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Abstract— In many applications, nodes in a network wish
to achieve not only a consensus, but an optimal one. To
date, a family of subgradient algorithms have been proposed
to solve this problem under general convexity assumptions.
This paper shows that, with a few additional mild assump-
tions, a fundamentally different, non-gradient-based algorithm
with appealing features can be constructed. Specifically, we
develop Pairwise Equalizing (PE), a gossip-style, distributed
asynchronous iterative algorithm for achieving unconstrained,
separable, convex consensus optimization over undirected net-
works with time-varying topologies, where each component
function is strictly convex, continuously differentiable, and has
a minimizer. We show that PE is easy to implement, bypasses
limitations facing the subgradient algorithms, and produces
a switched, nonlinear, networked dynamical system that is
deterministically and stochastically asymptotically convergent.
Moreover, we show that PE admits a common Lyapunov
function and reduces to the well-studied Pairwise Averaging
and Randomized Gossip Algorithm in a special case.

I. INTRODUCTION

Consider an N -node multi-hop network, where each node
i observes a convex function fi, and all the N nodes wish
to determine an optimal consensus x∗, which minimizes the
sum of the fi’s:

x∗ ∈ argmin
x

N∑

i=1

fi(x). (1)

Since each node i knows only its own fi, the nodes cannot
individually compute the optimal consensus x∗ and, thus,
must collaborate to do so. This problem of achieving un-
constrained, separable, convex consensus optimization has
many applications in multi-agent systems and wired/wireless/
social networks. For instance, the problems of least-squares
and robust estimation [1], energy-based source localization
and clustering/density estimation [2] can all be cast into
the form of (1). As another example, in a social network,
fi(x) may represent an individual i’s level of dissatisfaction
if the network takes decision x, so that finding an optimal
decision x∗ means minimizing the total dissatisfaction across
the network, where everyone’s voice is heard.

The current literature offers a large body of work on
distributed consensus (e.g., [3]–[16]), including a line of
research that focuses on solving problem (1) for an optimal
consensus x∗ [1], [2], [17]–[28]. This line of work has
resulted in a family of discrete-time subgradient algorithms,
including the incremental subgradient algorithms [1], [2],
[17]–[21], [23], [28], whereby an estimate of x∗ is passed
around the network, and the non-incremental ones [22], [24]–
[27], whereby each node maintains an estimate of x∗ and up-
dates it iteratively by exchanging information with neighbors.
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Regardless of the categories, these algorithms rely on the
notion of a stepsize to execute. Furthermore, the algorithms
mostly assume delay- and error-free communications with
no quantization over directed graphs, although there are a
few exceptions: [18] allowed the presence of bounded time
delays, [28] considered random additive errors in subgradient
evaluations, [20], [26] studied the effects of quantization, and
[24], [27] assumed undirected graphs.

Although the aforementioned subgradient algorithms are
capable of solving problem (1) under weak assumptions, they
suffer from one or more of the following limitations:

L1) Stepsizes: To implement the subgradient algorithms, it
is necessary to select stepsizes, which may be constant, di-
minishing, or dynamic. In general, constant stepsizes ensure
only convergence to neighborhoods of x∗, rather than to x∗

itself. Moreover, they present an inevitable trade-off: larger
stepsizes tend to yield larger convergence neighborhoods,
while smaller ones tend to yield slower convergence, both of
which are undesirable. Diminishing stepsizes, on the other
hand, avoid the issue with lack of asymptotic convergence.
However, they may lead to very slow convergence, since
the stepsizes may diminish too quickly. Finally, dynamic
stepsizes provide an interesting alternative for shaping con-
vergence behavior [17], [19]. Unfortunately, their dynamics
depend on global information that is often unavailable, or
costly to obtain, limiting their applicability. Hence, selecting
appropriate stepsizes is not a trivial task, and inappropriate
choices can severely hamper algorithm performance.

L2) Hamiltonian cycle: Most of the incremental subgra-
dient algorithms [1], [2], [17]–[20], [23], [28] require the
network to contain a Hamiltonian cycle, i.e., a closed path
that visits every node exactly once. Such a cycle, however,
does not exist in many graphs [29]. In fact, determining its
existence in a given graph, and finding it when it does exist,
are both NP-complete problems [29]. Further compounding
the complexity are the needs to maintain the cycle when
the graph changes (but does not destroy its existence),
inform each node of its predecessor and successor along the
latest cycle, and do all of these possibly in a decentralized,
leaderless fashion.

L3) Multi-hop transmissions: Some of the incremental
subgradient algorithms [17]–[19] require the node that has
the latest estimate of x∗ to pass it on to a randomly and
equiprobably chosen node in the network. This implies that
every node must be aware of all the nodes in the network,
and the algorithms must run alongside a routing protocol
that enables passing of the estimate of x∗, which may not
always be the case. The fact that the chosen node is typically
multiple hops away also implies that these algorithms are
communication inefficient, requiring plenty of transmissions
(up to the network diameter) just to complete a single
iteration.

L4) Lack of asymptotic convergence: A variety of conver-
gence properties have been established for the subgradient
algorithms in [1], [2], [17]–[28], including error bounds,
convergence in expectations, convergence in the sense of
limit inferiors, convergence rates, etc. In contrast, few asymp-
totic convergence results have been reported, except for
the incremental subgradient algorithms with diminishing or
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dynamic stepsizes in [17]–[19], [23], [28].
Limitations L1–L4 facing the existing subgradient algo-

rithms raise the question of whether it is possible to devise
an algorithm, which requires neither the notion of a stepsize,
the existence of a Hamiltonian cycle, nor the use of a routing
protocol for multi-hop transmissions, and yet guarantees
asymptotic convergence, bypassing L1–L4. In this paper, we
show that, by imposing several mild assumptions on the
network and the problem, such an algorithm can be con-
structed. Specifically, instead of assuming that the network
is directed, we assume that it is undirected, with possibly
a time-varying topology unknown to any of the nodes. In
addition, instead of assuming that each fi in (1) is convex
but not necessarily differentiable, we assume that it is strictly
convex, continuously differentiable, and has a minimizer.
Based on these assumptions, we develop a gossip-style,
distributed asynchronous iterative algorithm, referred to as
Pairwise Equalizing (PE), which not only solves problem
(1) and circumvents limitations L1–L4, but also is rather
easy to implement, making it an attractive alternative to the
subgradient algorithms in many applications.

