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ABSTRACT 
In reality, the behavior and nature of nonlinear dynamical 

systems are ubiquitous in many practical engineering 
problems. The mathematical models of such problems are 
often governed by a set of coupled second-order differential 
equations to form multi-degree-of-freedom (MDOF) nonlinear 
dynamical systems. It is extremely difficult to find the exact 
and analytical solutions in general. In this paper, the homotopy 
analysis method is presented to derive the analytical 
approximation solutions for MDOF dynamical systems. Four 
illustrative examples are used to show the validity and 
accuracy of the homotopy analysis and modified homotopy 
analysis methods in solving MDOF dynamical systems. 
Comparisons are conducted between the analytical 
approximation and exact solutions. The results demonstrate 
that the HAM is an effective and robust technique for linear 
and nonlinear MDOF dynamical systems. The proof of 
convergence theorems for the present method is elucidated as 
well. 

1  INTRODUCTION 
Multi-degree-of-freedom (MDOF) nonlinear dynamical 

systems are omnipresent in numerous practical engineering 
problems. In normal circumstances, many MDOF nonlinear 
problems are not readily resorted to analytical approaches. 
However, the development of analytical methods can provide 
an all-embracing understanding for nonlinear dynamical 
systems. Hence, the homotopy analysis method (HAM), 
proposed by Liao [1] for solving a class of nonlinear problems, 

was thus emerged as a robust analytical technique at the 
beginning of the 1990s. The enlightened idea of the HAM was 
originated from the homotopy in topology. Inasmuch as the 
HAM is valid for analyzing the nonlinear problems having 
small as well as large parameters, it overcomes the foregoing 
restrictions of conventional asymptotic methods. 

For more than one decade, a number of scholars have 
adopted the HAM to a variety of nonlinear problems in 
engineering and physical sciences, including Liao and his 
associates [2-4] furnished the analytical formulas for various 
nonlinear dynamical systems, Xu [5] derived the explicit 
solutions for the free convection about a vertical flat plate 
embedded in a porous medium, Allan and Syam [6] solved the 
nonhomogeneous Blasius problem, Abbasbandy [7] 
generalized the HAM to the problem of nonlinear heat transfer 
equations, Hayat et al. [8-10] deduced the solutions of grade 
fluid problems, Song and Zhang [11] unraveled the problem of 
fractional KdV-Burgers-Kuramoto differential equations, and 
Inc [12] considered the Laplace equation having Dirichlet and 
Neumann boundary conditions by using the HAM. 

Besides, a coupling of the homotopy technique and the 
perturbation method, the homotopy perturbation method 
(HPM) [13, 14] was proposed to investigate several kinds of 
nonlinear problems. Using such a hybrid method, Cveticanin 
[15] presented the HPM solutions for complex-valued 
differential equations with strong cubic nonlinearity, 
Chowdhury et al. [16] derived the series solutions for the 
theoretical modelling of nonlinear population dynamics, 
Odibat and Momani [17] modified the HPM to the quadratic 
Riccati differential equation of fractional order, Ramos [18] 
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applied the HPM to the Lane-Emden equation, which plays a 
significant role in astrophysics, and Yildirim [19] probed the 
problem of Boussinesq-like equations in nonlinear dispersive 
waves via the HPM. 

In this paper, the application of the HAM is exploited to  
MDOF linear and nonlinear dynamical systems. The 
significance of MDOF dynamical systems is mainly due to its 
global bifurcation, regular and chaotic motions, the intensive 
research subjects are thus at the forefront of nonlinear 
dynamics. Recently, some achievements and fruitful outcome 
have been established for MDOF dynamical systems. For 
instance, Zhang and his associates [20, 21] derived the 
equations of parametrically excited structural elements (i.e. 
plates and beams) into two-degree-of-freedom nonlinear 
systems by means of von Kármán type equations with 
Galerkin’s approach to conduct the qualitative analysis. 
Yagasaki [22] provided numerical evidence of the fast 
diffusion in the three-degree-of-freedom Hamiltonian system. 
Wagg and Bishop [23] resolved the dynamical problem of 
vibro-impact oscillators having multiple motion limiting 
constraints. Chen et al. [24] made use of the multidimensional 
Lindstedt-Poincaré method to investigate the nonlinear 
vibration of axially moving beams. Peng et al. [25] adopted 
the functions of nonlinear output frequency-response to the 
linear parameter estimation for MDOF nonlinear systems. 
Jang and Choi [26] employed the geometrical design method 
for MDOF vibration absorbers. More recently, Mei et al. [27] 
utilized the asymptotic numerical method to the treatment of 
MDOF nonlinear dynamic systems. 

