
DOI reference number: 10.18293/SEKE2015-228

Using Learning Styles of Software Professionals to

Improve their Inspection Team Performance

Anurag Goswami
1
, Gursimran Walia

2
, Abhinav Singh

3

Department of Computer Science, Office of International Services

North Dakota State University
1, 2

, Indiana University
3

anurag.goswami@ndsu.edu
1
, gursimran.walia@ndsu.edu

2
, singhab@iu.edu

3

Abstract— Inspections of software artifacts during early software

development aids managers to detect early faults that may be hard

to find and fix later. While inspections are effective, evidence

suggests that inspection abilities of individuals vary widely which

affect overall inspection effectiveness. Cognitive psychologists

have used Learning Styles (LS) to measure an individual’s

characteristic strength and ability to acquire and process

information. This concept of LS is being utilized in software

engineering domain as a means to improve inspection

performance. This paper presents the results from an industrial

empirical study, wherein the LS’s of individual inspectors were

manipulated to measure its impact on the fault detection

effectiveness of inspection teams. Using inspection data from

nineteen professional developers, we developed virtual teams with

varying LS’s of individual inspectors and analyzed the team

performance. The results from the current study show that, teams

of inspectors with diverse LS’s are significantly more effective at

detecting faults as compared to teams of inspectors with similar

LS’s. Therefore, LS’s can aid software managers to create high

performance inspection team(s) and manage software quality.

Keywords-software inspection; learning style; requirements.

I. INTRODUCTION

Inspecting early lifecycle artifacts (e.g., requirements and
design) can improve software quality by helping developers
detect faults early in the Software Development Life Cycle
(SDLC). Empirical evidence showed that, finding and fixing
faults earlier rather than later is easier, less expensive and saves
significant rework costs [1]. To have most impact on software
quality, researchers and practitioners have focused efforts on
finding and fixing faults committed during the requirements
development [2]. Requirements development is the first and a
critical phase, wherein requirements are gathered from different
technical (developers, designers, testers) and non-technical
(managers, end-users) stakeholders. These requirements are
recorded using Natural Language (NL) in a Software
Requirements Specification (SRS) document. SRS is a means of
communications amongst stakeholders but is prone to mistakes
and faults due to inherently ambiguity, imprecision and
vagueness in NL [3].

Among different approaches used for detecting NL
requirement faults (e.g., NL to State transitions [4], checklist
based inspections [5], scenario based reading [6], ad hoc
inspections [7]), software inspections are widely recognized as
most effective technique. Inspection process includes reviewing
a software work-product by a group of skilled individuals to
identify faults. Empirical evidence demonstrate the benefits of
inspection on artifacts developed at all phases of development
(e.g., requirement, design, code, interfaces) [8].

The phases in the inspection process defined by Fagan [9]
are: 1) selecting skilled individuals/inspectors; 2) individual
review to find faults; 3) team meeting to consolidate faults; 4)
follow-up and repair. Fagan [9] emphasized different parts of the
process (e.g., more emphasis on an individual preparation phase
rather than team meeting phase). Regardless of the team
meetings, evidence shows that the effectiveness (# of faults
found) of an inspector during the individual review significantly
impacts the overall effectiveness of an inspection team [10].

To improve the performance of inspectors during the
individual review, researchers have tried to understand whether
individual factors (e.g., educational background; level of
technical degree) are correlated to their inspection effectiveness
[11]. Contrary to the expectations, results at major software
organizations showed that software engineers with a non-
technical degree found significantly more number of
requirement faults as compared to the technical degree holders
[11]. Even when inspectors use same technique, and receive
same training, their effectiveness varies significantly. These
results led us to hypothesize that inspector’s ability of detecting
faults in a software artifact are affected by the ways with which
they psychologically acquires, process and retains information
(as opposed to their technical expertise and level of education).

On that end, cognitive psychology research [12] affirms that
individuals vary in their abilities to perceiving and process
information, i.e. they have varying Learning Style (LS)
preferences and strengths. For example, some people like to
think and work alone; some are more comfortable learning
through concrete evidence and examples. Research results of LS
in psychology prove that an individual perceive and process
information better if it is presented in their preferred LS [13].
Our research extends the idea of individual LS’s to evaluate its
impact on the software inspection process.

