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Abstract 
 
In this paper investigation have been carried out on Soret and Dufour effects, variable viscosity and variable 
thermal conductivity effects on unsteady free convective flow past a vertical cone. Here a mathematical model 
is considered on unsteady free convective flow over an incompressible fluid past a vertical cone with 
nonuniform surface temperature and concentration. The governing partial differential equations are altered 
into dimensionless form, and then solved numerically by an iterative technique based on finite difference 
scheme. The velocity, the temperature and the concentration profile have been drawn for various values of 
Soret number, Dufour number, time, viscosity parameter and thermal conductivity parameter.  The local skin 
friction is also studied for various parameters. 

 
Keywords: Soret effect; Dufour effect; Variable viscosity; Variable thermal conductivity; Vertical cone; Finite 

difference method 

1. Introduction 

Free convection flow occurs frequently in nature because of temperature difference and also 
concentration difference. Natural convection is important  in industrialized process for the design 
of reliable equipment, for power plant, space vehicles, combustion turbines and various propulsion 
devices for aircrafts. Prasad et. al. (2011) analyzed numerically unsteady free convection heat and 
mass transfer over a walters- B viscoelastic flow past a semi infinite vertical plate. Mohiddin et. al. 
(2012) carried out the numerical study of free convection flow past a vertical cone with variable 
heat and mass flux. Pullepu et. al. (2014) discussed the chemical reactions effects on unsteady free 
convective and mass transfer flow on a vertical cone by heat generation/absorption in presence of 
variable wall temperature or variable wall concentration. Reddy et. al. (2015) discussed the effects 
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of chemical reaction and radiation on MHD free convection flow with viscous dissipation on 
spontaneously started infinite vertical plate. Sivaraj et. al. (2015) studied the variable electric 
conductivity and chemical reaction effects on free convection flow over a vertical cone. Pullepu et. 
al. (2016) studied the effects of chemical reaction and heat generation/absorption on free 
convective flow from a vertical cone in presence of uniform wall temperature / uniform wall 
concentration. 
 
The Soret and Dufour effects are important in higher temperature and concentration gradients. 
Cheng  (2010) discussed  the Soret and Dufour effects by natural convection from a vertical 
truncated cone saturated in porous medium with variable wall temperature or variable wall 
concentration.  The effects of Soret and Dufour on natural convection flow on a vertical cone in a 
porous medium by constant wall heat and mass fluxes has been studied by Cheng (2011). Moorthy 
and Vadivu (2012) considered the variable viscosity to study Soret and Dufour effects on natural 
convection flow through a vertical surface inside a porous medium. Mahdy et. al. (2014) considered 
the Soret and Dufour effects on non Darcian natural convection flow from a vertical wavy surface 
surrounded by a porous medium. Babu et. al. (2015) considered chemical reaction to study Soret 
and Dufour effects on hydromagnetic free convective flow past an infinite vertical permeable plate. 
Arthur et. al. (2015) analyzed analytically Soret and Dufour effects on hydromagnetic flow past a 
vertical plate surrounded by porous medium. Herwig and Gersten (1990) recognized that when the 
viscosity and the thermal conductivity of a running fluid are sensitive to the variation of 
temperature then these properties may change with temperature. Chiam (1998) discussed the 
variable thermal conductivity effect over a linearly stretching sheet. Pantokratoras (2004) 
investigated further results of the variable viscosity on a continuous moving flat plate. Salem 
(2007) discussed variable viscosity and thermal conductivity effects on MHD flow with viscoelastic 
fluid on a stretching sheet. Manjunatha and Gireesha (2016) studied the variable viscosity and the 
thermal conductivity effects on MHD flow and heat transfer of a dusty fluid.    
 
Pullepu et. al. (2014) in their study has not taken account of Soret and Dufour effects which are 
considered in the present study.  
 

