2 (𝜎2𝑛 + 𝜎2imd)2𝑁 ) , (18)

where 𝜎2𝑛 is the noise variance and 𝜎2imd is the IMD term
variance.

𝑓𝑅|𝐻1 (𝑟) ∼ N(𝜎2𝑦, 2𝜎4𝑦𝑁 ) , (19)

where 𝜎2𝑦 = 𝜎2𝑠 +𝜎2𝑛 +𝜎2imd is the total variance with the signal,
the noise, and the IMD term.

Using (12) and (19) we derive 𝑃𝑑 as (20) and using (11) and
(18) we derive 𝑃fa as (21):

𝑃𝑑 = 𝑄(√𝑁2 ( 𝜆ED(𝜎2𝑛 + 𝜎2𝑠 + 𝜎2imd) − 1)) , (20)

where the signal to IMD ratio (SIMDR) is defined as 𝜎2𝑠 /𝜎2imd,
and

𝑃fa = 𝑄( 𝜆ED − (𝜎2𝑛 + 𝜎2imd)(𝜎2𝑛 + 𝜎2imd) /√𝑁/2) . (21)

Under hypothesis 𝐻0, for a fixed 𝑃fa, the threshold is derived
as

𝜆ED = (𝜎2𝑛 + 𝜎2imd)(1 + 𝑄−1 (𝑃fa)√𝑁/2 ) . (22)

𝜆ED in (22) indicates that the threshold estimation is depen-
dent on the noise variance, the SNR, the number of the
samples, the required false alarm probability, and the IMD
variance.

3.4. Simulation Results with and without LNA Nonlinearity.
Table 1 lists the system parameters used in the simulations for
the case of the nonlinearity in LNA.
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Receiver Operating Characteristic Curve for ED. The receiver
operating characteristic (ROC) curve is obtained by plotting𝑃fa along the 𝑥-axis versus 𝑃𝑑 along the 𝑦-axis. We vary the
value of 𝑃fa from 0.01 to 1 with an increment of 0.01 at
each step. Keeping SNR at −15 dB and IMD at 10 dB and the
observation interval at 𝑁 = 1000, the ROC curve obtained
is shown in Figure 3. If we reduce the power of IMD term
to 2 dB, we obtain the ROC curve as shown in Figure 4; the
improvement in ROC curve is seen.
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Figure 6: 𝑃𝑑 versus SNR with IMD of 10 dB and 𝑁 = 15.

The other plot, which is significant, to visualize the
performance of the detector is 𝑃𝑑 versus SNR. The plot of 𝑃𝑑
versus SNR at IMD of 2 dB at 𝑃fa = 0.01 and observation
interval 𝑁 = 15 is shown in Figure 5. Now, to analyze
the effect of IMD, we plot the same graph keeping all the
parameters constant and increase IMD to 10 dB; the plot
obtained is shown in Figure 6. Comparing to the graphs
plotted in Figures 5 and 6, it is concluded that when the
IMD is low, the required 𝑃𝑑 can be achieved at the low SNR.
However, when IMD increases the same 𝑃𝑑 is achieved at the
high SNR.

3.5. Spectrum Sensing under Nonlinear LNA considering In-
terference. The received signal from each of the interfering
nodes is given by (23). Interfering signals are considered
independent of each other. The power of 𝑘th interferer at a
distance of 𝑟𝑘 with respect to the central CR (CR0) is𝑃𝑘 = 𝑟−𝛾

𝑘
,

where 𝛾 is the path loss exponent. The complex baseband
equivalence wideband signal received by the CR0 from other
CRs is given by

