
DOI reference number: 10.18293/SEKE2015-228 

 

Using Learning Styles of Software Professionals to 

Improve their Inspection Team Performance 

Anurag Goswami
1
, Gursimran Walia

2
, Abhinav Singh

3
  

Department of Computer Science, Office of International Services 

North Dakota State University
1, 2

, Indiana University
3
 

anurag.goswami@ndsu.edu
1
, gursimran.walia@ndsu.edu

2
, singhab@iu.edu

3
 

 
Abstract— Inspections of software artifacts during early software 

development aids managers to detect early faults that may be hard 

to find and fix later. While inspections are effective, evidence 

suggests that inspection abilities of individuals vary widely which 

affect overall inspection effectiveness. Cognitive psychologists 

have used Learning Styles (LS) to measure an individual’s 

characteristic strength and ability to acquire and process 

information. This concept of LS is being utilized in software 

engineering domain as a means to improve inspection 

performance. This paper presents the results from an industrial 

empirical study, wherein the LS’s of individual inspectors were 

manipulated to measure its impact on the fault detection 

effectiveness of inspection teams. Using inspection data from 

nineteen professional developers, we developed virtual teams with 

varying LS’s of individual inspectors and analyzed the team 

performance. The results from the current study show that, teams 

of inspectors with diverse LS’s are significantly more effective at 

detecting faults as compared to teams of inspectors with similar 

LS’s. Therefore, LS’s can aid software managers to create high 

performance inspection team(s) and manage software quality. 

Keywords-software inspection; learning style; requirements. 

I.  INTRODUCTION 

Inspecting early lifecycle artifacts (e.g., requirements and 
design) can improve software quality by helping developers 
detect faults early in the Software Development Life Cycle 
(SDLC). Empirical evidence showed that, finding and fixing 
faults earlier rather than later is easier, less expensive and saves 
significant rework costs [1]. To have most impact on software 
quality, researchers and practitioners have focused efforts on 
finding and fixing faults committed during the requirements 
development [2]. Requirements development is the first and a 
critical phase, wherein requirements are gathered from different 
technical (developers, designers, testers) and non-technical 
(managers, end-users) stakeholders. These requirements are 
recorded using Natural Language (NL) in a Software 
Requirements Specification (SRS) document. SRS is a means of 
communications amongst stakeholders but is prone to mistakes 
and faults due to inherently ambiguity, imprecision and 
vagueness in NL [3]. 

Among different approaches used for detecting NL 
requirement faults (e.g., NL to State transitions [4], checklist 
based inspections [5], scenario based reading [6], ad hoc 
inspections [7]), software inspections are widely recognized as 
most effective technique. Inspection process includes reviewing 
a software work-product by a group of skilled individuals to 
identify faults.  Empirical evidence demonstrate the benefits of 
inspection on artifacts developed at all phases of development 
(e.g., requirement, design, code, interfaces) [8]. 

The phases in the inspection process defined by Fagan [9] 
are: 1) selecting skilled individuals/inspectors; 2) individual 
review to find faults; 3) team meeting to consolidate faults; 4) 
follow-up and repair. Fagan [9] emphasized different parts of the 
process (e.g., more emphasis on an individual preparation phase 
rather than team meeting phase). Regardless of the team 
meetings, evidence shows that the effectiveness (# of faults 
found) of an inspector during the individual review significantly 
impacts the overall effectiveness of an inspection team [10].  

To improve the performance of inspectors during the 
individual review, researchers have tried to understand whether 
individual factors (e.g., educational background; level of 
technical degree) are correlated to their inspection effectiveness 
[11]. Contrary to the expectations, results at major software 
organizations showed that software engineers with a non-
technical degree found significantly more number of 
requirement faults as compared to the technical degree holders 
[11]. Even when inspectors use same technique, and receive 
same training, their effectiveness varies significantly. These 
results led us to hypothesize that inspector’s ability of detecting 
faults in a software artifact are affected by the ways with which 
they psychologically acquires, process and retains information 
(as opposed to their technical expertise and level of education).  