2. Mathematical Formulation of the Problem  

Consider an incompressible unsteady laminar free convection flow past a vertical cone, where the 

𝑥 ′ axis is considered along the surface of the cone, 𝑦′ axis is considered along the normal to the cone 

and the radius of the cone is 𝑟′ as shown in Fig. 1. It is also considered that the surface of the cone 

and the adjacent fluid are at the same temperature 𝑇∞
′ and concentration 𝐶∞

′. When 𝑡′ > 0, the 

temperature of the cone surface is raised to 𝑇𝑤
′(x) = 𝑇∞

′ + 𝑎𝑥 ′𝑛 and concentration near the surface 

is also raised to 𝐶𝑤
′(x) = 𝐶∞

′ + 𝑏𝑥 ′𝑚 where, n is surface temperature power law exponent and m is 

surface concentration power law exponent. Let, 𝑢′ and 𝑣 ′ be the velocity components in 𝑥 ′ and  

𝑦′directions. The viscosity and thermal conductivity are taken as inverse linear function of 

temperature,  
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1

𝜇
 = 

1

𝜇∞
[1+𝛾(𝑇 ′ − 𝑇∞

′)]  or 𝜇 = 
𝜇∞

[1+𝛾(𝑇′−𝑇∞
′)] 

  = 
𝜇∞

[1+𝛾𝜃(𝑇𝑤
′−𝑇∞

′)] 
 = 

𝜇∞

(1+ϵ𝜃) 
   

1

𝑘
 = 

1

𝑘∞
[1+𝛽(𝑇 ′ − 𝑇∞

′)] or 𝑘 = 
𝑘∞

[1+𝛽(𝑇′−𝑇∞
′)] 

 = 
𝑘∞

[1+𝛽𝜃(𝑇𝑤
′−𝑇∞

′)] 
 = 

𝑘∞

(1+ω𝜃) 
                                                                

            (1) 

where  ϵ = 𝛾(𝑇𝑤
′ − 𝑇∞

′) , 𝜔 = 𝛽(𝑇𝑤
′ − 𝑇∞

′), 𝜇 is the coefficient of viscosity, 𝜇∞  is the reference 

viscosity, 𝑘 is the thermal conductivity , 𝑘∞ is the reference thermal conductivity, 𝛾 and 𝛽 are the 

constants.  

 

Fig. 1.  Physical configuration and coordinate system 

The governing equations are  

𝜕(𝑟′𝑢′)

𝜕𝑥′  +
𝜕(𝑟′𝑣′)

𝜕𝑦′  = 0                                                                                               (2) 

𝜕𝑢′

𝜕𝑡′  +𝑢′ 𝜕𝑢′

𝜕𝑥′ + 𝑣′ 𝜕𝑢′

𝜕𝑦′ = 𝑔𝛽𝑇(𝑇 ′ − 𝑇∞
′)𝑐𝑜𝑠𝜑 + 

1

𝜌

𝜕

𝜕𝑦′ (𝜇
𝜕𝑢′

𝜕𝑦′) + 𝑔𝛽𝐶(𝐶 ′ − 𝐶∞
′)𝑐𝑜𝑠𝜑 - 

𝜎𝐵0
2𝑢′

𝜌
              (3) 

𝜕𝑇′

𝜕𝑡′  +𝑢′ 𝜕𝑇′

𝜕𝑥′ + 𝑣′ 𝜕𝑇′

𝜕𝑦′ = 
1

𝜌𝐶𝑃
 

𝜕

𝜕𝑦′ (𝑘
𝜕𝑇′

𝜕𝑦′) + 
𝐷𝑚𝑘𝑡

𝐶𝑠𝐶𝑝

𝜕2𝐶 ′

𝜕𝑦′2
                                     (4) 

𝜕𝐶′

𝜕𝑡′  +𝑢′ 𝜕𝐶′

𝜕𝑥′ + 𝑣′ 𝜕𝐶′

𝜕𝑦′ = 𝐷𝑚
𝜕2𝐶 ′

𝜕𝑦′2
 + 

𝐷𝑚𝑘𝑡

𝑇𝑚

𝜕2𝑇′

𝜕𝑦′2
                                                      (5) 

where 𝑔 is acceleration due to gravity, 𝛽𝑇  , 𝛽𝐶  are the coefficient of thermal expansion and  

concentration expansion, 𝑇𝑚 is the mean fluid temperature, 𝐶𝑝 is the specific heat at constant 

pressure, 𝐶𝑆  is the concentration susceptibility, 𝐷𝑚  is the molecular diffusivity, 𝑘𝑡  is thermal 

diffusion ratio. 