While the concept of using LS in software engineering
domain is novel, academia have experimented with creating
heterogeneous teams to improve team performance [14].
Software Engineering researchers have also borrowed
psychology research to improve inspection team performance
[15]. As an example, researchers’ used Myers-Briggs Type
Indicator (MBTI) instrument (that measures psychological
preference of individuals) to create heterogeneous inspection
teams to maximizing disparity between team members. Despite
these novel efforts, they have met with limited success because
unlike LS instruments (that measure the learning preferences),
MBTI is a personality inventory [16]. The only research linking
LS’s in software engineering domain [17] have been at studying
the communication aspects of the stakeholders during
requirements elicitation. Their research has shown that LS’s of
non-technical stakeholders should be considered when selecting

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357557204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the requirements elicitation methods. The results also showed
that software engineers (like other human beings) have different
learning preferences. This result motivated us to evaluate if LS
can aid in planning and performing the inspection.

We hypothesize that inspector’s Learning Styles (LS) can be
used to create heterogeneous inspection teams which in turn,
would increase their team performance by detecting more
unique faults (i.e. less fault overlap) during the inspection. To
evaluate this hypothesis, this paper presents results of an
industrial study on the effect of LS preferences of nineteen
professional software engineers on their inspection team
performance. The participants reported their LS’s and
individually inspected a requirements document using the fault-
checklist technique and recorded faults. We analyzed the impact
of LS’s of inspectors by creating virtual inspection teams (by
combining individual data) for different team sizes. Next, all
virtual teams for each team size were sorted from most dissimilar
to most similar in terms of the LS’s of individual inspectors
followed by an evaluation of their team performances. The
results show that team of inspectors with dissimilar LS’s
performed significantly better than the teams of inspectors with
similar LS’s. Software managers can use these results to plan
and manage inspections in their organizations.

II. BACKGROUND - MEASURING LEARNING STYLES

Kolb [18] introduced the concept of LS’s, and developed the

first LS instrument. Over the years, psychologists have

developed different versions of LS models [19] and validated

the use of LS’s in engineering education [12]. Previous

researches revealed that the Felder and Silverman’s Learning

Style Model (FSLSM) is the most advanced and widely used to

measure the LS’s preference of individuals [20]. The instrument

used to measure LS is known as the Index of Learning Styles

(ILS) [12] and is used in this research as below.

A. Felder and Silverman Learning Style Model (FSLSM)

The FSLSM model (shown in Fig. 1) capture most
important LS preferences among individuals and then classifies
characteristic strength and preference across four LS
dimensions. These dimensions related to the way individuals
“perceive” and “process” information. The two dimensions
which relates to perceiving information includes: a)
Sensing/Intuitive; and b) Visual/Verbal. The remaining two
dimensions (i.e. Active/Reflective and Sequential/Global) relate
to information processing. Brief description of LS model is
described in Fig. 1.

We have used FSLSM and its accompanying instrument,

Index of Learning Style (ILS), to measure the LS of inspectors.

B. Index of Learning Styles (ILS)

The ILS instrument has been empirically validated for its
reliability and construct validity [21]. A sample ILS output is
shown in Fig. 2. The ILS instrument is an online questionnaire
with 44 questions. Each LS dimension has 11 questions. For
example, in Visual/Verbal dimension, if a person selects 10
answers that favors visual category and 1 towards verbal
category then the LS score will be 9 (i.e. 10-1) with a ‘strong’
preference towards the visual category represented by a symbol
‘X’ on the top of the score (see Fig. 2). The symbol ‘X’
represents the preference towards a category in a LS dimension.

ILS score ranging from 1 to 3 represents that a person is balanced
towards both the categories in an LS dimension. A score
between 5-7 and 9-11 states that the person has a moderate and
strong preference towards a category in a LS dimension.