On that end, cognitive psychology research [12] affirms that 
individuals vary in their abilities to perceiving and process 
information, i.e. they have varying Learning Style (LS) 
preferences and strengths. For example, some people like to 
think and work alone; some are more comfortable learning 
through concrete evidence and examples. Research results of LS 
in psychology prove that an individual perceive and process 
information better if it is presented in their preferred LS [13]. 
Our research extends the idea of individual LS’s to evaluate its 
impact on the software inspection process.  

While the concept of using LS in software engineering 
domain is novel, academia have experimented with creating 
heterogeneous teams to improve team performance [14]. 
Software Engineering researchers have also borrowed 
psychology research to improve inspection team performance 
[15]. As an example, researchers’ used Myers-Briggs Type 
Indicator (MBTI) instrument (that measures psychological 
preference of individuals) to create heterogeneous inspection 
teams to maximizing disparity between team members. Despite 
these novel efforts, they have met with limited success because 
unlike LS instruments (that measure the learning preferences), 
MBTI is a personality inventory [16]. The only research linking 
LS’s in software engineering domain [17] have been at studying 
the communication aspects of the stakeholders during 
requirements elicitation. Their research has shown that LS’s of 
non-technical stakeholders should be considered when selecting
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the requirements elicitation methods. The results also showed 
that software engineers (like other human beings) have different 
learning preferences. This result motivated us to evaluate if LS 
can aid in planning and performing the inspection.   

We hypothesize that inspector’s Learning Styles (LS) can be 
used to create heterogeneous inspection teams which in turn, 
would increase their team performance by detecting more 
unique faults (i.e. less fault overlap) during the inspection. To 
evaluate this hypothesis, this paper presents results of an 
industrial study on the effect of LS preferences of nineteen 
professional software engineers on their inspection team 
performance. The participants reported their LS’s and 
individually inspected a requirements document using the fault-
checklist technique and recorded faults. We analyzed the impact 
of LS’s of inspectors by creating virtual inspection teams (by 
combining individual data) for different team sizes. Next, all 
virtual teams for each team size were sorted from most dissimilar 
to most similar in terms of the LS’s of individual inspectors 
followed by an evaluation of their team performances. The 
results show that team of inspectors with dissimilar LS’s 
performed significantly better than the teams of inspectors with 
similar LS’s. Software managers can use these results to plan 
and manage inspections in their organizations. 

II. BACKGROUND  - MEASURING LEARNING STYLES 

Kolb [18] introduced the concept of LS’s, and developed the 

first LS instrument. Over the years, psychologists have 

developed different versions of LS models [19] and validated 

the use of LS’s in engineering education [12]. Previous 

researches revealed that the Felder and Silverman’s Learning 

Style Model (FSLSM) is the most advanced and widely used to 

measure the LS’s preference of individuals [20]. The instrument 

used to measure LS is known as the Index of Learning Styles 

(ILS) [12] and is used in this research as below. 

A. Felder and Silverman Learning Style Model (FSLSM) 

The FSLSM model (shown in Fig. 1) capture most 
important LS preferences among individuals and then classifies 
characteristic strength and preference across four LS 
dimensions. These dimensions related to the way individuals 
“perceive” and “process” information. The two dimensions 
which relates to perceiving information includes: a) 
Sensing/Intuitive; and b) Visual/Verbal. The remaining two 
dimensions (i.e. Active/Reflective and Sequential/Global) relate 
to information processing. Brief description of LS model is 
described in Fig. 1. 

We have used FSLSM and its accompanying instrument, 

Index of Learning Style (ILS), to measure the LS of inspectors. 

B. Index of Learning Styles (ILS) 

The ILS instrument has been empirically validated for its 
reliability and construct validity [21]. A sample ILS output is 
shown in Fig. 2. The ILS instrument is an online questionnaire 
with 44 questions. Each LS dimension has 11 questions. For 
example, in Visual/Verbal dimension, if a person selects 10 
answers that favors visual category and 1 towards verbal 
category then the LS score will be 9 (i.e. 10-1) with a ‘strong’ 
preference towards the visual category represented by a symbol 
‘X’ on the top of the score (see Fig. 2). The symbol ‘X’ 
represents the preference towards a category in a LS dimension. 