As will be shown in the paper, PE exhibits a number
of notable features. First, it produces a switched, nonlinear,
networked dynamical system whose state evolves along an
invariant manifold whenever a pair of adjacent nodes gossip
with each other. The switched system is proved, using Lya-
punov stability theory, to be deterministically and stochas-
tically asymptotically convergent, as long as the gossiping
pattern is sufficiently rich. In particular, we show that the
first-order convexity condition [30] can be used to form
a common Lyapunov function, as well as to characterize
drops in its value after every gossip. Second, PE does not
belong to the family of subgradient algorithms as it utilizes a
fundamentally different, non-gradient-based update rule that
involves no stepsize. This update rule is synthesized from
a blend of three simple ideas—namely, conservation, dissi-
pation, and equalizing—which is somewhat similar to how
Pairwise Averaging [31] was conceived back in the 1980s.
Indeed, we show that PE reduces to Pairwise Averaging
[31], Randomized Gossip Algorithm [32], and Anti-Entropy
Aggregation [33], [34] when problem (1) specializes to an
averaging problem.

The outline of this paper is as follows: Section II mod-
els the network and formulates the problem. Section III
describes the proposed algorithm PE, while Section IV
analyzes its convergence properties. Section V illustrates the
effectiveness of PE through an example. Finally, Section VI
concludes the paper. Due to space limitation, all proofs are
omitted and can be found in [35]. Throughout the paper, let
N and P denote, respectively, the sets of nonnegative and
positive integers.

II. PROBLEM FORMULATION

Consider a multi-hop network consisting of N ≥ 2 nodes,
connected by bidirectional links in a time-varying topology.
The network is modeled as an undirected graph G(k) =
(V , E(k)), where k ∈ N denotes time, V = {1, 2, . . . , N}
represents the set of N nodes (vertices), and E(k) ⊂ {{i, j} :
i, j ∈ V , i 6= j} represents the nonempty set of links (edges)
at time k. The graph G(k) is allowed to vary in order
to reflect node mobility and changing channel conditions,
and the variations are assumed to be exogenous, beyond
control of the nodes. Any two nodes i, j ∈ V are one-hop
neighbors and can communicate at time k ∈ N if and only
if {i, j} ∈ E(k), and the communications are assumed to be
delay- and error-free, with no quantization.

Suppose, at time k = 0, each node i ∈ V observes a
function fi : X → R, which maps a nonempty open interval
X ⊂ R to R, and which satisfies the following assumption:

Assumption 1. For each i ∈ V , the function fi is strictly
convex, continuously differentiable, and has a minimizer
x∗

i ∈ X .

Note that the conditions in Assumption 1 are not redun-
dant, as strict convexity alone does not imply continuous
differentiability (e.g., with X = R, fi(x) = e|x| is strictly
convex but not differentiable at x = 0), and strict convexity
and continuous differentiability together do not imply the
existence of a minimizer in X (e.g., with X = (0, 1), fi(x) =
e−x is strictly convex and continuously differentiable but has
no minimizer in X ). On the other hand, strict convexity and
the existence of a minimizer x∗

i ∈ X do ensure that the
minimizer x∗

i is unique.
Suppose, upon observing the fi’s, all the N nodes wish

to solve the following unconstrained, separable, convex op-
timization problem:

min
x∈X

F (x), (2)

where the function F : X → R is defined as

F (x) =
∑

i∈V

fi(x). (3)

Notice that F in (3) is strictly convex and continuously
differentiable, as these properties are preserved under sum-
mation. To show that F has a unique minimizer in X so that
problem (2) is well-posed, let f ′

i : X → R and F ′ : X → R

denote the derivatives of fi and F , respectively, and consider
the following proposition:

Proposition 1. With Assumption 1, there exists a unique
x∗ ∈ X , which satisfies F ′(x∗) = 0, minimizes F over X ,
and solves problem (2), i.e.,

x∗ = argmin
x∈X

F (x). (4)

Given the above network and problem, the goal of this
paper is to construct a distributed asynchronous algorithm,
with which each node i ∈ V repeatedly communicates with
its one-hop neighbors, iteratively updates its estimate x̂i of
the unknown optimizer x∗ in (4), and asymptotically drives
x̂i to x∗. The algorithm should be easy to implement and
free of limitations L1–L4 discussed in Section I.

III. PAIRWISE EQUALIZING

In this section, we develop a gossip algorithm having the
aforementioned features.

Suppose, at time k = 0, each node i ∈ V creates a state
variable x̂i ∈ X in its local memory, which represents its
estimate of the unknown optimizer x∗ in (4). Also suppose,
at each subsequent time k ∈ P, an iteration involving a subset
of the N nodes, referred to as iteration k, takes place. Let
x̂i(0) represent the initial value of x̂i, and x̂i(k) its value
upon completing each iteration k ∈ P. With this setup, the
goal of asymptotically driving all the x̂i(k)’s to x∗ may be
stated as

lim
k→∞

x̂i(k) = x∗, ∀i ∈ V . (5)

To design an algorithm that guarantees (5), consider a
conservation condition

∑

i∈V

f ′
i(x̂i(k)) = 0, ∀k ∈ N, (6)
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which says that the state variables x̂i(k)’s evolve in such
a manner that the sum of the derivatives f ′

i’s, evaluated
respectively at the x̂i(k)’s, is always conserved at zero.
Moreover, consider a dissipation condition

lim
k→∞

x̂i(k) = x̃, ∀i ∈ V , for some x̃ ∈ X , (7)

which says that the x̂i(k)’s gradually dissipate their differ-
ences and asymptotically achieve some arbitrary consensus
x̃ ∈ X . Note that if the conservation condition (6) is met,
then

lim
k→∞

∑

i∈V

f ′
i(x̂i(k)) = lim

k→∞
0 = 0. (8)

If, in addition, the dissipation condition (7) is met, then due
to the continuity of every f ′

i and (3),
∑

i∈V

lim
k→∞

f ′
i(x̂i(k))=

∑

i∈V

f ′
i( lim

k→∞
x̂i(k))=

∑

i∈V

f ′
i(x̃)=F ′(x̃).