The objective of the present work is to conduct the 
quantitative analysis for MDOF dynamical systems, four 
illustrative examples are selected to substantiate the validity 
and accuracy of the homotopy analysis and modified 
homotopy analysis methods. Comparisons are carried out 
between the results of the present method and the exact 
solution. The results demonstrate that the HAM is an effective 
and robust technique for linear and nonlinear MDOF 
dynamical systems. In addition, the convergence theorems are 
proved for MDOF dynamical systems as well. 

2  SOLUTION METHODOLOGY FOR MDOF SYSTEMS  
The MDOF dynamical system is governed by the 

following equation 
( )tqqFKqqGqM ,,&&&& =++                         (1) 

where q  is an −n dimensional unknown vector, a dot denotes 
the differentiation with respect to time t , M , G and K  are, 
respectively, the system mass, damping and stiffness nn×  
matrixes, and F  is the vector function of q& , q  and t . If 
( ) 0,, ≡tqqF & , then Eq. (1) is the MDOF autonomous 

dynamical system. 
        According to Eq. (1), a nonlinear operator is defined as 
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where ( )tru ,  is an unknown vector function, r  and t  are 

spatial and temporal variables, respectively. 

Following the fundamental concepts and working 
procedures of the HAM [1-4], the zeroth-order deformation 
equation is constructed as, 

( ) ( ) ( )[ ]{ } ( ) ( )[ ]ptrNtHptruptrLp ;,,;,1 0 Φ=−Φ− h       (6) 
where ]1,0[∈p  is an embedding parameter, ( )tru ,0  is the 
solution of initial guess, L  is an auxiliary linear operator , h  
and ( )tH  are, respectively, the auxiliary parameter and the 
function diagonal matrix as follows 
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in which 0≠ih  and ( ) ( )niti ,,1L=λ  are real functions. 
Generally, we assume that ji hh =  and ( ) ( ) ( )jitt ji ≠= λλ . 

Therefore, h  and ( )tH  can be viewed as the parameter and 
the function, respectively. For 0=p  and 1=p , it follows 
from the zeroth-order deformation equation (6) that 
( ) ( )trutr ,0;, 0=Φ  and ( ) ( )trutr ,1;, =Φ , respectively. Hence, 

as p  increases from 0 to 1, the solution ( )ptr ;,Φ  varies from 
the initial guess ( )tru ,0  to the exact solution ( )tru , . 

By setting 

( ) ( )
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m p
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and expanding ( )ptr ;,Φ  into the Taylor series expansion with 
respect to the embedding parameter p  in accordance with the 
theorem of vector-valued function, one gets 
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Provided that the auxiliary linear operator, initial guess, 
auxiliary parameter matrix h  and auxiliary function matrix 
( )tH  are properly chosen, the series expansion in Eq. (10) 

converges at 1=p  to have 

( ) ( ) ( )∑
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=

+=
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0 ,,,
m
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To define the vector as 
( ) ( ) ( ){ }trutrutru mm ,,,,,, 10 L=u                  (12) 

Differentiating the zeroth-order deformation equation (6) 
m  times with respect to p , then dividing the equation by !m  
and setting 0=p  yield 
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         ( ) ( )[ ] ( ) ( )trRtHtrutruL mmmmm ,,,χ, 1 1u −− =− h           (13) 
where 
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From Eq. (10), Eq. (15) can be further expressed as 
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Equation (13) is a linear equation and one can solve it by 
using the available symbolic software such as Mathematica. 

3  ILLUSTRATIVE EXAMPLES AND DISCUSSION 
In this section, four illustrative examples are used to 

demonstrate the applicability and accuracy of the HAM for 
MDOF linear and nonlinear systems. The algorithm is coded 
by the symbolic computation software Mathematica 6.0. 