ILS score ranging from 1 to 3 represents that a person is balanced 
towards both the categories in an LS dimension. A score 
between 5-7 and 9-11 states that the person has a moderate and 
strong preference towards a category in a LS dimension. 

III. RESEARCH APPROACH – USING LS TO FORM VIRTUAL 

INSPECTION TEAMS 

The goal of the study was to be evaluate the impact of LS’s 
on the inspection performance by creating multiple virtual 
inspection teams for varying number of inspectors (e.g., ranging 
from N=2 to N=10 inspectors) and then sorted from most 
dissimilar to most similar w.r.t the LS’s of team members. This 
was followed by an evaluation of their inspection performances 
(effectiveness). To achieve this objective, a software tool was 
developed to automate this process by utilizing different 
multivariate statistical approaches. These approaches are 
briefly described here with more details in [22].   

A. Principal Component Analysis (PCA) 

FSLSM classifies each LS dimension into two categories 
(sensing/intuitive, visual/verbal, active/reflective and 
sequential/global). The relationship between two categories of 
each dimension is negatively correlated. That is, as score in one 
category increases, score in the other decreases. The first step 
was to transform the original correlated variables (i.e. LS scores 
across categories in each LS dimension) into uncorrelated 
variables. PCA is a multivariate technique that is being used to 
convert a set of observations of possibly correlated variables into 
set of values of uncorrelated variables called principal 

 

Figure 2. Example result of the questionnaire on the ILS 

Figure 1.  Felder Silverman Learning Style Model 



 

components (PCs) [23]. PCA is used in this research to better 
understand the interrelationships between two categories (e.g., 
visual/verbal) of each of the four LS dimensions and between all 
the four LS dimensions for each individual. PCA transforms the 
original correlated data (i.e., FSLSM output, Fig. 2) into a new 
set of uncorrelated variables called principal components (PCs) 
[23]. Note, for each individual in our research, the numbers of 
possible PC’s are always equal to or less than the number of 
original variables (i.e., 8 categories across 4 LS dimensions)[24]. 

B. Cluster Analysis (CA) 

During the second step, CA was used to group similar 

participants into different clusters based on their LS’s. CA [23] 

is being used in our research to form groups/clusters of 

individuals based on their LS data. The resulting clusters of CA 

explain high similarity of LS’s within each cluster and high 

dissimilarity of LS’s between different clusters [25]. Among 

different types of clustering techniques (e.g. Hierarchical, Non-

Hierarchical, Agglomerative, Divisive clustering); we have used 

k-means clustering algorithm [26]. CA groups the participants 

into clusters of similar LS, which helped us to study the relation 

between LS of members on the scale ranging from dissimilar to 

similar LS preferences. A team formed with different cluster 

members will lead to dissimilar LS group and a team formed 

from same cluster members leads to a similar LS group. More 

details of CA can be found here [22].  

C. Discriminant Analysis (DA) 

During the third step, DA was used to find out the probability 

of a participant belonging to a cluster. Using DA, LS variations 

are partitioned into a “between group” and a “within-group”. 

This result of the DA is used to maximize the LS variations 

across different clusters, and minimize the LS variations within 

each cluster [27]. While CA explained that there is more 

dissimilarity among different clusters, there is a lack of 

dissimilarity in the LS preferences of the individuals belonging 

to the same cluster. DA provides Group Membership (GM) to 

determine the dissimilarities between individual LS’s within the 

same cluster and with respect to the individuals in other clusters. 

So, DA provides GM values for each individual w.r.t each 

cluster. GM was used in our study to sort the teams ranging from 

most dissimilar LS to most similar LS preferences and strengths.  

This process of extracting software inspection teams with 

varying levels of LS preferences was automated. Details of 

evaluating the performance of these teams appears in Section V.  