III. RESEARCH APPROACH – USING LS TO FORM VIRTUAL

INSPECTION TEAMS

The goal of the study was to be evaluate the impact of LS’s
on the inspection performance by creating multiple virtual
inspection teams for varying number of inspectors (e.g., ranging
from N=2 to N=10 inspectors) and then sorted from most
dissimilar to most similar w.r.t the LS’s of team members. This
was followed by an evaluation of their inspection performances
(effectiveness). To achieve this objective, a software tool was
developed to automate this process by utilizing different
multivariate statistical approaches. These approaches are
briefly described here with more details in [22].

A. Principal Component Analysis (PCA)

FSLSM classifies each LS dimension into two categories
(sensing/intuitive, visual/verbal, active/reflective and
sequential/global). The relationship between two categories of
each dimension is negatively correlated. That is, as score in one
category increases, score in the other decreases. The first step
was to transform the original correlated variables (i.e. LS scores
across categories in each LS dimension) into uncorrelated
variables. PCA is a multivariate technique that is being used to
convert a set of observations of possibly correlated variables into
set of values of uncorrelated variables called principal

Figure 2. Example result of the questionnaire on the ILS

Figure 1. Felder Silverman Learning Style Model

components (PCs) [23]. PCA is used in this research to better
understand the interrelationships between two categories (e.g.,
visual/verbal) of each of the four LS dimensions and between all
the four LS dimensions for each individual. PCA transforms the
original correlated data (i.e., FSLSM output, Fig. 2) into a new
set of uncorrelated variables called principal components (PCs)
[23]. Note, for each individual in our research, the numbers of
possible PC’s are always equal to or less than the number of
original variables (i.e., 8 categories across 4 LS dimensions)[24].

B. Cluster Analysis (CA)

During the second step, CA was used to group similar

participants into different clusters based on their LS’s. CA [23]

is being used in our research to form groups/clusters of

individuals based on their LS data. The resulting clusters of CA

explain high similarity of LS’s within each cluster and high

dissimilarity of LS’s between different clusters [25]. Among

different types of clustering techniques (e.g. Hierarchical, Non-

Hierarchical, Agglomerative, Divisive clustering); we have used

k-means clustering algorithm [26]. CA groups the participants

into clusters of similar LS, which helped us to study the relation

between LS of members on the scale ranging from dissimilar to

similar LS preferences. A team formed with different cluster

members will lead to dissimilar LS group and a team formed

from same cluster members leads to a similar LS group. More

details of CA can be found here [22].

C. Discriminant Analysis (DA)

During the third step, DA was used to find out the probability

of a participant belonging to a cluster. Using DA, LS variations

are partitioned into a “between group” and a “within-group”.

This result of the DA is used to maximize the LS variations

across different clusters, and minimize the LS variations within

each cluster [27]. While CA explained that there is more

dissimilarity among different clusters, there is a lack of

dissimilarity in the LS preferences of the individuals belonging

to the same cluster. DA provides Group Membership (GM) to

determine the dissimilarities between individual LS’s within the

same cluster and with respect to the individuals in other clusters.

So, DA provides GM values for each individual w.r.t each

cluster. GM was used in our study to sort the teams ranging from

most dissimilar LS to most similar LS preferences and strengths.

This process of extracting software inspection teams with

varying levels of LS preferences was automated. Details of

evaluating the performance of these teams appears in Section V.

IV. EMPIRICAL STUDY DESIGN

To evaluate the impact of LS variability on the inspection

performance, LS’s of nineteen professionals (working in IT

Company) were gathered via online survey questionnaire. The

participating subjects were trained on the inspection process and

on using the fault checklist to record faults found during the

inspection. Next, each subject individually inspected an

industrial strength requirements document (that was seeded with

faults) and reported faults. Study details are provided below.

Research Question: Whether the variation in the LS’s of

individual inspectors is positively correlated to their team

performance during an inspection of requirements document?

Variables: The study manipulated the LS’s of individual

inspectors (independent variable) and measured its effect on the

team effectiveness (dependent variable) during the inspection.

Participating Subjects: Nineteen software professionals

working in a software company participated in the study. Some

of them have worked on multiple projects in industry. The

subjects’ reported to have an average of three years of

experience in interacting with user to writing and inspecting

requirements and use cases.