3.1 EXAMPLE 1 
First, we consider a linear MDOF system 
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with the initial conditions 
       ( ) 001 =x , ( ) 101 =′x , ( ) 002 =x , ( ) 002 =′x .                 (18) 
where a prime denotes the differentiation with respect to time 
t . The exact solutions of Eqs. (17) subjected to the initial 
conditions are 

                   ( ) tttx cos1 = , ( ) tttx sin2 =                       (19) 
In order to solve Eqs. (17) using the HAM, we assume 

that the solutions can be expressed by a set of base functions 
{ }L,3,2,1,0| =nt n . The initial approximation is chosen as 
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and the linear operator is expressed as 
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with the property 
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where 1C , 2C , 3C  and 4C  are constants. Besides, the 
nonlinear operator is written as 
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According to the rule of solution expression, the auxiliary 
function is selected as ( ) 1=tH . Therefore, the zeroth-order 
and mth-order deformation equations can be written 
respectively as follows 
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By virtue of the initial conditions and the initial 
approximation, we have  

( ) 00,1 =mx , ( ) 00,2 =mx , ( ) 00,1 =′ mx , ( ) 00,2 =′ mx ( )1≥m  
             (26) 

and  
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Solving the mth-order deformation equation (25) yields, 
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Thus, the mth-order analytical approximation can be 
expressed in terms of the summation series 

( ) ( ) ( ) ( )txtxtxtx m,11,10,11 +++= L                  (30-a) 
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( ) ( ) ( ) ( )txtxtxtx m,21,20,22 +++= L                (30-b) 
The explicit expressions given by the HAM contain the 

auxiliary parameter h , which gives the convergence region 
and the rate of approximation for the HAM. Figure 1 depicts 
the −h curves for the 10th-order approximation, it is evident 
that the region of admissible values of h  is at 5.05.1 −<<− h . 
For 1−=h , the series solutions are given by 
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      ( )01x ′′′ ~ h  and        ( )02x ′′′ ~ h  

Fig. 1. The −h curves of ( )01x ′′′  and ( )0)4(
2x  obtained from the 

10th-order approximation for Eq. (17) 

 
  

 
 
 
 
 
 

solutionexacttx −)(1 ~ t          solutionexacttx −)(2 ~ t  
Fig. 2. Absolute errors between the 50th-order homotopy analysis 

and exact solutions for 1−=h  
Figure 2 shows the absolute errors between the 50th-

order homotopy analysis and exact solutions, which 
demonstrate that the 50th-order approximation provides 
excellent agreement with the exact solutions till 37=t . The 
convergence of approximation series can be controlled by 
adjusting the convergence regions when necessary. 

3.2 EXAMPLE 2 
In this example, the nonlinear MDOF system is governed 

by 
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with the initial conditions 
               ( ) 001 =x , ( ) 101 =′x , ( ) 102 =x , ( ) 002 =′x             (33) 
where a prime denote the differentiation with respect to time t . 
The exact solutions for Eqs. (32) subjected to the initial 
conditions are 

              ( ) ttx sin1 = , ( ) ttx cos2 =                               (34) 
Prior to employing the HAM method, we first expand the 

terms t2cos  and t2sin  into the Taylor series with respect to 
t  as follows 
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Suppose that the solution can be expressed by a set of 

base functions { }L,3,2,1,0| =nt n , we choose the initial 
approximation as 

( ) ttx =0,1 , ( ) 10,2 =tx                             (37) 
By defining the nonlinear operator as 
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Thus, the zeroth-order deformation equation can be 
written in the form 
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and the mth-order deformation equation can be expressed as 
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The linear operator 1L  is the same as given in Eq. (21). 
From the initial conditions and the initial approximation, we 
have  

( ) 00,1 =mx , ( ) 00,2 =mx , ( ) 00,1 =′ mx , ( ) 00,2 =′ mx   ( )1≥m  
                            (41) 

and  
( ) ( ) ( )txtxR mmmm 1,11,11,1,1 −−− +′′=x                                          

( ) ( ) 22
1,2

1
,1

−
−

−=+

−′+ ∑ m
mj

mji
i tatxtx   (42-a)        

              
( ) ( ) ( )txtxR mmmm 1,21,21,2,2 −−− +′′=x                                        
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 ( ) ( ) 22
1,1

1
,2

−
−

−=+

−′− ∑ m
mj

mji
i tbtxtx                (42-b) 

Solving the mth-order deformation equation (40) yields, 

( ) ( ) ( )∫ ∫ ⎟
⎠
⎞

⎜
⎝
⎛+= −−

t
mmmmm sRtxtx

0

τ

0
1,1,11,1,1 dτdχ xh        (43-a) 