𝑐 [𝑛] = 𝐾∑
𝑘=1

√𝑃𝑘𝑐𝑘 [𝑛] , (23)

where 𝑐𝑘[𝑛] is the baseband signal from CR𝐾.
As shown in system model, the CR0 is sensing the

wideband of spectrum; we suppose that there are in total 𝑀
subchannels that are sensed by the central CR. The received
signal by the central CR depends on whether the network
is cooperative or noncooperative. In this paper we discuss
noncooperative network. Under cooperative network, there
is no effect of interference or nonlinearity, since when a CR
is sensing spectrum, the other CRs are considered to be
quite. This scenario can be modeled as the case of spectrum
sensing previously discussed. As mentioned earlier, in a
noncooperative network, CRs have no idea about the location
and the status of the other CRs. Hence, one CR interferes
with the other CR resulting in the degradation of spectrum
sensing. For the narrowband spectrum sensing, the effect
of nonlinearity is not relevant but the effect of interferer
from the other CRs is relevant. However, in the case of
the wideband spectrum sensing, the effect of nonlinearity
due to the LNA should also be considered in addition to
interference from the other CRs. Under the noncooperative
case the following two scenarios are possible:

(i) All the CRs transmit on separate frequency bands.

(ii) A number of CRs transmit on the same frequency
band.

CR Transmission on Separate Frequency Bands. When all the
CRs transmit on separate frequency band, the received
complex baseband equivalent wideband signal before the
LNA under two hypotheses is given by

𝑥 [𝑛] =
{{{{{{{{{{{

𝑤𝑏 [𝑛] + 𝐾∑
𝑘=1

𝑐𝑘 [𝑛] , 𝐻0,
𝑤𝑏 [𝑛] + 𝑠 [𝑛] + 𝐾∑

𝑘=1

𝑐𝑘 [𝑛] , 𝐻1. (24)

We assume that there are 𝑀 channels available; without loss
of generality we can say that 𝑀 = 𝐾. The received signal
now passed through the LNA. Depending upon the power
of the received signal, if any of the received signal powers is
larger than the power at IP3, the LNA behaves nonlinearly.
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The baseband output signal from the LNA considering only
the IMD term and the intranetwork interference under two

hypotheses is then obtained by using (6) and (24) and is
expressed as

𝑦 [𝑛] =
{{{{{{{{{{{{{

𝑤𝑎 [𝑛] + 𝛽1 𝐾∑
𝑘=1

𝑐𝑘 [𝑛] + 3𝛽32
𝐾−1∑
𝑘=1

𝑐∗𝑘 [𝑛] 𝑐2𝑘+1 [𝑛] , 𝐻0,
𝑤𝑎 [𝑛] + 𝛽1(𝑠 [𝑛] + 𝐾∑

𝑘=1

𝑐𝑘 [𝑛]) + 3𝛽32
𝐾−1∑
𝑘=1

𝑐∗𝑘 [𝑛] 𝑐2𝑘+1 [𝑛] , 𝐻1.
(25)

The received signal at a particular SOI for the first case under
two hypotheses is given by

𝑦SOI [𝑛]
= {{{{{{{{{

𝑤𝑎 [𝑛] + (𝛽1𝑐𝑧 [𝑛] + 3𝛽32 𝑐∗𝑥 [𝑛] 𝑐2𝑦 [𝑛]) , 𝐻0,
𝑤𝑎 [𝑛] + (𝛽1 (𝑠 [𝑛] + 𝑐𝑧 [𝑛]) + 3𝛽32 𝑐∗𝑥 [𝑛] 𝑐2𝑦 [𝑛]) , 𝐻1,

(26)

where 𝑐𝑥 and 𝑐𝑦 are the interferers whose third-order IMD
falls in the SOI, 𝑐𝑧 is the interfering signal at SOI, 𝑥, 𝑦, 𝑧 ∈ 𝐾,
and 𝑥 ̸= 𝑦 ̸= 𝑧.
CR Transmission on the Same Frequency Band. We assume
that𝑁 number of channels out of𝑀 are being allocated by𝐾
number of users and are uniformly used by𝐾CRs.Therefore,
in each channel, there are ⌊𝐾/𝑁⌋ number of CRs, where⌊⋅⌋ denotes the floor operation. Then, the received complex
baseband equivalent wideband signal under two hypotheses
is written as