IV. EMPIRICAL STUDY DESIGN 

To evaluate the impact of LS variability on the inspection 

performance, LS’s of nineteen professionals (working in IT 

Company) were gathered via online survey questionnaire. The 

participating subjects were trained on the inspection process and 

on using the fault checklist to record faults found during the 

inspection. Next, each subject individually inspected an 

industrial strength requirements document (that was seeded with 

faults) and reported faults. Study details are provided below. 

                                                           

 

Research Question: Whether the variation in the LS’s of 

individual inspectors is positively correlated to their team 

performance during an inspection of requirements document? 

Variables: The study manipulated the LS’s of individual 

inspectors (independent variable) and measured its effect on the 

team effectiveness (dependent variable) during the inspection. 

Participating Subjects: Nineteen software professionals 

working in a software company participated in the study. Some 

of them have worked on multiple projects in industry. The 

subjects’ reported to have an average of three years of 

experience in interacting with user to writing and inspecting 

requirements and use cases. 

Artifacts: The document inspected in the study described 

the requirements for the Loan Arranger system (LAS). LAS is 

responsible for grouping loans into bundles based on user-

specified characteristics and then sell to other financial 

institutions. For use in previous studies, the document was 

written in plain English, was 10 page long, and seeded with 

thirty realistic faults. The fault seeding was done by Microsoft 

researchers prior to the study. The document is publicly 

available1 and have been used in several inspection studies [28, 

29]. 

Experiment Procedure: Study steps as described below: 

Step 1 – Pre study survey: participants were asked to fill pre-

study survey questionnaire to provide feedback about their 

experience of working in software industry. The survey elicited 

information about their experience in interacting with end-users 

to write requirements, writing use cases, inspecting 

requirements, and changing requirements for maintenance. 

Step 2 – Learning Style Questionnaire Survey: participants 

were given Felder Silverman’s LS questionnaire. Participants 

answered 44 multiple choice questions2 and, the LS results are 

generated for each participant on ILS scale (Fig. 2). For each 

dimension on ILS (Active/Reflective, Sensing/Intuitive, 

Visual/Verbal, and Sequential/Global), the participant has score 

towards one category. Hence, only four LS categories (from 

each dimension) form LS of an individual with a score of either 

1 or 3 or 5 or 7 or 9 or 11. These scores are then converted into 

actual scores which has scores in both the categories (i.e. number 

of answers supported for each category in a dimension) as shown 

for a subset of 10 (out of 19) subjects in Table I. For example, in 

Active/Reflective dimension, subject ID 9 answered 8 questions 

in favor of Active and 3 in favor of Reflective. 

1 http://steel.cs.ua.edu/~carver/BackgroundReplication 
2 https://www.engr.ncsu.edu/learningstyles/ilsweb.html 

TABLE I.       EXAMPLE OF ACTUAL SCORES OF 10 PARTICIPANTS 

ID ACT REF SEN INT VIS VER SEQ GLO 

1 5 6 8 3 9 2 6 5 

2 5 6 7 4 6 5 6 5 

3 9 2 9 2 10 1 5 6 

4 3 8 7 4 4 7 7 4 

5 4 7 10 1 11 0 6 5 

6 4 7 5 6 9 2 4 7 

7 5 6 8 3 11 0 9 2 

8 3 8 5 6 4 7 10 1 

9 8 3 6 5 8 3 3 8 

10 4 7 10 1 6 5 6 5 

 



 

Step 3 – Training and Inspecting LAS Requirements: The 

subjects were trained (by the same researcher in a single 

session) on basic concepts in an inspection and how to detect 

faults in a requirements document using fault checklist 

technique. The subjects were instructed on different fault types 

and how to use the fault form to record faults during the 

inspection using example requirements. Then, the subjects were 

asked to work alone and performed an inspection of LAS to 

identify and record faults. To normalize the results, the subjects 

were provided sixty minutes to perform the inspection (read the 

document and record faults). At the end of inspection process, 

nineteen fault lists were collected (one per subject). One of the 

researchers read through the faults reported by each participant 

(and compared against the seeded fault list) to remove any false-

positives before analyzing the data. In addition, the fault 

reporting forms required the subjects to classify the faults 

identified during the inspection into one of the following fault 

types: Omission (O), Ambiguous Information (A), Inconsistent 

Information (II), Incorrect Fact (IF), Extraneous (E), and 

Miscellaneous (M). 