( ) ( ) ( )∫ ∫ ⎟
⎠
⎞

⎜
⎝
⎛+= −−

t
mmmmm sRtxtx

0

τ

0
1,2,21,2,2 dτdχ xh        (43-b) 

in which 

   ( ) 3
1,1 6

ttx h
=                                                                    (44-a) 

 ( ) 2
1,2 2

ttx h
=                                                                   (44-b) 

( ) ( ) 5
2

43
2

2,1 12012
1

66
ttttx hhhhh

+
+

+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=                               (44-c) 

( ) 42
2

2,2 12
2

1

22
tttx

⎟
⎠

⎞
⎜
⎝

⎛
+

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

h
h

hh                                         (44-d) 

The mth-order analytical approximation is given by 
             ( ) ( ) ( ) ( )txtxtxtx m,11,10,11 +++= L             (45-a) 

( ) ( ) ( ) ( )txtxtxtx m,21,20,22 +++= L           (45-b) 
To determine the auxiliary parameter h  of the modified 

HAM, the characteristics of the −h curves for the 10th-order 
approximation are plotted in Fig. 3. We clearly observe that 
the region of admissible values of h  is in the range of 

6.04.1 −<<− h . By selecting 1−=h , the series solutions of 
the HAM are 

( ) L−+−+−+−=
62270208003991680036288050401206

13119753

1
ttttttttx

                                                                                            (46-a) 

( ) L−+−+−+−=
479001600362880040320720242

1
12108642

2
tttttttx

          
                                                                                  (46-b) 

 
 
 
 
 

 
      ( )01x ′′′ ~ h  and        ( )02x ′′′ ~ h  

Fig. 3. The −h curves of ( )01x ′′′  and ( )02x ′′′ obtained from the 10th-
order approximation for Eqs. (32) 

 
 
 
 
 
 

solutionexacttx −)(1 ~ t          solutionexacttx −)(2 ~ t  
Fig. 4. Absolute errors between the 100th-order homotopy analysis 

and exact solutions for 1−=h  

In Fig. 4, it is shown the absolute errors between the 
100th-order modified HAM and exact solutions, both of them 
agree well until 37=t . The validity of the series solutions 
can be maintained and improved in three ways, including the 
selection of different auxiliary parameters h , the increase of 
the number of terms in series solutions and the alteration of 
the base functions. 

3.3 EXAMPLE 3 
       The third example of the nonlinear MDOF system is 
given by 

  2
212

1
2

2
d

d
xx

t
x

−= , 2
2
1

3
22

2
2

d
d

xxx
t
x

+−=                       (47) 

with the initial conditions 
      ( ) 001 =x , ( ) 101 =′x , ( ) 102 =x , ( ) 002 =′x                   (48) 

where a prime denote the differentiation with respect to time t . 
Here, the exact solutions for Eqs. (47) with the initial 
conditions in Eqs. (48) are 

    ( ) ttx tanh1 = , ( ) ttx hsec2 =                           (49) 
       For the sake of simplicity, the nonlinear system (47) is 
firstly reduced into four first-order differential equation 

3
1

d
d

x
t

x
= , 4

2

d
d

x
t

x
= , 2

21
3 2

d
d

xx
t

x
−= , 2

2
1

3
2

4

d
d

xxx
t

x
+−=   (50) 

 with the initial conditions 
   ( ) 001 =x , ( ) 102 =x , ( ) 103 =x , ( ) 004 =x           (51) 

In this example, we define { }L,3,2,1,0|e =− nnt  as the 
base functions. According to the rules of solution expression 
and the coefficient ergodicity, the initial approximation can be 
expressed as 

( ) ttx −−= e10,1 , ( ) tttx 2
0,2 ee2 −− −= , ( ) ttx −= e0,3  

( ) tttx 2
0,4 e2e2 −− +−=                                           (52) 

 The linear operator is 

( )
( )
( )
( )

( )

( )

( )

( )
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂
∂

∂
∂

∂
∂

∂
∂

=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

t
qt

t
qt

t
qt

t
qt

qt
qt
qt
qt

L

;φ

;φ

;φ

;φ

;φ
;φ
;φ
;φ

4

3

2

1

4

3

2

1

2                      (53) 

 and the nonlinear operator is 

( )
( )
( )
( )