(9)

Because limk→∞ f ′
i(x̂i(k)) exists ∀i ∈ V , we can write

lim
k→∞

∑

i∈V

f ′
i(x̂i(k)) =

∑

i∈V

lim
k→∞

f ′
i(x̂i(k)). (10)

Combining (8), (9), and (10), we obtain F ′(x̃) = 0. From
Proposition 1, we see that the arbitrary consensus x̃ must
be the unknown optimizer x∗, i.e., x̃ = x∗, so that (5)
holds. Therefore, to design an algorithm that ensures (5)—
where x∗ explicitly appears, it suffices to make the algorithm
satisfy both the conservation and dissipation conditions (6)
and (7)—where x∗ is implicitly encoded.

To come up with such an algorithm, observe that the
conservation condition (6) holds if and only if the initial
values x̂i(0)’s are such that

∑

i∈V

f ′
i(x̂i(0)) = 0, (11)

and the values x̂i(k)’s upon completing each iteration k ∈ P

are related to the x̂i(k − 1)’s prior to the iteration through
∑

i∈V

f ′
i(x̂i(k)) =

∑

i∈V

f ′
i(x̂i(k − 1)), ∀k ∈ P. (12)

To satisfy (11), recall that every node i ∈ V knows the
function fi and knows that fi has a unique minimizer
x∗

i ∈ X , which yields f ′
i(x

∗
i ) = 0. Thus, (11) can be met by

having every node i ∈ V compute x∗
i on its own and then

initialize x̂i(0) to x∗
i , i.e.,

x̂i(0) = x∗
i , ∀i ∈ V . (13)

On the other hand, to satisfy (12), consider a gossip
algorithm, whereby at each iteration k ∈ P, a pair
u(k) = {u1(k), u2(k)} ∈ E(k) of one-hop neighbors u1(k)
and u2(k) communicate with each other and update their
x̂u1(k)(k) and x̂u2(k)(k), while the rest of the N nodes stay
idle and experience no change in their x̂i(k)’s, i.e.,

x̂i(k) = x̂i(k − 1), ∀k ∈ P, ∀i ∈ V − u(k). (14)

Notice that with (14), equation (12) simplifies to

f ′
u1(k)(x̂u1(k)(k))+f ′

u2(k)(x̂u2(k)(k))=f ′
u1(k)(x̂u1(k)(k−1))

+ f ′
u2(k)(x̂u2(k)(k − 1)), ∀k ∈ P. (15)

Also note that the entire expression (15) is known to nodes
u1(k) and u2(k): f ′

u1(k) and f ′
u2(k) are derivatives of fu1(k)

and fu2(k) they observe, x̂u1(k)(k − 1) and x̂u2(k)(k − 1)
are “old” values of the state variables they maintain, and
x̂u1(k)(k) and x̂u2(k)(k) are “new” values they seek to jointly
determine, respectively. Hence, all that is needed for (12) to
hold is a gossip between nodes u1(k) and u2(k) to share their
fu1(k), fu2(k), x̂u1(k)(k−1), and x̂u2(k)(k−1), followed by a
joint update of their x̂u1(k)(k) and x̂u2(k)(k), which ensures
(15).

Obviously, (15) alone does not uniquely determine
x̂u1(k)(k) and x̂u2(k)(k), since there are two variables but
only one equation. This suggests that the available degree of
freedom may be used to account for the dissipation condition
(7), which has yet to be addressed. Unlike the conservation
condition (6), however, the dissipation condition (7) is not
about how the state variables x̂i(k)’s should evolve for
every finite k. Instead, it is about where the x̂i(k)’s should
approach as k goes to infinity, which nodes u1(k) and u2(k)
cannot guarantee themselves since they are only responsible
for two of the N x̂i(k)’s. Nevertheless, given that all the
N x̂i(k)’s should approach the same limit, nodes u1(k) and
u2(k) can help make this happen by imposing an equalizing
condition, forcing x̂u1(k)(k) and x̂u2(k)(k) to be equal, i.e.,

x̂u1(k)(k) = x̂u2(k)(k), ∀k ∈ P. (16)

With the equalizing condition (16) added, there are now
two equations with two variables, providing nodes u1(k)
and u2(k) a chance to uniquely determine x̂u1(k)(k) and
x̂u2(k)(k) from (15) and (16).

The following proposition asserts that (15) and (16) always
have a unique solution, so that the x̂i(k)’s are well-defined.
To prove this assertion, the following lemma is useful:

Lemma 1. Consider the network modeled in Section II.
Suppose Assumption 1 holds. Then, for any Vs ⊂ V with
Vs 6= ∅ and any zi ∈ X for each i ∈ Vs, there exists
a unique z ∈ X such that

∑

i∈Vs

f ′
i(z) =

∑

i∈Vs

f ′
i(zi).

Moreover, z ∈ [mini∈Vs
zi, maxi∈Vs

zi].