Artifacts: The document inspected in the study described

the requirements for the Loan Arranger system (LAS). LAS is

responsible for grouping loans into bundles based on user-

specified characteristics and then sell to other financial

institutions. For use in previous studies, the document was

written in plain English, was 10 page long, and seeded with

thirty realistic faults. The fault seeding was done by Microsoft

researchers prior to the study. The document is publicly

available1 and have been used in several inspection studies [28,

29].

Experiment Procedure: Study steps as described below:

Step 1 – Pre study survey: participants were asked to fill pre-

study survey questionnaire to provide feedback about their

experience of working in software industry. The survey elicited

information about their experience in interacting with end-users

to write requirements, writing use cases, inspecting

requirements, and changing requirements for maintenance.

Step 2 – Learning Style Questionnaire Survey: participants

were given Felder Silverman’s LS questionnaire. Participants

answered 44 multiple choice questions2 and, the LS results are

generated for each participant on ILS scale (Fig. 2). For each

dimension on ILS (Active/Reflective, Sensing/Intuitive,

Visual/Verbal, and Sequential/Global), the participant has score

towards one category. Hence, only four LS categories (from

each dimension) form LS of an individual with a score of either

1 or 3 or 5 or 7 or 9 or 11. These scores are then converted into

actual scores which has scores in both the categories (i.e. number

of answers supported for each category in a dimension) as shown

for a subset of 10 (out of 19) subjects in Table I. For example, in

Active/Reflective dimension, subject ID 9 answered 8 questions

in favor of Active and 3 in favor of Reflective.

1 http://steel.cs.ua.edu/~carver/BackgroundReplication
2 https://www.engr.ncsu.edu/learningstyles/ilsweb.html

TABLE I. EXAMPLE OF ACTUAL SCORES OF 10 PARTICIPANTS

ID ACT REF SEN INT VIS VER SEQ GLO

1 5 6 8 3 9 2 6 5

2 5 6 7 4 6 5 6 5

3 9 2 9 2 10 1 5 6

4 3 8 7 4 4 7 7 4

5 4 7 10 1 11 0 6 5

6 4 7 5 6 9 2 4 7

7 5 6 8 3 11 0 9 2

8 3 8 5 6 4 7 10 1

9 8 3 6 5 8 3 3 8

10 4 7 10 1 6 5 6 5

Step 3 – Training and Inspecting LAS Requirements: The

subjects were trained (by the same researcher in a single

session) on basic concepts in an inspection and how to detect

faults in a requirements document using fault checklist

technique. The subjects were instructed on different fault types

and how to use the fault form to record faults during the

inspection using example requirements. Then, the subjects were

asked to work alone and performed an inspection of LAS to

identify and record faults. To normalize the results, the subjects

were provided sixty minutes to perform the inspection (read the

document and record faults). At the end of inspection process,

nineteen fault lists were collected (one per subject). One of the

researchers read through the faults reported by each participant

(and compared against the seeded fault list) to remove any false-

positives before analyzing the data. In addition, the fault

reporting forms required the subjects to classify the faults

identified during the inspection into one of the following fault

types: Omission (O), Ambiguous Information (A), Inconsistent

Information (II), Incorrect Fact (IF), Extraneous (E), and

Miscellaneous (M).

V. EVALUATION CRITERIA

This section describes the process used to form virtual
inspection teams (using individual LS data), sorting teams (w.r.t
LS dissimilarity) and evaluating their team performance (using
individual fault data). Our previous results showed that, for cost-
effective inspections, team sizes should be limited to ten
inspectors due to high cost of inspections and diminishing return
beyond a size of 10 inspectors [30]. Therefore; the tool generated
all possible virtual inspection teams for inspection team size
from N=2 to N=10 inspectors. For each inspection team size, the
tool sorts the virtual teams in the decreasing order of LS
dissimilarity of the inspectors. The tool then outputs the total
unique faults found by each team and their fault detection rate.
The evaluation steps are described in subsections V.1-4.

1) Creating Virtual inspections: We created virtual

inspection teams (i.e. teams that did not actually meet, we just

combined their data) with team size ranging from 2 to 10

inspectors and each team size has all the possible combinations

of virtual teams. For example, to create virtual inspection team

of size 4 (from a pool of 19 inspectors), we created 3876 virtual

inspection teams (i.e. 19C4).