( ) ( )
( ) ( )
( ) ( ) ( )[ ]
( ) ( )[ ] ( )[ ] ( )⎟⎟

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−+
∂

∂

+
∂

∂

−
∂

∂

−
∂

∂

=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

qtqtqt
t

qt

qtqt
t

qt

qt
t

qt

qt
t

qt

qt
qt
qt
qt

N

;φ;φ;φ;φ

;φ;φ2;φ

;φ;φ

;φ;φ

;φ
;φ
;φ
;φ

2
2

1
3

2
4

2
21

3

4
2

3
1

4

3

2

1

3
  (54) 

       Hence, the zeroth-order deformation equation can be 
written as 
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( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

( )

( )
( )
( )
( )⎟

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

−
−

−

qt
qt
qt
qt

NtHq

txqt
txqt
txqt
txqt

Lq

;φ
;φ
;φ
;φ

);φ
;φ
;φ
;φ

1

4

3

2

1

3

0,44

0,33

0,22

0,11

2 h      (55) 

and the mth-order deformation equation can be expressed as 
( ) ( )
( ) ( )
( ) ( )
( ) ( )

( )

( )
( )
( )
( )⎟

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

−
−

−

−

−

−

−

−

−

−

1,4,4

1,3,3

1,2,2

1,1,1

1,4,4

1,3,3

1,2,2

1,1,1

2

χ
χ
χ
χ

mm

mm

mm

mm

mmm

mmm

mmm

mmm

R
R
R
R

tH

txtx
txtx
txtx
txtx

L

x
x
x
x

h         (56) 

where 
           ( ) ttH −= e                                          (57) 

        Making use of the initial conditions and the initial 
approximation yields 

( ) 00,1 =mx , ( ) 00,2 =mx , ( ) 00,3 =mx , ( ) 00,4 =mx ( )1≥m  
                 (58) 

and  
( ) ( ) ( )txtxR mmmm 1,31,11,1,1 −−− −′=x                                   (59-a) 

( ) ( ) ( )txtxR mmmm 1,41,21,2,2 −−− −′=x                                  (59-b) 

( ) ( ) ( )∑ ∑
−=+ =

−−−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+′=

1 0
,2,2,11,31,3,3 2

msj

s

i
isijmmm xxtxtxR x   (59-c) 

( ) ( ) ( )∑ ∑
−=+ =

−−−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+′=

1 0
,2,2,21,41,4,4

msj

s

i
isijmmm xxtxtxR x      

( )∑ ∑
−=+ =

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

1 0
,1,1,2

msj

s

i
isij xxtx             (59-d) 

                
Solving the mth-order deformation equation (56), one 

obtains 

( ) ( ) ( ) sRtxtx mm
t s

mmm deχ 1,1,1
0

1,1,1 −
−

− ∫+= xh              (60-a) 

( ) ( ) ( ) sRtxtx mm
t s

mmm deχ 1,2,2
0

1,2,2 −
−

− ∫+= xh             (60-b) 

( ) ( ) ( ) sRtxtx mm
t s

mmm deχ 1,3,3
0

1,3,3 −
−

− ∫+= xh               (60-c) 

( ) ( ) ( ) sRtxtx mm
t s

mmm deχ 1,4,4
0

1,4,4 −
−

− ∫+= xh              (60-d) 

in which 
     ( ) 01,1 =tx                                                                     (61-a) 

( ) 01,2 =tx                                                                    (61-b) 

( ) 2
4

2
5

2
6

2
7

2
2,1 3

e2
5

e4
3

e
21

e
105
16

hhhhh
tttt

tx
−−−−

−+−+=   

  22
3

6
e

6
e

hh
tt −−

−+                                    (61-c) 

( ) ( )
2

24
2

24
2,2 2

sinhcoshe
105
113)

2
sinh(e

105
74

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎥⎦

⎤
⎢⎣
⎡= −− ttttx tt hh  

    

( ) ( )
2

24
2

24

2
sinh3coshe

105
29

2
sinh2coshe

35
2

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛− −− tttt tt hh

( ) ( )
2

24
2

24

2
sinh3sinhe

15
2

2
sinh2sinhe

5
4

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+ −− tttt tt hh

                                                                                          (61-d) 
The mth-order analytical approximation is 

( ) ( ) ( ) ( )txtxtxtx m,11,10,11 +++= L                      (62-a) 
( ) ( ) ( ) ( )txtxtxtx m,21,20,22 +++= L                    (62-b) 
( ) ( ) ( ) ( )txtxtxtx m,31,30,33 +++= L                     (62-c) 
( ) ( ) ( ) ( )txtxtxtx m,41,40,44 +++= L                    (62-d) 