V. EVALUATION CRITERIA 

This section describes the process used to form virtual 
inspection teams (using individual LS data), sorting teams (w.r.t 
LS dissimilarity) and evaluating their team performance (using 
individual fault data). Our previous results showed that, for cost-
effective inspections, team sizes should be limited to ten 
inspectors due to high cost of inspections and diminishing return 
beyond a size of 10 inspectors [30]. Therefore; the tool generated 
all possible virtual inspection teams for inspection team size 
from N=2 to N=10 inspectors. For each inspection team size, the 
tool sorts the virtual teams in the decreasing order of LS 
dissimilarity of the inspectors. The tool then outputs the total 
unique faults found by each team and their fault detection rate. 
The evaluation steps are described in subsections V.1-4. 

1) Creating Virtual inspections: We created virtual 

inspection teams (i.e. teams that did not actually meet, we just 

combined their data) with team size ranging from 2 to 10 

inspectors and each team size has all the possible combinations 

of virtual teams. For example, to create virtual inspection team 

of size 4 (from a pool of 19 inspectors), we created 3876 virtual 

inspection teams (i.e. 19C4). 

2) Grouping of similar inspectors in clusters: The 

correlated LS of inspectors in each LS dimension were 

converted into uncorrelated variables by the tool using PCA 

(Section III.A). Next, inspectors of similar LS’s were grouped 

together in the same cluster (number of cluster is same as the 

team size being analyzed) using CA (Section III.B).  

3) Sorting teams based on the LS of inspectors: In this step, 

the tool calculates the group membership (GM) of each 

inspector in a cluster using DA. Next, tool sorts all inspection 

teams (i.e. 32C4, from step 1) in the order of decreasing level of 

dissimilarity (i.e. most dissimilar to similar) in the LS’s of the 

individual inspectors. 

4) Evaluating inspection performance of teams: During this 

step, the tool combines the individual inspection data and 

outputs the total unique faults and average time taken by each 

virtual inspection team of all sizes. To summarize, all possible 

inspection team were formed for each team size and their virtual 

inspection results were organized from teams with dissimilar to 

similar LS’s along with their performance. 

VI. DATA ANALYSIS AND RESULTS 

This section presents the results on the; 1) effect of variation 
in the LS’s on the inspection team performance; 2) distribution 
of fault types (mentioned in Section IV) across different LS 
dimension and categories.  

As stated earlier, for each team size (e.g., N=4), all possible 
virtual teams were generated and then sorted with dissimilar 
LS’s (highest number of cluster involved in team formation) to 
similar (least number of cluster involved) LS’s. Inspection data 
(i.e. faults found by each participant) was individual data; so 
fault detection effectiveness for virtual teams was calculated by 
combining the unique faults detected by each participant in LAS 
requirements document. This analysis was performed on all 
possible virtual inspection teams for all sizes. 

Fig. 3 compares the average number of unique faults found 
by virtual inspection teams ranging from N= 2 to 10 inspectors. 
Each line represents a particular team size (e.g., N=4) and maps 
the average number of faults found by the virtual inspection 
teams (formed with a certain # of clusters). Results are organized 
by the increasing number of clusters (or increasing dissimilarity) 
involved in the team formation (i.e., the higher the cluster 
number, the more dissimilarity the team members). Also 
mentioned earlier, the # of clusters that could participate in the 
team formation is always less than or equal to the team size (e.g., 
1 or 2 or 3 clusters for team size 3). 

Based on the results in Fig. 3, a general observation is that, 
for each team size, teams with highest number of clusters 
involved (i.e. most dissimilar inspectors) found maximum 
average number of faults as compared to the same team size with 
less number of clusters. The results show a consistent increase 
in the inspection effectiveness with an increase in the number of 
clusters used to form teams. For example, in team size 5, teams 
created with only one cluster (i.e. most similar teams) found an 
average of 13.42 faults; whereas teams created from five 
different clusters (i.e. most dissimilar team) found an average of 
17.45 faults. This effectiveness trend is consistent across all 
team sizes.  