The corresponding initial and boundary conditions are  
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𝑡′ ≤ 0: 𝑢′=0, 𝑣 ′=0, 𝑇 ′= 𝑇∞
′, 𝐶 ′= 𝐶∞

′                            ∀ 𝑥′, 𝑦′  

𝑡′ > 0: 𝑢′=0, 𝑣 ′=0, 𝑇 ′= 𝑇∞
′+𝑎𝑥′𝑛

,   𝐶′ = 𝐶∞
′ + 𝑏𝑥′𝑚

     at 𝑦′ =0   

            𝑢′=0, 𝑇 ′= 𝑇∞
′, 𝐶 ′= 𝐶∞

′                                         at   𝑥′ =0                            (6) 

           𝑢′ → 0, 𝑇 ′ → 𝑇∞
′, 𝐶 ′ → 𝐶∞

′                                as 𝑦′ → ∞                                                  

The local skin friction 𝜏 is defined as      𝜏 = 𝜇(
𝜕𝑢′

𝜕𝑦′ ) 𝑦=0    

Introducing the non dimensional quantities 

𝑥 ′= xL, 𝑦 ′= yL(𝐺𝑟)
−1

4 , 𝑟′= rL, 𝑣 ′= 
𝑣𝜈∞(𝐺𝑟)

1
4

𝐿
, 𝑢′= 

𝑢𝜈∞(𝐺𝑟)
1
2

𝐿
, 𝑡 ′=

 𝑡𝐿2(𝐺𝑟)
−1
2

𝜈∞
, 𝜃 = 

𝑇′− 𝑇∞
′

𝑇𝑤
′−𝑇∞

′ , 

 𝜑 = 
𝐶 ′− 𝐶∞

′

𝐶𝑤
′−𝐶∞

′, M = 
𝜎𝐵0

2𝐿2(𝐺𝑟)
−1
2

𝜌𝜈∞ 
, Gr = 

𝑔𝛽𝑇(𝑇𝑤
′−𝑇∞

′)𝐿3𝑐𝑜𝑠𝜑

𝜈∞
2 , Sc = 

𝜈∞

𝐷𝑚
, Pr = 

𝜈∞

𝛼∞
 , N = 

𝐺𝑚

𝐺𝑟
 ,                         (7) 

Gm= 
𝑔𝛽𝐶(𝐶𝑤

′−𝐶∞
′)𝐿3𝑐𝑜𝑠𝜑

𝜈∞
2 , Sr= 

𝐷𝑚𝑘𝑡(𝑇𝑤
′−𝑇∞

′)

𝑇𝑚𝜈∞(𝐶𝑤
′−𝐶∞

′)
 ,     Du= 

 𝐷𝑚𝑘𝑡(𝐶𝑤
′−𝐶∞

′)

𝐶𝑆𝐶𝑃𝜈∞(𝑇𝑤
′−𝑇∞

′) 
  

and using eqs.(1) and (7) in eqs. (2) – (6), we get 

𝜕𝑢

𝜕𝑥
 + 

𝜕𝑣

𝜕𝑦
 = 0,                                                                   (8) 

𝜕𝑢

𝜕𝑡
 + 𝑢

𝜕𝑢

𝜕𝑥
 + 𝑣

𝜕𝑢

𝜕𝑦
 = 𝜃 +( 

1

1+𝜖𝜃
 )

𝜕2𝑢

𝜕𝑦2 - 
𝜖

(1+𝜖𝜃)2

𝜕𝑢

𝜕𝑦
 
𝜕𝜃

𝜕𝑦
  + 𝑁𝜑 – Mu,                             (9) 

𝜕𝜃

𝜕𝑡
 + 𝑢

𝜕𝜃

𝜕𝑥
 + 𝑣

𝜕𝜃

𝜕𝑦
 = 

1

𝑃𝑟
( 

1

1+𝜔𝜃
 )

𝜕2𝜃

𝜕𝑦2  - 
1

𝑃𝑟
 

𝜔

(1+𝜔𝜃)2 (
𝜕𝜃

𝜕𝑦
) 2 + Du 

𝜕2𝜑

𝜕𝑦2                                    (10) 

and  

𝜕𝜑

𝜕𝑡
 + 𝑢

𝜕𝜑

𝜕𝑥
 + 𝑣

𝜕𝜑

𝜕𝑦
 = 

1

𝑆𝑐
 
𝜕2𝜑

𝜕𝑦2   + 𝑆𝑟
𝜕2𝜃

𝜕𝑦2 .                                                                   (11) 