2) Grouping of similar inspectors in clusters: The

correlated LS of inspectors in each LS dimension were

converted into uncorrelated variables by the tool using PCA

(Section III.A). Next, inspectors of similar LS’s were grouped

together in the same cluster (number of cluster is same as the

team size being analyzed) using CA (Section III.B).

3) Sorting teams based on the LS of inspectors: In this step,

the tool calculates the group membership (GM) of each

inspector in a cluster using DA. Next, tool sorts all inspection

teams (i.e. 32C4, from step 1) in the order of decreasing level of

dissimilarity (i.e. most dissimilar to similar) in the LS’s of the

individual inspectors.

4) Evaluating inspection performance of teams: During this

step, the tool combines the individual inspection data and

outputs the total unique faults and average time taken by each

virtual inspection team of all sizes. To summarize, all possible

inspection team were formed for each team size and their virtual

inspection results were organized from teams with dissimilar to

similar LS’s along with their performance.

VI. DATA ANALYSIS AND RESULTS

This section presents the results on the; 1) effect of variation
in the LS’s on the inspection team performance; 2) distribution
of fault types (mentioned in Section IV) across different LS
dimension and categories.

As stated earlier, for each team size (e.g., N=4), all possible
virtual teams were generated and then sorted with dissimilar
LS’s (highest number of cluster involved in team formation) to
similar (least number of cluster involved) LS’s. Inspection data
(i.e. faults found by each participant) was individual data; so
fault detection effectiveness for virtual teams was calculated by
combining the unique faults detected by each participant in LAS
requirements document. This analysis was performed on all
possible virtual inspection teams for all sizes.

Fig. 3 compares the average number of unique faults found
by virtual inspection teams ranging from N= 2 to 10 inspectors.
Each line represents a particular team size (e.g., N=4) and maps
the average number of faults found by the virtual inspection
teams (formed with a certain # of clusters). Results are organized
by the increasing number of clusters (or increasing dissimilarity)
involved in the team formation (i.e., the higher the cluster
number, the more dissimilarity the team members). Also
mentioned earlier, the # of clusters that could participate in the
team formation is always less than or equal to the team size (e.g.,
1 or 2 or 3 clusters for team size 3).

Based on the results in Fig. 3, a general observation is that,
for each team size, teams with highest number of clusters
involved (i.e. most dissimilar inspectors) found maximum
average number of faults as compared to the same team size with
less number of clusters. The results show a consistent increase
in the inspection effectiveness with an increase in the number of
clusters used to form teams. For example, in team size 5, teams
created with only one cluster (i.e. most similar teams) found an
average of 13.42 faults; whereas teams created from five
different clusters (i.e. most dissimilar team) found an average of
17.45 faults. This effectiveness trend is consistent across all
team sizes.

Figure 3. Team effectiveness organized by increasing # of clusters

As an exception (in Fig. 3), for some larger team size (e.g.,
team size 10), virtual inspection teams could not be formed from
a single cluster. This is because for team size 10, the tool creates
10 different clusters via k-means algorithm. All 19 participants
were distributed across these 10 clusters and there was no cluster
that contained all 10 participants. Therefore, as the team size
increases, the number of participants that belong to the same
cluster decreases which reduces the probability that a team will
be formed from less number of clusters

Based on the above results, teams of inspectors with
dissimilar LS’s had less fault overlap and consequently, their
inspection effectiveness is higher.

To evaluate this effect, we performed a linear regression test
to see whether the dissimilarity in the LS’s of inspectors is
positively correlated with the average number of unique faults
found by inspection teams of different sizes. The results (Table
II) show that, dissimilarity in the LS of inspectors had a strong
and significant positive correlation with the team effectiveness
for team size 3 to 10 (shaded rows). We anticipate that increasing
the team size beyond a certain number of inspectors would not
significantly diversify the LS’s of inspectors in a team (due to 8
possible LS categories). Generally, software companies do not

employ a large inspection teams (which is the reason we had
analyzed up to team of 10 inspectors). Overall, creating
inspection teams based on the dissimilarity in their LS strengths
(guided by the number of clusters involved in their formation)
appears to increase the fault detection effectiveness during an
inspection of requirements document.