Proposition 2. With Assumption 1, (13), (14), (15), and
(16), x̂i(k) ∀k ∈ N ∀i ∈ V are well-defined, i.e., they are
unambiguous and in X . Furthermore,

[min
i∈V

x̂i(k), max
i∈V

x̂i(k)] ⊂ [min
i∈V

x̂i(k − 1),max
i∈V

x̂i(k − 1)],

∀k ∈ P. (17)

Lemma 1 and Proposition 2 call for a few re-
marks. First, Proposition 2 says that the x̂i(k)’s, be-
sides being well-defined, must lie in a closed interval
[mini∈V x̂i(k), maxi∈V x̂i(k)] that can only shrink or remain
unchanged, as opposed to grow or drift, over time k. While
this attribute does not guarantee the dissipation condition (7),
it shows that the x̂i(k)’s are “trying” to converge to the same
limit and are, at the very least, bounded even if X is not (e.g.,
X = R). Second, Lemma 1 implies that there is a unique
z ∈ X such that

f ′
u1(k)(z) + f ′

u2(k)(z)

=f ′
u1(k)(x̂u1(k)(k − 1)) + f ′

u2(k)(x̂u2(k)(k − 1)), (18)

which turns out to satisfy

z ∈ [ min
i∈u(k)

x̂i(k − 1), max
i∈u(k)

x̂i(k − 1)]. (19)

Setting

x̂u1(k)(k) = x̂u2(k)(k) = z, (20)
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we see that (20) is a solution to (15) and (16). This suggests
a simple, practical procedure for nodes u1(k) and u2(k)
to solve (15) and (16) for (x̂u1(k)(k), x̂u2(k)(k)): apply a
numerical root-finding method, such as the bisection method
with an initial bracket provided in (19), to solve (18) for
the unique z and then set both x̂u1(k)(k) and x̂u2(k)(k) to
z as indicated in (20). Third, (19) and (20) also suggest
that whenever the old x̂u1(k)(k − 1) and x̂u2(k)(k − 1) are
equal, the new x̂u1(k)(k) and x̂u2(k)(k) must be equal to
them, resulting in no change. Finally, since (18) always has
a unique solution z, we may combine it with (20) and write

x̂u1(k)(k)= x̂u2(k)(k)=(f ′
u1(k)+f ′

u2(k)
)−1(f ′

u1(k)(x̂u1(k)(k−1))

+ f ′
u2(k)(x̂u2(k)(k−1))), ∀k ∈ P, (21)

eliminating the intermediate variable z and stating the
new x̂u1(k)(k) and x̂u2(k)(k) directly in terms of the old

x̂u1(k)(k−1) and x̂u2(k)(k−1) and the function (f ′
i +f ′

j)
−1 :

(f ′
i +f ′

j)(X )→ X , which denotes the inverse of the injective

function f ′
i + f ′

j with its codomain restricted to its range.
Expressions (13), (14), and (21) collectively define a

gossip-style, distributed asynchronous iterative algorithm, the
operation of which leads to a switched, nonlinear, networked
dynamical system

x̂i(k)=

{
(
∑

j∈u(k)f
′
j)

−1(
∑

j∈u(k)f
′
j(x̂j(k−1))), if i∈u(k),

x̂i(k − 1), otherwise,

∀k ∈ P, ∀i ∈ V , (22)

with initial condition (13), and with (u(k))∞k=1 representing
the sequence of gossiping nodes, which trigger the switch-
ings. As this algorithm ensures the conservation condition
(6), the state trajectory (x̂1(k), x̂2(k), . . . , x̂N (k)) of the
system (22) must remain on an (N−1)-dimensional manifold
M⊂ XN ⊂ R

N defined as

M = {(x1, x2, . . . , xN ) ∈ XN :
∑

i∈V

f ′
i(xi) = 0}, (23)

making M an invariant set. Motivated by the fact that the
algorithm involves repeated, pairwise equalizing of the state
variables, we refer to it as Pairwise Equalizing (PE). PE
may be expressed in a compact algorithmic form capturing
its communication and computational aspects as follows:

Algorithm 1 (Pairwise Equalizing).
Initialization:

1) Each node i ∈ V computes x∗
i ∈ X .

2) Each node i ∈ V creates a variable x̂i ∈ X and
initializes it: x̂i ← x∗

i .
Operation: At each iteration:

3) A node with one or more one-hop neighbors, say, node
i, initiates the iteration and selects a one-hop neighbor,
say, node j, to gossip.

4) Nodes i and j select one of two ways to gossip by
labeling themselves as either nodes a and b, or nodes b
and a, respectively, where {a, b} = {i, j}.

5) If node b does not know fa, then node a transmits fa

to node b.
6) Node a transmits x̂a to node b.
7) Node b updates x̂b: x̂b ← (f ′

a+f ′
b)

−1(f ′
a(x̂a)+f ′

b(x̂b)).
8) Node b transmits x̂b to node a.
9) Node a updates x̂a: x̂a ← x̂b. �

Algorithm 1, or PE, consists of an initialization part that
is executed once, and an operation part that is executed
iteratively. Step 1 may be accomplished by letting every

node i ∈ V calculate the root x∗
i of f ′

i(x
∗
i ) = 0 analytically

whenever possible (e.g., when fi(x) = x2 + 2x + 3), and
numerically via a root-finding method whenever not (e.g.,
when fi(x) = x2 +2e−x +3ex). In the latter case, a suitable
choice is the bisection method, which can also be used to
carry out Step 7. Step 2 is intended to create the node
estimates, or state variables, and initialize them using the
result of Step 1. Step 3 may be realized either deterministi-
cally (e.g., each node periodically initiates an iteration and
cyclically picks a neighbor) or stochastically (e.g., each node
initiates an iteration according to some Poisson process and
equiprobably picks a neighbor), depending on applications.