The initial and boundary conditions becomes 

 t ≤ 0:     u = 0, v = 0, 𝜃 = 0, 𝜑 = 0                                       ∀  x, y ; 

t > 0:      u = 0, v = 0,  𝜃 = 1, 𝜑 = 1                                     at        y = 0,                                

              u = 0, 𝜃 = 0, 𝜑 = 0                                                 at        x = 0                                                (12) 

   and      u → 0,  𝜃 → 0,  𝜑 → 0                                           as       y → ∞.             
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Using the non dimensional quantities, the local skin friction becomes  𝜏 = (𝐺𝑟)
3

4(
𝜕𝑢

𝜕𝑦
) 𝑦=0     

3. Method of Solution 

Equations (8) - (11) are dimensionless  partial differenential equations subject to the initial and 

boundary conditions (12)  are reduced to a system of difference equations  using this finite 

difference scheme  
𝜕𝑢

𝜕𝑦
 = 

𝑢𝑖+1
𝑗,𝑛 −𝑢𝑖

𝑗,𝑛 

∆𝑦
 , 

𝜕2𝑢

𝜕𝑦2 = 
𝑢𝑖+1

𝑗,𝑛  + 𝑢𝑖−1
𝑗,𝑛  − 2𝑢𝑖

𝑗,𝑛

(∆𝑦)2   and then the system of difference 

equations is solved numerically by an iterative method.  

The finite difference scheme of equations (8)- (11) as follows 

𝑢(𝑖+1,𝑗,𝑛) − 𝑢(𝑖,𝑗,𝑛)

𝑑𝑥
  + 

𝑣(𝑖,𝑗+1,𝑛 ) – 𝑣(𝑖,𝑗,𝑛)

𝑑𝑦
  = 0,                                                                                                           (13)       

𝑢(𝑖,𝑗,𝑛+1) − 𝑢(𝑖,𝑗,𝑛 )

𝑑𝑡
  + 𝑢(𝑖, 𝑗, 𝑛)

𝑢(𝑖+1,𝑗,𝑛) − 𝑢(𝑖,𝑗,𝑛)

𝑑𝑥
 + 𝑣(𝑖, 𝑗, 𝑛)

𝑢(𝑖,𝑗+1,𝑛) − 𝑢(𝑖,𝑗,𝑛)

𝑑𝑦
 = 𝜃(𝑖, 𝑗, 𝑛)  + 

1

(1+𝜖𝜃(𝑖,𝑗,𝑛))
 

(
𝑢(𝑖,𝑗+1,𝑛) − 2𝑢(𝑖,𝑗,𝑛) + 𝑢(𝑖,𝑗−1,𝑛)

(𝑑𝑦)2  ) - 
𝜖

(1+𝜖𝜃(𝑖,𝑗,𝑛))2  
(𝑢(𝑖,𝑗+1,𝑛) − 𝑢(𝑖,𝑗,𝑛))(𝜃(𝑖,𝑗+1,𝑛) − 𝜃(𝑖,𝑗,𝑛))

(𝑑𝑦)2  + 𝑁𝜑(𝑖, 𝑗, 𝑛)  - 

M 𝑢(𝑖, 𝑗, 𝑛),                                                                                                                                                               (14) 

 
𝜃(𝑖,𝑗,𝑛+1) − 𝜃(𝑖,𝑗,𝑛 )

𝑑𝑡
 + 𝑢(𝑖, 𝑗, 𝑛)

𝜃(𝑖+1,𝑗,𝑛) − 𝜃(𝑖,𝑗,𝑛)

𝑑𝑥
 + 𝑣(𝑖, 𝑗, 𝑛)

𝜃(𝑖,𝑗+1,𝑛) − 𝜃(𝑖,𝑗,𝑛)

𝑑𝑦
 = 

1

𝑃𝑟
 

1

(1+𝜔𝜃(𝑖,𝑗,𝑛))
 

(
𝜃(𝑖,𝑗+1,𝑛) − 2𝜃(𝑖,𝑗,𝑛) + 𝜃(𝑖,𝑗−1,𝑛)