𝑦 [𝑛] =
{{{{{{{{{{{{{

𝑤𝑏 [𝑛] + 𝑁∑
𝑖=1

⌊𝐾/𝑁⌋∑
𝑗=1

𝑐𝑖𝑗 [𝑛] , 𝐻0,
𝑤𝑏 [𝑛] + 𝑠 [𝑛] + 𝑁∑

𝑖=1

⌊𝐾/𝑁⌋∑
𝑗=1

𝑐𝑖𝑗 [𝑛] , 𝐻1,
(27)

where 𝑐𝑖𝑗 is the interfering signal where 𝑖 and 𝑗 are just the
index variable, 𝑖 ∈ 𝑀, 𝑗 ∈ 𝐾.

When𝑀 = 𝑁, we have a similar case to the previous one
in which each CR transmits in separate band. Now if we focus
on a particular SOI after proper digital filtering, sampling at
rate 1/𝑇𝑠, and downconversion to intermediate frequency𝑓IF,
we further investigate the three following cases:

(i) Noise only case.

(ii) Noise with IMD.

(iii) Noise with IMD plus interferer.

(iv) Noise with interferer.

The first case represents basic hypothesis problem; the fourth
case has been already analyzed in the literature. Our focus is
on the second and third case. The second case is previously
discussed in Section 3.3. For the third case, the signal at the
output of the LNA is given by

𝑦SOI [𝑛] =
{{{{{{{{{{{{{

𝑤𝑎 [𝑛] + (𝛽1⌊𝐾/𝑁⌋∑
𝑗=1

𝑐𝑧𝑗 [𝑛] + 3𝛽32
⌊𝐾/𝑁⌋∑
𝑗=1

𝑐∗𝑥𝑗 [𝑛] 𝑐2𝑦𝑗 [𝑛]) , 𝐻0,
𝑤𝑎 [𝑛] + (𝛽1(𝑠 [𝑛] + ⌊𝐾/𝑁⌋∑

𝑗=1

𝑐𝑧𝑗 [𝑛]) + 3𝛽32
⌊𝐾/𝑁⌋∑
𝑗=1

𝑐∗𝑥𝑗 [𝑛] 𝑐2𝑦𝑗 [𝑛]) , 𝐻1,
(28)

where 𝑐𝑥𝑗 and 𝑐𝑦𝑗 are the interfering signal whose third-order
IMD term falls in the SOI; 𝑐𝑧𝑗 are the interfering signal in the
SOI.

𝑃𝑑 and 𝑃𝑓𝑎 under LNA Nonlinearity in Poisson Field of
Interferer. It is assumed that the signal, the IMD term,
the noise, and the interference are all mutually statisti-
cally independent. We model the interference as the Gaus-
sian distribution. Using the CLT in the test statistics,

we approximate the test statistics under two hypotheses
as 𝑓𝑅|𝐻0 (𝑟)

∼ N(𝜎2𝑛 + 𝜎2imd + 𝜎2𝑖 , 2 (𝜎2𝑛 + 𝜎2imd + 𝜎2𝑖 )2𝑁 ) , (29)

where 𝜎2𝑖 is the interference variance.



8 Journal of Computer Networks and Communications

And

𝑓𝑅|𝐻1 (𝑟) ∼ N(𝜎2𝑦, 2𝜎4𝑦𝑁 ) , (30)

where 𝜎2𝑦 = 𝜎2𝑠 + 𝜎2𝑛 + 𝜎2imd + 𝜎2𝑖 .
After some derivation, we can derive 𝑃𝑑 and 𝑃fa as
𝑃𝑑 = 𝑄(√𝑁2 ( 𝜆ED(𝜎2𝑛 + 𝜎2𝑠 + 𝜎2imd + 𝜎2𝑖 ) − 1)) , (31)

where the signal to interference ratio (SIR) is defined as𝜎2𝑠 /𝜎2𝑖 ;
𝑃fa = 𝑄( 𝜆ED − (𝜎2𝑛 + 𝜎2imd + 𝜎2𝑖 )(𝜎2𝑛 + 𝜎2imd + 𝜎2𝑖 ) /√𝑁/2) . (32)