Step 4 is intended to let nodes i and j pick one of two ways
to gossip that are equivalent mathematically, but different
communicatively and computationally: notice from Steps 5–
9 that the node that labels itself as node a has little to
compute but has to communicate the function fa once in
Step 5, which consumes bandwidth and transmission power.
In contrast, the node that labels itself as node b has not
much to communicate but has to compute the update in
Step 7, which demands processor time and effort. Thus,
Step 4 offers nodes i and j an opportunity to take advantage
of the asymmetry in their actions, to better utilize their
communication and computational resources. For instance,
if fi requires fewer data symbols to represent—and, hence,
less bandwidth and power to transmit—than fj , or if node
i’s processor is slower or busier than node j’s, then nodes i
and j might want to label themselves as nodes a and b, as
opposed to nodes b and a, respectively.

Steps 5 and 6 are introduced so that node b can perform
Step 7, whereas Step 8 is introduced so that node a can
perform Step 9. Note that Step 5 is a conditional step that is
carried out if and only if the condition “node b does not know
fa” is true. For a wired network, this condition is true if and
only if nodes i and j are gossiping or alternating their a-b
labels for the first time, since the function fa, upon reception
by node b, could be stored in its local memory for later use.
However, for a wireless network, this condition may be false
even if nodes i and j are gossiping or alternating their a-
b labels for the first time, since node b may have quietly
learned about fa by overhearing the wireless transmission
of fa from node a to another neighbor during a previous
iteration. Observe that whenever the condition is false (which
it almost always is), only two real-number transmissions are
needed per iteration, in Steps 6 and 8.

Finally, notice that PE does not rely on a stepsize pa-
rameter to execute, nor does it require the existence and
construction of a Hamiltonian cycle, as well as the concur-
rent use of a routing protocol for multi-hop transmissions.
Indeed, all it essentially needs is that every node is capable
of applying a root-finding method, maintaining a list of
its one-hop neighbors, and remembering the functions it
learns along the way. Therefore, PE successfully overcomes
limitations L1–L3 facing the existing subgradient algorithms
[1], [2], [17]–[28], while being rather easy to implement.
A question that remains is whether it also circumvents L4,
achieving asymptotic convergence.

Before answering this question, we point out that PE may
be viewed as a natural generalization of three existing dis-
tributed averaging algorithms—namely, Pairwise Averaging
[31], Randomized Gossip Algorithm [32], and Anti-Entropy
Aggregation [33], [34]—to the convex optimization problem
(2). To see this, consider a special case where each node
i ∈ V observes not an arbitrary function fi, but a quadratic
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one of the form

fi(x) =
1

2
(x− yi)

2 + ci, (24)

with X = R being its domain, and yi, ci ∈ R its parameters.
Note from (24) that f ′

i(x) = x − yi ∀i ∈ V ; from the
property f ′

i(x
∗
i ) = 0 ∀i ∈ V that x∗

i = yi ∀i ∈ V ;
from (3) and (24) that F ′(x) =

∑

i∈V(x − yi); from the

property F ′(x∗) = 0 that x∗ = 1
N

∑

i∈V yi; from (13) that
x̂i(0) = yi ∀i ∈ V ; from (15) that x̂u1(k)(k) + x̂u2(k)(k) =
x̂u1(k)(k − 1) + x̂u2(k)(k − 1) ∀k ∈ P; and from (16) that

x̂u1(k)(k) = x̂u2(k)(k) = 1
2 (x̂u1(k)(k − 1) + x̂u2(k)(k − 1))

∀k ∈ P. Thus, when the fi’s are given by (24), finding the
unknown optimizer x∗ amounts to calculating the network-
wide average 1

N

∑

i∈V yi of the node “observations” yi’s, so
that problem (2) becomes an averaging problem. Moreover,
initializing the node estimates x̂i(0)’s simply means setting
them to the yi’s, and equalizing x̂u1(k)(k) and x̂u2(k)(k)
simply means averaging them, so that PE reduces to the
three aforementioned algorithms, which share the same ini-
tialization and update rules. Furthermore, in this special case,
the invariant manifold M in (23) becomes the invariant
hyperplane M = {(x1, x2, . . . , xN ) ∈ R

N :
∑

i∈V xi =
∑

i∈V yi} that plays an important role in the study of
distributed averaging [31]–[34], [36]–[39].

IV. CONVERGENCE ANALYSIS

In Section III, we showed that PE ensures the conservation
condition (6) and attempts to satisfy the dissipation condition
(7). In this section, using Lyapunov stability theory, we show
that PE does guarantee the latter, thereby assuring (5), as long
as the gossiping pattern is sufficiently rich.

For convenience, let x
∗ and x(k) ∀k ∈ N denote, re-

spectively, the vectors obtained by stacking N copies of x∗

and all the x̂i(k)’s, i.e., x
∗ = (x∗, x∗, . . . , x∗) and x(k) =

(x̂1(k), x̂2(k), . . . , x̂N (k)). Then, from Propositions 1 and 2,
x
∗ ∈ XN and x(k) ∈ XN ∀k ∈ N. In addition, due to

(22), if x(k) = x
∗ for some k ∈ N, then x(ℓ) = x

∗

∀ℓ > k. Hence, x
∗ is an equilibrium point of the system

(22). To show that x(k) would asymptotically converge to
the equilibrium point x

∗, i.e., (5) holds, we seek to construct
a Lyapunov function. To this end, recall that for any strictly
convex and differentiable function f : X → R, the first-order
convexity condition [30] says that

f(y) ≥ f(x) + f ′(x)(y − x), ∀x, y ∈ X , (25)

where the equality holds if and only if x = y. This suggests
the following Lyapunov function candidate V : XN ⊂
R

N → R, which exploits the convexity of the fi’s:

V (x(k))=
∑

i∈V

fi(x
∗)−fi(x̂i(k))−f ′

i(x̂i(k))(x∗−x̂i(k)). (26)

Notice that V in (26) is well-defined because x
∗ ∈ XN ,

x(k) ∈ XN ∀k ∈ N, and f ′
i is well-defined ∀i ∈ V . More-

over, because of Assumption 1 and the first-order convexity
condition (25), V is continuous and positive definite with
respect to x