(𝑑𝑦)2  ) - 
1

𝑃𝑟
 

𝜔

(1+𝜔𝜃(𝑖,𝑗,𝑛))2 
𝜃(𝑖,𝑗+1,𝑛) − 𝜃(𝑖,𝑗,𝑛)

𝑑𝑦
  

+ Du (
𝜑(𝑖,𝑗+1,𝑛)−2𝜑(𝑖,𝑗,𝑛)+𝜑(𝑖,𝑗−1,𝑛)

(𝑑𝑦)2 ),                                                                                                                      (15)      

𝜑(𝑖,𝑗,𝑛+1) − 𝜑(𝑖,𝑗,𝑛 )

𝑑𝑡
 +  𝑢(𝑖, 𝑗, 𝑛)

𝜑(𝑖+1,𝑗,𝑛) − 𝜑(𝑖,𝑗,𝑛)

𝑑𝑥
 +  𝑣(𝑖, 𝑗, 𝑛)

𝜑(𝑖,𝑗+1,𝑛) − 𝜑(𝑖,𝑗,𝑛)

𝑑𝑦
  =

1

𝑆𝑐
 (

𝜑(𝑖,𝑗+1,𝑛) − 2𝜑(𝑖,𝑗,𝑛) + 𝜑(𝑖,𝑗−1,𝑛)

(𝑑𝑦)2  ) +  (
𝜃(𝑖,𝑗+1,𝑛) −2𝜃(𝑖,𝑗,𝑛) + 𝜃(𝑖,𝑗−1,𝑛)

(𝑑𝑦)2  ).                                                          (16) 

4. Results and Discussion 

Figs. 2 (a)–(b) exhibit the velocity and concentration profiles for various values of Sr=(0.1, 0.3, 0.5), 
by taking Du=0.4, Pr= 0.71, Sc=0.6, M=1,  𝜔 = 0.1, N=1, t=0.2, 𝜖=0.1. From Fig. 2 (a) it is observed 
that velocity decreases  with increase in Sr and  also noticed that velocity increases for y less than 1, 
attains the maximum value at about y=1 and then decreases exponentially towards the end of the 
boundary layer. From Fig. 2 (b) it is clear that concentration decreases exponentially from the  
maximum value at the surface to the minimum value at the end of boundary layer and also noticed 
that concentration increases with increase in Sr. Increase in Sr leads to increase in concentration as 
a result of greater mass diffusivity.   Higher mass diffusivity represents greater probability of 
molecular collision which is the result of large difference in concentration. Higher the concentration 
gradient increases the difference in concentration of molecules. It can be inferred that increase in 
mass diffusivity increases concentration gradient resulting in increased concentration. 
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(a)                                                                                 (b) 

Fig. 2. Effects of Soret number on (a) velocity profile  (b) concentration profile 

Figs. 3 (a) – (b) exhibit the velocity and temperature profiles for various values of  Du=(0.2, 0.4, 
0.6),  by taking Sr=0.5, Pr= 0.71, Sc=0.6, M=1, t=0.2, 𝜔 = 0.1, N=1,  𝜖=0.1. From Fig. 3 (a) It is noticed 
that velocity increases with increase in Du. From Fig. 3 (b) it is observed that temperature increases 
with increase in Du.  Increase in Du leads to enhance the temperature as a result of greater thermal 
diffusivity. As thermal diffusivity increases, thermal conductivity rises which leads to increase in 
molecular vibrations as a result temperature increases. This result was co-incide in case of air only. 

 

(a)                                                               (b) 

Fig. 3. Effects of Dufour number on (a) velocity profile (b) temperature profile 

Figs. 4 (a) – (b) exhibit that the velocity and temperature profiles for various values of 𝜖 = (0.1, 0.2, 
0.3), by taking Sr=0.5, Pr= 0.71, Sc=0.6, M=1,  𝜔 = 0.1, N=1, t=0.2,  Du=0.4. It  is observed that 
velocity decreases and temperature increases as 𝜖 increases. Increase in the values of  𝜖 causes fall 
in velocity as a result of greater viscosity. Increase in the values of 𝜖 also causes rise in temperature 
because in case of air, when viscosity increases the cohesive forces between the molecules are less, 
whereas the molecular momentum transfer is high, resulting in increase in temperature.  
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(a)                                                                               (b) 

Fig. 4.  Effects of viscosity parameter on (a) velocity profile (b) temperature profile 

Figs. 5 (a) – (b) exhibit the velocity and temperature profiles for various values of 𝜔 = (0.1, 0.2, 0.3), 

by taking Sr=0.5, Pr= 0.71, Sc=0.6, M=1, N=1, t=0.2,  Du=0.4,  𝜖=0.1.  It  is observed that velocity and 

temperature  both increases as 𝜔 increases. When thermal conductivity increases the heat transfer 

increases hence temperature increases. 