  
Figure 3.  Team effectiveness organized by increasing # of clusters 



 

As an exception (in Fig. 3), for some larger team size (e.g., 
team size 10), virtual inspection teams could not be formed from 
a single cluster. This is because for team size 10, the tool creates 
10 different clusters via k-means algorithm. All 19 participants 
were distributed across these 10 clusters and there was no cluster 
that contained all 10 participants. Therefore, as the team size 
increases, the number of participants that belong to the same 
cluster decreases which reduces the probability that a team will 
be formed from less number of clusters 

Based on the above results, teams of inspectors with 
dissimilar LS’s had less fault overlap and consequently, their 
inspection effectiveness is higher.   

To evaluate this effect, we performed a linear regression test 
to see whether the dissimilarity in the LS’s of inspectors is 
positively correlated with the average number of unique faults 
found by inspection teams of different sizes. The results (Table 
II) show that, dissimilarity in the LS of inspectors had a strong 
and significant positive correlation with the team effectiveness 
for team size 3 to 10 (shaded rows). We anticipate that increasing 
the team size beyond a certain number of inspectors would not 
significantly diversify the LS’s of inspectors in a team (due to 8 
possible LS categories). Generally, software companies do not 

employ a large inspection teams (which is the reason we had 
analyzed up to team of 10 inspectors). Overall, creating 
inspection teams based on the dissimilarity in their LS strengths 
(guided by the number of clusters involved in their formation) 
appears to increase the fault detection effectiveness during an 
inspection of requirements document. 

We analyzed the impact LS dimensions (made up of 
combination of categories) had, on inspection effectiveness and 
nature of fault found. The was done to gain insights about 
whether certain LS are responsible for higher inspection 
effectiveness and detection of particular fault type or distributed 
across different LS dimension? To perform this analysis, we 
captured the classification of faults according to their fault type 
(Section IV) found by the participants belonging to each cluster. 
From raw data it was found, none of the inspectors had a 
preference towards Verbal-VER. The remaining LS categories 
(Active–ACT, Reflective–REF, Sensing–SEN, Intuitive–INT, 
Sequential–SEQ, and Global–GLO) were analyzed. 

To analyze the effect of each LS (i.e. combination of 
categories across each dimension) on inspection effectiveness 
and fault types, we created groups of each LS using six LS 
categories across three LS dimensions. Therefore, eight clusters 
with their respective number of members were: REF-SEN-GLO 
(five), ACT-SEN-SEQ (five), ACT-INT-SEQ (one), REF-SEN-
SEQ (one), REF-INT-SEQ (two), ACT-SEN-GLO (one), ACT-
INT-GLO (two), and REF-INT-GLO (one). Fig. 4 shows the 

average inspection effectiveness (shown by solid line) and 
average fault type (shown by bars) correlation for each LS 
cluster during inspection. Results are ordered from most 
effective to least effective cluster. Left y-axis shows the average 
number of different fault type detected and secondary y-axis on 
the right shows the average inspection effectiveness. 

Based on results in Fig 4, following observations were made:  
a) Inspectors with REF-SEN-GLO LS’s had the maximum 

inspection effectiveness (6.4) and close to that, REF-INT-
SEQ LS cluster found the next maximum effectiveness (6). 
Upon analyzing the pre-study survey data, it was found that 
inspectors with REF-SEN-GLO LS preference had high 
experience of working with requirements analysis as 
compared to inspectors with REF-INT-SEQ LS preference. 

b) Inspectors belonging to the REF-SEN-GLO (i.e. most 
effective cluster) found the maximum number of 
Ambiguous Information fault (A). This result suggests that 
inspection performance rely on a combination of categories 
along each LS dimension and a single LS category cannot 
help detect all types of faults. Hence, there should be an 
inspection team with inspectors of diverse LS’s. 

c) Another observation is that REF-INT-SEQ and REF-SEN-
SEQ cluster found the maximum number of Omission (O) 
faults. Also, REF-INT-GLO cluster found maximum 
number of Inconsistent Information (II) faults.  