 
 
 
 
 
 
 
 
 

      ( )01x ′′′ ~ h  and        ( )02x ′′′ ~ h  
Fig. 5. The −h curves of ( )01x ′′′  and ( )02x ′′′ obtained from the 5th-

order approximation for Eqs.(47) 
 
    
 
 
 
 
             approximation solution  and           exact solution 

Fig. 6. Comparison of the approximate and exact solutions for ( )tx1  

 
 

 

 

 
          approximation solution  and          exact solution 

Fig. 7. Comparison of the approximate and exact solutions for ( )tx2  

          In Fig. 5, the −h curves are displayed for the 5th-order 
analytical approximation. It is obvious that the region of 
admissible values of h  is 9.01.1 −<<− h . For 1−=h , the 
20th-order series solution agrees well with the exact solution 
for ( )tx1 , the relative error for the whole region (i.e. 

[ ]10000 ,4/1∈t ) is less than 4.004% as shown in Figs. 6. In 
Figs. 6 and 7, the approximate ( ( )tx1 , ( )tx2 ) and exact 
solutions are contrasted. The deviation of the 20th-order 
solution of ( )tx1  with respect to the exact solution is 
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comparatively large, but the 10th-order solution of ( )tx2  is 
good for comparison. 

3.4 EXAMPLE 4 
In this example, the nonlinear MDOF system is governed 

by 

11
1

22
1

2
=−+ x

dt
dxx

dt
xd , 12

2
12

2
2

=−− x
dt

dxx
dt

xd     (63) 

with the initial conditions 
1)0(,1)0(,1)0(,1)0( 2211 −=′==′= xxxx                (64) 

where a prime denote the differentiation with respect to time t .  
The exact solutions for Eqs. (63) subjected to the initial 

conditions are  
tetx =)(1 , tetx −=)(2                       (65) 

Suppose that the solution can be expressed by a set of 
base functions { }L,3,2,1,0| =nt n , we choose the initial 
approximation as 

ttxttx −=+= 1)(,1)( 0,20,1                             (66) 
And the auxiliary linear operators are 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

∂

∂
∂

∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2
2

2

2
1

2

2

1

);(φ

);(φ

);(φ
);(φ

t
qt

t
qt

qt
qt

L                         (67) 

By defining the nonlinear operator as 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
∂

∂
−

∂

∂

−
∂

∂
+

∂

∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

);(φ
);(φ

);(φ
);(φ

);(φ
);(φ

);(φ
);(φ

);(φ
);(φ

2
2

12
2

2

1
1

22
1

2

2

1

qt
t

qt
qt

t
qt

qt
t

qt
qt

t
qt

qt
qt

N         

(68) 
Thus, the zeroth-order deformation equation can be 

written in the form 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

−
1
1

);(φ
);(φ

)();(φ
)();(φ

)1(
2

1

0,22

0,11

qt
qt

Nq
txqt
txqt

Lq h    (69) 

and the mth-order deformation equation can be expressed as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

−

−

−

−

)(
)(

)(χ)(
)(χ)(

1,2,2

1,1,1

1,2,2

1,1,1

mm

mm

mmm

mmm

R
R

txtx
txtx

L
x
x

h         (70) 

From the initial conditions and the initial approximation, 
we have  

0)0(,0)0(,0)0(,0)0( ,2,1,2,1 =′=′== mmmm xxxx      ( 1≥m )  
       (71) 

and 
)χ1()()()()()( ,2

1
,11,11,11,1,1 mj

mji
immmm txtxtxtxR −−′+−′′= ∑

−=+
−−−x

     (72a) 
)χ1()()()()()( ,1

1
,21,21,21,2,2 mj

mji
immmm txtxtxtxR −−′−−′′= ∑

−=+
−−−x

    (72b) 
Solving the mth-order deformation equation  (70), one obtains 

m
t

mmmmmm CtCsRtxtx ,2
0

,1
τ

0
1,1,11,1,1 dτd)()(χ)( ++⎟

⎠
⎞

⎜
⎝
⎛+= ∫ ∫ −− xh

      (73a) 

m
t

mmmmmm CtCsRtxtx ,4
0

,3
τ

0
1,2,21,2,2 dτd)()(χ)( ++⎟

⎠
⎞

⎜
⎝
⎛+= ∫ ∫ −− xh

     (73b) 
1)()()()()( 0,20,10,10,10,11,1 −′+−′′= txtxtxtxR x  

12111 −−=−−+−−= ttt                                   (74a) 
1)()()()()( 0,10,20,20,20,21,2 −′−−′′= txtxtxtxR x  