Under 𝐻0 hypothesis, for a fixed 𝑃fa, the threshold is derived
as

𝜆ED = (𝜎2𝑛 + 𝜎2imd + 𝜎2𝑖 )(1 + 𝑄−1 (𝑃fa)√𝑁/2 ) . (33)

𝜆ED in (33) indicates that the threshold estimation is depen-
dent on the SNR, the number of the samples, the required
false alarm probability, the IMD variance, and the interfer-
ence variance.

3.6. Simulation Results. The interfering CRs are generated
randomly according to the Poisson distribution with density𝜆IN = 100,000 persons/km2. The distance between PU and
CR0 𝑑PU can be varied. We show result at the distance𝑑PU = 600m. Later, we show the result at 𝑑PU = 500m that
shows that the results have the same trend when 𝑑PU varied.
Moreover, if 𝜆IN is increased, the effect of interference is
more severe and vice versa given that the distance between
PU and CR0 is kept unchanged in both the simulations.
The effect of varying number of samples is discussed later.
Since the theoretical derivation is carried out without the
effect of shadowing, the environment effect has been removed
in the simulated plot. Hence, the theoretical and simulated
curves are the same. This also provides the validation of the
simulated and the theoretical results. The plot obtained is
shown in Figure 7.

3.7. Effect of Varying Number of Samples. The simulations in
this part are for the importance of the sensing time (interval);
that is, it improves the performance of the ED. Sensing time
plays an important role in improving the performance of the
ED. We plot the effect of the observation interval (𝑁) on 𝑃𝑑.𝑃𝑑 depends upon 𝑁. This is due to the fact that increasing𝑁 results in the increase in the effective SNR or SIMDR
[15, 20]. It is noted that the receiver operating under the high
input power experiences more severe nonlinearity behavior.
Therefore, the plots obtained in Figures 8, 9, and 10 are
further extended negatively, implying a large sensing time,
to get the desired 𝑃𝑑. The plot in Figure 8 is plotted with
parameters SNR = 3 dB, SBR = −23.98 dB, SIR = −16.47 dB,
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Figure 7: 𝑃𝑑 versus 𝑃fa.
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Figure 8: Effect of sensing time on the performance of ED at 𝑃fa =0.1.

SIMD = −14.86 dB, 𝑃fa = 0.1, and PU at 600m. In order to
gain insight into the theory, the following simulations are
done for a variety of different cases. Keeping all the other
parameters unchanged, we adjust the value of 𝑃fa to visualize
its effect on the performance. Figure 9 is plotted for 𝑃fa =0.05. The result clearly indicates the fact that when 𝑃fa is
decreased, the overall curve shifts towards low 𝑃𝑑 at low
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Figure 9: Effect of sensing time on the performance of ED at 𝑃fa =0.05.
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Figure 10: Effect of sensing time on the performance of ED at 𝑃fa =0.01.

observation interval. Figure 10 is plotted for 𝑃fa = 0.01. It is
seen that the overall curve shifts towards much lower 𝑃𝑑 at
lower observation interval.