 

(a)                                                                                (b) 

Fig. 5. Effects of thermal conductivity parameter on (a) velocity profile (b) temperature profile 

Fig. 6 exhibits the temperature profile for various values of t = (0.5, 0.6, 0.7), by taking Sr=0.5, Pr= 

0.71, Sc=0.6, M=1, N=1,  Du=0.4,  𝜖=0.1, 𝜔 = 0.1. It is observed that temperature increases as t 

increases. Fig. 7 exhibits the velocity profile for various value of M= (1, 2, 3), by taking Sr=0.5, Pr= 

0.71, Sc=0.6, t=0.2, N=1,  Du=0.4,  𝜖=0.1, 𝜔 = 0.1.  It is noticed that velocity decreases as M increases. 

0 1 2 3 4 5
0

0.5

1

1.5

y

u

 

 

=0.1

=0.2

=0.3

0 1 2 3 4 5
0

0.5

1

1.5

y



 

 

=0.1

=0.2

=0.3

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y

u

 

 

=0.1

=0.2

=0.3

0 1 2 3 4
0

0.5

1

1.5

y



 

 

=0.1

=0.2

=0.3



B R Sharma and Bismeeta  Buragohain / American Journal of Heat and Mass Transfer 
(2017) Vol. 4 No. 1 pp. 53-63 

 

 
 

60 

Application of magnetic field  to the flow direction gives rise a Lorentz force which produces more 

reduction in velocity field.    

 

Fig. 6. Effects of time on temperature profile    Fig. 7. Effects of magnetic parameter on velocity 

profile      

From Fig. 8 it can be seen that local skin friction decreases by decreasing Soret number and 

increasing Schmidt number.  From Fig. 9 it can be seen that local skin friction decreases by 

increasing Dufour number and Prandtl number.     

                

       Fig. 8.  Effects of Sr on Skin friction                          Fig. 9.  Effects of Du on Skin friction  with  
                     with various value of Sc                                                various value of Pr    
 
From Fig. 10 it can be seen that local skin friction increases by increasing viscosity parameter and 

increasing Magnetic parameter.  From Fig. 11 it can be seen that local skin friction decreases with 

the decreasing thermal conductivity parameter and increasing Prandtl number.  
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     Fig. 10.  Effects of 𝜖 on skin friction                          Fig. 11.  Effects of 𝜔 on Skin friction with  
                      with various value of M                                               various value of Pr    
 

Comparison of values of steady – state local skin friction with those of Pullepu (2014) for 

vertical cone, for various values of Pr, when  Sr =0, Du =0, 𝜖 =0,  𝜔 =0 and M =0 is given 

below :  

Pr Pullepu (2014)  Present result 

0.001 1.4149  1.4321 

0.01  1.3356 1.3537 

0.1  1.0911 1.0936 

1  0.7688 0.7691 

10  0.4856 0.4873 

 100  0.2879 0.2883 

 1000  0.1637 0.1649 

 

5. Conclusion 

 The  velocity decreases and concentration increases with the increase of Soret number. 

 The velocity and tempearture increases with the increase of  Dufour  number.  

 The velocity decreases and tempearture increases with the increase of viscosity parameter. 

 The velocity and temperature increases with the increase of thermal conductivity 

parameter. 

 The velocity decreases with the increase of magnetic parameter and temperature increases 

with increase of time. 

 The local skin friction decreases with the decrease of Soret number and increase of Schmidt 

number. 

 The local skin friction decreases with the increase of Dufour number and Prandtl number.     
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  The local skin friction increases with the increase of viscosity parameter and increase of 

Magnetic parameter. 

 The local skin friction decreases with the decrease of thermal conductivity parameter and 

increasing Prandtl number. 
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