We analyzed the impact LS dimensions (made up of
combination of categories) had, on inspection effectiveness and
nature of fault found. The was done to gain insights about
whether certain LS are responsible for higher inspection
effectiveness and detection of particular fault type or distributed
across different LS dimension? To perform this analysis, we
captured the classification of faults according to their fault type
(Section IV) found by the participants belonging to each cluster.
From raw data it was found, none of the inspectors had a
preference towards Verbal-VER. The remaining LS categories
(Active–ACT, Reflective–REF, Sensing–SEN, Intuitive–INT,
Sequential–SEQ, and Global–GLO) were analyzed.

To analyze the effect of each LS (i.e. combination of
categories across each dimension) on inspection effectiveness
and fault types, we created groups of each LS using six LS
categories across three LS dimensions. Therefore, eight clusters
with their respective number of members were: REF-SEN-GLO
(five), ACT-SEN-SEQ (five), ACT-INT-SEQ (one), REF-SEN-
SEQ (one), REF-INT-SEQ (two), ACT-SEN-GLO (one), ACT-
INT-GLO (two), and REF-INT-GLO (one). Fig. 4 shows the

average inspection effectiveness (shown by solid line) and
average fault type (shown by bars) correlation for each LS
cluster during inspection. Results are ordered from most
effective to least effective cluster. Left y-axis shows the average
number of different fault type detected and secondary y-axis on
the right shows the average inspection effectiveness.

Based on results in Fig 4, following observations were made:
a) Inspectors with REF-SEN-GLO LS’s had the maximum

inspection effectiveness (6.4) and close to that, REF-INT-
SEQ LS cluster found the next maximum effectiveness (6).
Upon analyzing the pre-study survey data, it was found that
inspectors with REF-SEN-GLO LS preference had high
experience of working with requirements analysis as
compared to inspectors with REF-INT-SEQ LS preference.

b) Inspectors belonging to the REF-SEN-GLO (i.e. most
effective cluster) found the maximum number of
Ambiguous Information fault (A). This result suggests that
inspection performance rely on a combination of categories
along each LS dimension and a single LS category cannot
help detect all types of faults. Hence, there should be an
inspection team with inspectors of diverse LS’s.

c) Another observation is that REF-INT-SEQ and REF-SEN-
SEQ cluster found the maximum number of Omission (O)
faults. Also, REF-INT-GLO cluster found maximum
number of Inconsistent Information (II) faults.

These results reinforce that, a combination of different LS’s
enabled inspectors to find faults of different types and that
difference in the LS of inspectors enable a higher coverage of
faults present in an artifact. The result however revealed that
inspectors belonging to the five LS clusters (i.e., REF-SEN-
GLO, REF-INT-SEQ, REF-SEN-SEQ, ACT-INT-GLO, ACT-
SEN-SEQ) out of 8 clusters were able to uncover all the three
types (O, A, and II) of faults present in requirements document.

VII. THREATS TO VALIDITY

In this experiment, we were able to address some of the

validity threats. Participating subjects were software

professionals working in real industry settings. Heterogeneity

of document was handled by providing participants with the

same LAS document to inspect. Our experiment consists of

inspectors who has different levels of work experience due to

which group composition effect was not addressed. Training

was provided by one trainer to all the participating subjects

which addressed the training bias. We were also able to address

Figure 4. Effectiveness and Fault Type by each LS

TABLE II. LINEAR REGRESSION RESULTS

Team size Effectiveness Correlation

2 P=0.14; Correl. Coeff = 0.112; r2=0.013

3 P<0.001; Correl. Coeff = 0.387; r2=0.015

4 P<0.001; Correl. Coeff = 0.185; r2=0.034

5 P<0.001; Correl. Coeff = 0.268; r2=0.072

6 P<0.001; Correl. Coeff = 0.228; r2=0.052

7 P<0.001; Correl. Coeff = 0.292; r2=0.085

8 P<0.001; Correl. Coeff = 0.211; r2=0.044

9 P<0.001; Correl. Coeff = 0.166; r2=0.028

10 P<0.001; Correl. Coeff = 0.060; r2=0.004

fatigue effect by providing enough time to participants to take

surveys (i.e. LS questionnaire, pre-study, and post-study

survey) and perform requirements inspection in their

comfortable environment where they can take break(s).