∗, i.e.,

V (x(k)) ≥ 0, ∀x(k) ∈ XN , (27)

where the equality holds if and only if x(k) = x
∗. Therefore,

to prove (5), it suffices to show that

lim
k→∞

V (x(k)) = 0. (28)

The following lemma represents the first step toward
establishing (28):

Lemma 2. Consider the network modeled in Section II and
the use of PE described in Algorithm 1. Suppose Assump-
tion 1 holds. Then, for any given sequence (u(k))∞k=1, the
sequence (V (x(k)))∞k=0 is non-increasing and satisfies

V (x(k)) − V (x(k − 1)) = −
∑

i∈u(k)

fi(x̂i(k)) − fi(x̂i(k − 1))

− f ′
i(x̂i(k − 1))(x̂i(k)− x̂i(k − 1)), ∀k ∈ P. (29)

Lemma 2 has several implications. First, according to (22),
(25), and (29), upon completing each iteration k ∈ P by
any two nodes u1(k) and u2(k), the value of V must either
decrease from V (x(k−1)) to V (x(k)) or, at worst, stay the
same with V (x(k)) = V (x(k − 1)), where the latter occurs
if and only if x̂u1(k)(k−1) = x̂u2(k)(k−1). Therefore, with
PE, every node may freely decide when to initiate an iteration
and who to gossip with, knowing that no matter what it does,
the value of V cannot increase. Second, since (V (x(k)))∞k=0
is non-increasing irrespective of (u(k))∞k=1, the function V
in (26) may be regarded as a common Lyapunov function for
the nonlinear switched system (22), which has as many as
N(N−1)

2 different dynamics, corresponding to the
N(N−1)

2
possible gossiping pairs in the network. Finally, Lemma 2
suggests that the first-order convexity condition (25) can
be used not only to form the common Lyapunov function
V in (26), but also to characterize drops in its value in
(29) after every gossip. This is akin to how quadratic
functions may be used to form a common Lyapunov function
V (k) = xT (k)Px(k) for a linear switched system x(k +
1) = A(k)x(k), A(k) ∈ {A1, A2, . . . , AM}, as well as
to characterize drops in V (k) via V (k + 1) − V (k) =
xT (k)(AT

i PAi − P )x(k) = −xT (k)Qix(k). Indeed, as
we will show later, when problem (2) specializes to an
averaging problem, for which the nonlinear switched system
(22) reduces to a linear one, both V in (26) and its drop in
(29) become quadratic functions.

As it follows from (27) and Lemma 2, the sequence
(V (x(k)))∞k=0 is nonnegative and non-increasing, implying
that limk→∞ V (x(k)) exists and is nonnegative. This, how-
ever, is insufficient for us to conclude that limk→∞ V (x(k))
is zero, since, for some pathological gossiping patterns,
limk→∞ V (x(k)) can be positive. To see this, suppose the
set V of nodes can be partitioned into two nonempty subsets,
such that the nodes in one subset never gossip with those
in the other—either by force (e.g., V = {1, 2, 3, 4} and
E(k) ≡ {{1, 2}, {3, 4}}, so that u(k) is forced to be {1, 2}
or {3, 4}) or by choice (e.g., V = {1, 2, 3, 4} and E(k) ≡
{{1, 2}, {2, 3}, {3, 4}}, but u(k) is chosen to be {1, 2} or
{3, 4}). Then, V (x(k)) in general would be bounded away
from zero by a positive constant, since x∗ in (4) depends on
all the fi’s, but information never flows between the subsets.
Thus, some restrictions must be imposed on the gossiping
pattern, in order to establish (28).

Given that PE—or, specifically, its Step 3—may be real-
ized either deterministically or stochastically, we will intro-
duce restrictions on the gossiping pattern in both of these
frameworks. Moreover, since the sequence (E(k))∞k=0 was
assumed in Section II to be exogenous, below we will treat
(E(k))∞k=0 simply as given, regardless of the frameworks.

In the deterministic framework, suppose each node initi-
ates an iteration and picks a neighbor to gossip according
to some deterministic policy, resulting in a deterministic
sequence (u(k))∞k=1, which must satisfy u(k) ∈ E(k) ∀k ∈
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P. For any given (u(k))∞k=1, define the set E∞ ⊂ {{i, j} :
i, j ∈ V , i 6= j} as

E∞={{i, j} : u(k)={i, j} for infinitely many k ∈ P}. (30)

Equation (30) says that a link {i, j} is in E∞ if and only if
nodes i and j gossip with each other infinitely often. With
E∞ defined as such, we may state the following restriction
on the gossiping pattern, which is similar to the connectivity
assumption adopted in [22], [27]:

Assumption 2. The deterministic sequence (u(k))∞k=1 is
such that the graph (V , E∞) is connected.

Assumption 2 is not difficult to satisfy in practice, pro-
vided that the network is “connected in the long run.”
To justify this claim, consider the exogenous sequence
(E(k))∞k=0 and let E1, E2, . . . , EM represent the sets of links
that occur infinitely often in (E(k))∞k=0 , i.e., for each ℓ ∈
{1, 2, . . . , M}, E(k) = Eℓ for infinitely many k’s. Note that
if the graph (V ,∪M

ℓ=1Eℓ) is not connected, it means that the
set V of nodes can be partitioned into two nonempty subsets
V1 and V2, such that after some finite time, the nodes in
V1 can no longer gossip with those in V2, even if they
want to. Thus, we may say that the network is connected
in the long run if and only if the graph (V ,∪M

ℓ=1Eℓ) is
connected. Now suppose the graph (V ,∪M

ℓ=1Eℓ) is connected.
Also suppose E(k) is slowly varying, in the sense that
it is constant for many consecutive k’s. This assumption
is reasonable because the topology of a network typically
changes at a rate that is much slower compared to the rate
at which iterations can occur (e.g., in a wireless network,
although path losses and shadowing may cause a link to
fail or recover, such a change occurs at a much slower
time scale compared to the propagation of electromagnetic
waves). Since the graph (V ,∪M

ℓ=1Eℓ) is connected and E(k)
is slowly varying, if we simply let every possible pair of one-
hop neighbors gossip frequently enough—at least once per
change in E(k)—then E∞ = ∪M

ℓ=1Eℓ, so that Assumption 2
holds. Therefore, as long as the network is connected in the
long run, Assumption 2 can be easily met.