The theoretical curves and the simulated ROC curves in
Figures 8, 9, and 10 are somewhat different from the simulated
curves because the simulated results are plotted considering
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Figure 11: Observation interval versus 𝑃𝑑 with PU at 500m.
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Figure 12: Observation interval versus 𝑃𝑑 at 𝑃fa = 0.01.

the effect of environment, that is, shadowing. Hence, the
theoretical results can be considered as the upper bound of
the performance. Figure 11 shows the situation when the PU
distance is decreased to 500m while keeping all the other
parameters unchanged for 𝑃fa = 0.1. In order to get the
estimation of the total observation time interval required
to achieve the required 𝑃𝑑, we plot the theoretical curves
to visualize the upper bound on 𝑁. Figure 12 is plotted for𝑃fa = 0.01 to determine the required𝑃𝑑 in different scenarios.
Figure 12 clearly shows that the observation interval in the
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Figure 13: Observation interval versus 𝑃𝑑 at 𝑃fa = 0.1.

case of the interference from the secondary network consid-
ered together with the IMD term is much larger than the one
in the case with the IMD term only. This large observation
interval required for detection in the case of interference from
secondary network may lead to impractical CR. Intuitively, if
the requirement of the false alarm probability is increased to𝑃fa = 0.1, the sensing time is reduced for a particular value of
the detection probability as shown in Figure 13.

3.8. Simulation Result for Threshold Selection with LNA Non-
linearity. The actual distribution of the statistic of threshold
is determined by the correlated Gaussian sequence instead of
thewhiteGaussian sequence.This is due to the nonlinearity of
LNA acting on the white Gaussian noise in the absence of PU
signal. Figure 14 shows the fitting of the simulated Gaussian
noise after the LNA with the correlated Gaussian sequence.
The simulated plot in Figure 14 shows that the correlated
Gaussian probability density function (pdf) fits the pdf of the
nonlinear filtered noise better than the uncorrelatedGaussian
pdf [18]. If the threshold is selected based only on Gaussian
process for all the subbands, then the performance of ED is
degraded. However, it is noted that this happens only when
we consider the effect of nonlinearity. When we consider
the nonlinearity of LNA, the output of the LNA is not just
the white noise sequence but the summation of correlated
non-Gaussian and Gaussian process which is approximated
using multivariate Gaussian mixtures. Figure 15 depicts the
threshold statistics considering the output of the LNA with
the multivariate Gaussian mixture. It is clearly seen that the
threshold is well approximated by the multivariate Gaussian
mixture rather than the Gaussian process which happens to
be constant for each frequency band.

As shown in Figure 16, the selected threshold level brings
the probability of threshold being exceeded, when only noise
is present. The value matches the target 𝑃fa that is set to
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0.1. Due to a finite number of samples being used in the
simulation, the probability of threshold being exceeded in the
presence of only noise cannot exactly be equal to the target𝑃fa. The similar simulation for the case of the target 𝑃fa set to
0.01 is shown in Figure 17.

4. Conclusion

The effect of nonlinearity due to the LNAwas first considered
to visualize its impact on the spectrum sensing. It was seen
that the effect of the LNA nonlinearity degrades the perfor-
mance of ED. It was also examined that the performance of
ED depends upon various factors, that is, SNR, the power
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of IMD, and interfering signal, and the observation interval.
In reality, the sensing time in which the CR is required to
sense the channel is the fundamental limit that needs to be
considered for providing a good quality of service to the users
as well as for practical implementation of CR devices.

The analysis in the wideband spectrum sensing along
with the effect of interference generated from the other
CRs in the secondary network was then performed. For
simplicity, the approximations while performing theoretical

analysis were based on the assumption of Gaussian distri-
bution but simulations were carried out with and without
the shadowing effect. The effect of shadowing was clearly
seen in the simulation results. The main contribution of
this paper was to analyze the performance degradation in
spectrum sensing due to inherent nonlinearity of an LNA
in the Poisson field of interferer considering intranetwork
interference, which models the more realistic scenarios than
the ones in the existing literatures [10, 15]. It was also shown
that the noise model after LNA is more accurate by using
the multivariate Gaussian mixture model. A fixed threshold
setting for the entire wideband seems to be inappropriate
resulting in performance degradation.Therefore, an adaptive
threshold setting based on the multivariate Gaussian mixture
model was proposed to increase the overall performance of
the CR.
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