12111 −=−++−= ttt                                       (74b) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=

23
)(

23

1,1
tttx h                                                          (75a) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

23
)(

23

1,2
tttx h                                                            (75b) 

)()()()()()()( 0,21,11,20,11,11,11,12,1 txtxtxtxtxtxR ′+′+−′′=x   

( ) ( )( )tttttttt −+−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−−= 1

2323
12 2

2323
hhhh  

= ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−− 13

3
5 3

tt
h                                                                 (76a) 

)()()()()()()( 0,11,21,10,21,21,21,22,2 txtxtxtxtxtxR ′−′−−′′=x  

= ( ) ( )( )tttttttt +−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−− 1

2323
12 2

2323
hhhh  

= ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+− 13

3
5 3

tt
h                                                                (76b) 

=)(2,1 tx ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−

122223

532
2

23 ttttt
hh                     (77a) 

=)(2,2 tx ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

122223

532
2

23 ttttt
hh                       (77b) 

We now successively obtain the second-order analytical 
approximation by HAM as the following 
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 By selecting 1−=h , the tenth-order analytical 
approximation series solutions of the HAM are 
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The [ ]5,5 homotopy Pade approximation solutions of 
)(1 tx  and )(2 tx  are  
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              approximation solution  and            exact solution 

Fig. 8. Comparison of the approximate and exact solutions for ( )tx1  

and ( )tx2  
 
 
 
 
 
 
 
 
           [5,5] homotopy pade approximation  and            exact solution 

Fig. 9. Comparison of the [5,5] homotopy pade approximate and 
exact solutions for ( )tx1  and ( )tx2  

 Currently, some optimal HAM approach are developed, 
which can get faster convergent homotopy series solution [28, 
29]. The tenth-order homotopy analysis approximation and 
exact solutions of ( )tx1  and ( )tx2 as show in Figs. 8. From 
Figs. 9, we can see that the [5,5] homotopy Pade approximat 
solutions and the Runge Kutta method virtually coalesce. 

4. CONVERGENCE THEOREMS 
        In this section, the detailed proof of the convergence of 
the HAM solution for the MDOF dynamical system (1) is 
given. 
Theorem 1 If the series in Eq. (11) converges, then 
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=∑
∞

=
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m
mm trR 1u . 

Proof.  Since the series ( )∑
∞

=0

,
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m tru  converges, then it can be 

written as 
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In view of Eq. (14), the left-hand side of Eq. (13) satisfies 
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From Eq. (82), one obtains  
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By virtue of the properties of linear operator L , we arrive 
at 
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From Eqs. (13) and (84), we have 
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Supposing 0≠h  and ( ) 0≠tH  implies, 
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Theorem 2 If the series in Eq. (11) converges, then it 
must be the solution of system (1). 
Proof.  Substituting Eq. (16) into Eq. (87), we obtain 

( ) ( ) ( ) 0,
!1

1,,
1 1 00

1

1

∑ ∑ ∑
∞

=

∞

= =

∞

=
−

−

− =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
−

=
m m pn

n
nm

m

mm ptruN
pm

trR 1u

                                                                                               (88) 
         Assume 
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be the residual error of Eq. (1), which can be expanded by the 
Taylor series expansion at 0=p  as follows 
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         Setting 1=p  yields,  
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Thus, the series in Eq. (11) is the solution of system (1). 

5. CONCLUSIONS 
In summary, the HAM is applied to obtain analytical 

approximation solutions for a class of MDOF dynamical 
systems. Four illustrative examples are selected to verify the 
validity and accuracy of the HAM and the modified HAM. 
The method provides an ingenious avenue for controlling the 
convergences of approximation series, the proof of 
convergence theorems is presented. The fundamental ideas of 
the HAM are essentially different from other existing 
analytical methods. Numerical comparisons demonstrate that 
the HAM is an effective and robust analytical method for 
MDOF dynamical systems. 
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