However, the LAS document was developed externally by

Microsoft and we do not have access of LS of authors which did

not led us to control the effect of LS of authors of SRS on

inspection output. Also, for larger team size (e.g., team size 10),

there was not enough data to form virtual inspection teams with

small number of clusters. These issues regarding the

generalization of results will be addressed in future studies.

VIII. DISCUSSION OF RESULTS

The focus of our study was to investigate the impact of
individual inspector on performance of inspection team during
the requirements inspection. The results from Section VI (Fig.
3) showed that dissimilarity in LS of inspectors had a direct and
positive relationship with inspection team effectiveness. This
means, higher the dissimilarity in the LS of inspectors in a team,
the more number of faults are detected in requirements
document during the inspection (i.e. higher inspection output).
While testing this results statistically (Table II), there was a
strong significant correlation between the LS dissimilarity and
inspection effectiveness. Therefore, using LS’s as an input to
guide staffing/formation of inspection teams is beneficial for
software managers. Results also revealed that some LS do favor
inspection positively (i.e. high effectiveness and on detection of
different fault type) as compared to other LS’s. Based on the
results provided in this paper, the concept of LS is applicable in
software inspections domain and can help to manage the quality of

software by creating high performance inspection team(s).

IX. CONCLUSION AND FUTURE WORK

While the data size used in this study was small, these results
showed that if inspection teams are created by taking different
LS of inspectors into account, they would read requirements
document with different perspectives. This results in less fault
overlap among inspectors in a team and leads to high inspection
output. These results are interesting and provide us with initial
evidence to continue on this path. We plan to analyze the
pre/post study data to gain more insights into the LS’s of
professional developers and its impact on their daily activities.
Our future works includes replicating this analysis for larger data
sets. Another future work includes analyzing the data to evaluate
the correlation (positive or negative) inspectors with certain LS
preferences (e.g., Active vs. Reflective) may have on their
performance during the requirements inspections.

REFERENCES

[1] Perry, W.E.: ‘Effective Methods for Software Testing: Includes Complete
Guidelines, Checklists, and Templates’ (John Wiley & Sons, 2006. 2006)

[2] Ackerman, A.F., Buchwald, L.S., and Lewski, F.H.: ‘Software

inspections: an effective verification process’, Software, IEEE, 1989, 6,
(3), pp. 31-36

[3] Berry, D.M., and Kamsties, E.: ‘Ambiguity in requirements
specification’: ‘Perspectives on software requirements’ (Springer, 2004),

pp. 7-44

[4] Aceituna, D., Do, H., Walia, G.S., and Lee, S.-W.: ‘Evaluating the use of
model-based requirements verification method: A feasibility study’.

Empirical Requirements Engineering (EmpiRE), 2011 First International

Workshop on2011 pp. 13-20

[5] Parnas, D.L., and Lawford, M.: ‘The role of inspection in software quality

assurance’, Software Engineering, IEEE Transactions on, 2003, 29, (8),
pp. 674-676

[6] Shull, F., Rus, I., and Basili, V.: ‘How perspective-based reading can

improve requirements inspections’, Computer, 2000, 33, (7), pp. 73-79
[7] Porter, A.A., Votta Jr, L.G., and Basili, V.R.: ‘Comparing detection

methods for software requirements inspections: A replicated experiment’,

Software Engineering, IEEE Transactions on, 1995, 21, (6), pp. 563-575
[8] Fagan, M.E.: ‘Design and code inspections to reduce errors in program

development’: ‘Pioneers and Their Contributions to Software

Engineering’ (Springer, 2001), pp. 301-334
[9] Fagan, M.E.: ‘Advances in software inspections’: ‘Pioneers and Their

Contributions to Software Engineering’ (Springer, 2001), pp. 335-360

[10] Porter, A., Siy, H., Mockus, A., and Votta, L.: ‘Understanding the sources
of variation in software inspections’, ACM Transactions on Software