In the previous paragraph, if the graph (V ,∪M
ℓ=1Eℓ) is not

connected, then for every i ∈ V1 and j ∈ V2, we have
{i, j} /∈ E∞. This implies that the graph (V , E∞) is also
not connected, so that Assumption 2 fails. In this case, PE
generally would fail to asymptotically converge, but so would
most distributed iterative algorithms, including the consensus
algorithms in [3], [4], [6], [8]–[10], [12], [14], [15], as well
as the averaging algorithms in [31]–[34], [36]–[39].

Based on Assumption 2, the following theorem can be
established:

Theorem 1. Consider the network modeled in Section II
and the use of PE described in Algorithm 1. Suppose
Assumptions 1 and 2 hold. Then, (28) and (5) hold.

Theorem 1 says that, under Assumption 2 on the gossiping
pattern, PE ensures asymptotic convergence of all the x̂i(k)’s
to x∗, circumventing limitation L4 facing many of the
existing subgradient algorithms.

Next, in the stochastic framework, suppose each node
initiates an iteration and picks a neighbor to gossip according
to some random strategy, resulting in a random sequence
(u(k))∞k=1, which satisfies u(k) ∈ E(k) ∀k ∈ P, and which
is independent, but not necessarily identically distributed,
over time k. For each k ∈ P and each {i, j} ∈ E(k),
let p{i,j}(k) ∈ [0, 1] denote the probability of u(k) being
{i, j}. In addition, for each {i, j} /∈ E(k), let p{i,j}(k) be

undefined since the event u(k) = {i, j} cannot happen. For
any given p{i,j}(k) ∀k ∈ P ∀{i, j} ∈ E(k), define the set

Ẽ∞ ⊂ {{i, j} : i, j ∈ V , i 6= j} as

Ẽ∞ ={{i, j} : ∃ε > 0 such that ∀k ∈ P,

p{i,j}(ℓ) ≥ ε for some ℓ > k}. (31)

Expression (31) says that a link {i, j} is in Ẽ∞ if and only
if the probability with which nodes i and j gossip with each
other is no less than a positive constant ε for infinitely many
iterations. In other words, {i, j} ∈ Ẽ∞ if and only if the
sequence (p{i,j}(k))∞k=1 has a subsequence whose elements

are no less than ε. For instance, if p{i,j}(k) = 1
k
∀k ∈ P,

then {i, j} /∈ Ẽ∞. In contrast, if

(p{i,j}(k))∞k=1

= (0.1, #, . . . ,#
︸ ︷︷ ︸

10 times

, 0.1, #, . . . ,#
︸ ︷︷ ︸

100 times

, 0.1, #, . . . ,#
︸ ︷︷ ︸

1000 times

, . . .),

where # represents either zero or “undefined,” then {i, j} ∈
Ẽ∞. Based on this definition of Ẽ∞, we may introduce the
following restriction on the random gossiping pattern:

Assumption 3. The random sequence (u(k))∞k=1 is such that

the graph (V , Ẽ∞) is connected.

Similar to Assumption 2, it is not difficult to satisfy As-
sumption 3, so long that the network is connected in the long
run. To explain this, suppose the graph (V ,∪M

ℓ=1Eℓ) is con-
nected. Note that at each time k ∈ P and for each node i ∈ V
who has one or more one-hop neighbors at time k, if we sim-
ply let the probabilities P{node i initiates iteration k} be no
less than some ε1 > 0 and P{node i picks node j to gossip |
node i initiates iteration k} be no less than some ε2 > 0,
then p{i,j}(k) ≥ 2ε1ε2 ∀k ∈ P ∀{i, j} ∈ E(k). This implies

that Ẽ∞ = ∪M
ℓ=1Eℓ, so that Assumption 3 is met, explaining

the argument.

With Assumption 3, the following stochastic version of
Theorem 1 can be stated:

Theorem 2. Consider the network modeled in Section II
and the use of PE described in Algorithm 1. Suppose
Assumptions 1 and 3 hold. Then, with probability 1, (28)
and (5) hold.

Theorem 2 shows that, under Assumption 3 on the ran-
dom gossiping pattern, PE is almost surely asymptotically
convergent, again overcoming limitation L4.

Finally, reconsider the special case where the fi’s are as
in (24), i.e., where problem (2) is an averaging problem. In
this case, the common Lyapunov function V in (26) takes a
quadratic form:

V (x(k)) =
1

2

∑

i∈V

(x̂i(k)− x∗)2

=
1

2
(x(k)− x

∗)T P (x(k) − x
∗), (32)

where x∗ is the network-wide average 1
N

∑

i∈V yi, and P ∈
R

N×N is the identity matrix. In addition, because of the
linear, pairwise averaging update x̂u1(k)(k) = x̂u2(k)(k) =
1
2 (x̂u1(k)(k−1)+x̂u2(k)(k−1)) ∀k ∈ P, the drop V (x(k))−
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Fig. 1. A 20-node, 30-link network with each node i observing fi.

V (x(k − 1)) in (29) also takes a quadratic form:

V (x(k))−V (x(k−1))=−
1

4
(x̂u1(k)(k−1)−x̂u2(k)(k−1))2

= −
1

2
x

T (k − 1)Qu(k)x(k − 1), ∀k ∈ P,

where Q{i,j} ∈ R
N×N is a symmetric positive semidefinite

matrix whose ii and jj entries are 1
2 , ij and ji entries are

− 1
2 , and all other entries are zero. Therefore, the first-order-

convexity-condition-based Lyapunov function (26) may be
viewed as a natural generalization of the quadratic Lyapunov
function (32) for distributed averaging to the convex opti-
mization problem (2).

V. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the effectiveness of PE via a
simple example.

Consider a network of 20 nodes, connected by 30 links in
a fixed topology, as shown in Figure 1. Suppose each node
i observes a function fi : R→ R, given by

fi(x) = aix + bi(x− ci)
2 + di(x− ei)

4, (33)

where ai, bi, ci, di, ei are parameters of fi, whose
values are randomly chosen from the intervals
(−1, 1), (0, 1), (−1, 1), (0, 2), (−1, 1). The fi’s in (33)
fulfill Assumption 1 because the bi’s and di’s are positive.
To visualize these fi’s, their graphs are displayed as
thumbnails in Figure 1 and superimposed in Figure 2.
Also depicted in Figure 2 are the graph of the function F ,
scaled by 1

N
so that it fits into the figure, and the unknown

optimizer x∗ of F , that all the nodes wish to determine.
Suppose the nodes apply PE and carry out its Step 3

stochastically, such that every pair of one-hop neighbors
has equal probability (i.e., 1

30 ) of being the pair u(k) that
gossips at iteration k, for every k. By simulating PE for 1200
iterations, a realization of the random sequence (u(k))1200k=1 of
gossiping pairs has been obtained (not shown here). Figure 3
shows, on a logarithmic scale, the value V (x(k)) of the com-
mon Lyapunov function along the state trajectory x(k) of the
system. Note that V (x(k)) is indeed non-increasing, agreeing
with Lemma 2. Moreover, it is converging to zero, at a rate
that is roughly exponential. Figure 4 shows the individual
components x̂i(k)’s of x(k), which represent the estimates
of x∗. Observe that the x̂i(k)’s gradually approach x∗,
converging to x∗± 0.005 after 1008 iterations. Furthermore,

x

F
u
n
ct

io
n
s

f i
(x

)’
s

a
n
d

1 N
F

(x
)

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

2.5

3

fi(x)’s
1
N

F(x)

x∗

Fig. 2. Graphs of the functions fi’s and 1

N
F , along with the unknown

optimizer x∗.

0 240 480 720 960 1200
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Iteration k

V
a
lu

e
V

(x
(k

))
o
f
co

m
m

o
n

L
y
a
p
u
n
ov

fu
n
ct

io
n

Fig. 3. Convergence of the value V (x(k)) of the common Lyapunov
function to zero.

the closed interval [mini x̂i(k), maxi x̂i(k)] indeed can only
shrink or remain unchanged, concurring with Proposition 2.

Notice that the network in Figure 1 contains no Hamilto-
nian cycle. Hence, it may be difficult to apply the subgradient
algorithms mentioned in L2. Also, if the nodes are not fully
aware of one another, or if they do not have a routing
protocol, then the same can be said about the subgradient
algorithms mentioned in L3, since it may be difficult to ran-
domly and equiprobably pass the latest estimate of x∗ among
the nodes. In fact, even if such passing can be realized, each
pass requires, on average, 2.98 real-number transmissions
(or hops) to complete if shortest-path routing is used, and
a higher number if it is not, or if the network diameter
were larger. In comparison, although PE requires, in its
Step 5, one-time transmissions of the fi’s as communication
overhead, it requires only 2 real-number transmissions per
iteration, regardless of the network size and topology.

VI. CONCLUSION

In this paper, we have addressed the problem of achiev-
ing unconstrained, separable, convex consensus optimiza-
tion over undirected networks with time-varying topologies,
where each observed component function is strictly convex,
continuously differentiable, and has a minimizer. Based on
the ideas of conservation, dissipation, and equalizing, we
have developed Pairwise Equalizing (PE), a gossip-style,
distributed asynchronous iterative algorithm, which enables

307



Iteration k

E
st

im
a
te

s
x̂

i
(k

)’
s

a
n
d

o
p
ti

m
iz

er
x
∗

0 240 480 720 960 1200
−1

−0.5

0

0.5

1

x̂i(k)’s
x∗

All the x̂i(k)’s converge to
x∗ ± 0.005 after 1008 iterations

Fig. 4. Convergence of the estimates x̂i(k)’s to the optimizer x∗.

nodes to cooperatively solve the problem, in a way that
is fundamentally different from the subgradient algorithms.
Using Lyapunov stability theory, we have shown that the
switched, nonlinear, networked dynamical system induced by
PE is deterministically and stochastically asymptotically con-
vergent, provided that the gossiping pattern is rich enough.
In the analysis, we have utilized the first-order convexity
condition to construct a common Lyapunov function and
characterize drops in its value. We have also shown that
PE is easy to implement and bypasses limitations facing
the subgradient algorithms. Finally, we have shown that
PE reduces to Pairwise Averaging and Randomized Gossip
Algorithm in a special case. Given these appealing features of
PE, it may be recommended for a wide range of applications.
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[19] A. Nedić and D. P. Bertsekas, “Convergence rate of incremental
subgradient algorithms,” in Stochastic Optimization: Algorithms and
Applications, S. P. Uryasev and P. M. Pardalos, Eds. Norwell, MA:
Kluwer Academic Publishers, 2001, pp. 223–264.

[20] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms
for distributed optimization,” IEEE Journal on Selected Areas in
Communications, vol. 23, no. 4, pp. 798–808, 2005.

[21] B. Johansson, M. Rabi, and M. Johansson, “A simple peer-to-peer
algorithm for distributed optimization in sensor networks,” in Proc.
IEEE Conference on Decision and Control, New Orleans, LA, 2007,
pp. 4705–4710.

[22] A. Nedić and A. Ozdaglar, “On the rate of convergence of distributed
subgradient methods for multi-agent optimization,” in Proc. IEEE
Conference on Decision and Control, New Orleans, LA, 2007, pp.
4711–4716.
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