These results reinforce that, a combination of different LS’s 
enabled inspectors to find faults of different types and that 
difference in the LS of inspectors enable a higher coverage of 
faults present in an artifact. The result however revealed that 
inspectors belonging to the five LS clusters (i.e., REF-SEN-
GLO, REF-INT-SEQ, REF-SEN-SEQ, ACT-INT-GLO, ACT-
SEN-SEQ) out of 8 clusters were able to uncover all the three 
types  (O, A, and II) of faults present in requirements document. 

VII. THREATS TO VALIDITY 

In this experiment, we were able to address some of the 

validity threats. Participating subjects were software 

professionals working in real industry settings. Heterogeneity 

of document was handled by providing participants with the 

same LAS document to inspect. Our experiment consists of 

inspectors who has different levels of work experience due to 

which group composition effect was not addressed. Training 

was provided by one trainer to all the participating subjects 

which addressed the training bias. We were also able to address 

 
Figure 4.  Effectiveness and Fault Type by each LS 

TABLE II.       LINEAR REGRESSION RESULTS  

Team size Effectiveness Correlation 

2 P=0.14; Correl. Coeff = 0.112; r2=0.013 

3 P<0.001; Correl. Coeff = 0.387; r2=0.015 

4 P<0.001; Correl. Coeff = 0.185; r2=0.034 

5 P<0.001; Correl. Coeff = 0.268; r2=0.072 

6 P<0.001; Correl. Coeff = 0.228; r2=0.052 

7 P<0.001; Correl. Coeff = 0.292; r2=0.085 

8 P<0.001; Correl. Coeff = 0.211; r2=0.044 

9 P<0.001; Correl. Coeff = 0.166; r2=0.028 

10 P<0.001; Correl. Coeff = 0.060; r2=0.004 

 



 

fatigue effect by providing enough time to participants to take 

surveys (i.e. LS questionnaire, pre-study, and post-study 

survey) and perform requirements inspection in their 

comfortable environment where they can take break(s). 

However, the LAS document was developed externally by 

Microsoft and we do not have access of LS of authors which did 

not led us to control the effect of LS of authors of SRS on 

inspection output. Also, for larger team size (e.g., team size 10), 

there was not enough data to form virtual inspection teams with 

small number of clusters. These issues regarding the 

generalization of results will be addressed in future studies.  

VIII. DISCUSSION OF RESULTS 

The focus of our study was to investigate the impact of 
individual inspector on performance of inspection team during 
the requirements inspection. The results from Section VI (Fig. 
3) showed that dissimilarity in LS of inspectors had a direct and 
positive relationship with inspection team effectiveness. This 
means, higher the dissimilarity in the LS of inspectors in a team, 
the more number of faults are detected in requirements 
document during the inspection (i.e. higher inspection output). 
While testing this results statistically (Table II), there was a 
strong significant correlation between the LS dissimilarity and 
inspection effectiveness. Therefore, using LS’s as an input to 
guide staffing/formation of inspection teams is beneficial for 
software managers. Results also revealed that some LS do favor 
inspection positively (i.e. high effectiveness and on detection of 
different fault type) as compared to other LS’s. Based on the 
results provided in this paper, the concept of LS is applicable in 
software inspections domain and can help to manage the quality of 

software by creating high performance inspection team(s). 

IX. CONCLUSION AND FUTURE WORK 

While the data size used in this study was small, these results 
showed that if inspection teams are created by taking different 
LS of inspectors into account, they would read requirements 
document with different perspectives. This results in less fault 
overlap among inspectors in a team and leads to high inspection 
output. These results are interesting and provide us with initial 
evidence to continue on this path. We plan to analyze the 
pre/post study data to gain more insights into the LS’s of 
professional developers and its impact on their daily activities. 
Our future works includes replicating this analysis for larger data 
sets. Another future work includes analyzing the data to evaluate 
the correlation (positive or negative) inspectors with certain LS 
preferences (e.g., Active vs. Reflective) may have on their 
performance during the requirements inspections. 
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