Engineering and Methodology (TOSEM), 1998, 7, (1), pp. 41-79

[11] Carver, J.: ‘The impact of background and experience on software
inspections’, Empirical Software Engineering, 2004, 9, (3), pp. 259-262

[12] Felder, R.M., and Silverman, L.K.: ‘Learning and teaching styles in

engineering education’, Engineering education, 1988, 78, (7), pp. 674-681
[13] Allert, J.: ‘Learning style and factors contributing to success in an

introductory computer science course’, (IEEE, 2004), pp. 385-389

[14] Rutherfoord, R.H.: ‘Using personality inventories to help form teams for
software engineering class projects’, SIGCSE Bull.,2001, 33,(3),pp.73-76

[15] Miller, J., and Yin, Z.: ‘A cognitive-based mechanism for constructing

software inspection teams’, Software Engineering, IEEE Transactions on,
2004, 30, (11), pp. 811-825

[16] Montgomery, S.M.: ‘Addressing diverse learning styles through the use
of multimedia’. Frontiers in Education Conference, 1995. Proceedings.,

19951995 pp. 3a2. 13-13a12. 21 vol. 11

[17] Aranda, G.N., Vizcaíno, A., Cechich, A., and Piattini, M.: ‘A cognitive-
based approach to improve distributed requirements elicitation processes’.

Cognitive Informatics, 2005.(ICCI 2005). Fourth IEEE Conference on,

Irvine, USA, 8-10 Aug. 2005 pp. 322-330
[18] Kolb, D.A.: ‘Experiential learning: Experience as the source of learning

and development’ (Prentice-Hall Englewood Cliffs, NJ, 1984. 1984)

[19] Charkins, R., O'Toole, D.M., and Wetzel, J.N.: ‘Linking teacher and
student learning styles with student achievement and attitudes’, Journal of

Economic Education, 1985, pp. 111-120

[20] Felder, R.M.: ‘Are learning styles invalid?(Hint: No!)’, On-Course
Newsletter, 2010, pp. 1-7

[21] Felder, R.M., and Spurlin, J.: ‘Applications, reliability and validity of the

index of learning styles’, International Journal of Engineering Education,
2005, 21, (1), pp. 103-112

[22] Goswami, A., and Walia, G.:'Using Learning Styles to Create Virtual

Inspection Teams: A Technical Report',
http://www.goswamianurag.com/techRep/LSTeamsTech.pdf, The

Department of Computer Science, North Dakota State University, 2015

[23] Anderson, T.W.: ‘An introduction to multivariate statistical analysis’
(Wiley New York, 1958.)

[24] 24 Jolliffe, I.T.: ‘Principal component analysis’ (Springer verlag, 2002.

2002)
[25] Steinbach, M., Ertöz, L., and Kumar, V.: ‘The challenges of clustering

high dimensional data’: ‘New Directions in Statistical Physics’ (Springer,

2004), pp. 273-309
[26] Hartigan, J.A., and Wong, M.A.: ‘Algorithm AS 136: A k-means

clustering algorithm’, Journal of the Royal Statistical Society. Series C

(Applied Statistics), 1979, 28, (1), pp. 100-108
[27] Tatsuoka, M.M., and Tiedeman, D.V.: ‘Chapter IV: Discriminant

Analysis’, Review of Educational Research, 1954, 24, (5), pp. 402-420

[28] Carver, J., Shull, F., and Basili, V.: ‘Observational studies to accelerate
process experience in classroom studies: an evaluation’. Empirical

Software Engineering, 2003. ISESE 2003. Proceedings. 2003

International Symposium on2003 pp. 72-79
[29] Shull, F., Carver, J., and Travassos, G.H.: ‘An empirical methodology for

introducing software processes’, ACM SIGSOFT Software Engineering

Notes, 2001, 26, (5), pp. 288-296
[30] Mandala, N.R., Walia, G.S., Carver, J.C., and Nagappan, N.: ‘Application

of kusumoto cost-metric to evaluate the cost effectiveness of software

inspections’. Proceedings of the ACM-IEEE international symposium on
Empirical software engineering and measurement, Lund, Sweden, 17-22

Sep. 2012 pp. 221-230

