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1 Introduction

The use of random walks as a tool in mathematical physics is now well established and
they have been for example widely used in classical statistical mechanics to study critical
phenomena (see [10]). It has been recently observed that analoguous methods in quantum
statistical mechanics requires the study of random walks on oriented lattices, due to the
intrinsic non commutative character of the (quantum) world (see e.g [5, 16]). Although random
walks in random and non-random environments have been intensively studied for many years,
only a few results on random walks on oriented lattices are known. The recurrence versus
transience properties of simple random walks on oriented versions of Z2 are studied in [4]
when the horizontal lines are unidirectional towards a random or deterministic direction. The
interesting behavior of this model is that, depending on the orientation, the walk could be
either recurrent or transient. In the deterministic" alternate" case, for which the horizontal
lines are alternatively oriented on the right or on the left, the recurrence of the simple random
walk is proved, whereas the transience naturally arises when the orientation are all identical in
infinite regions. More surprisingly, it is also proved that the recurrent character of the simple
random walk on Z2 is lost when the orientations are i.i.d. with zero mean.

In this paper, we prove that the transience of the simple random walk still holds when
the orientations are centered and positively correlated with a summable power law decay of
correlations. We also prove a functional limit theorem for this walk with an unconventional
normalization due to the random character of the environment of the walk, solving an open
question of [4]. Our paper is organized as follows: the description of our model and the
results are stated in Section 2. Section 3 is devoted to the proofs while illustrative examples
of orientations, coming from statistical mechanics, are given in Section 4.

2 Model and result

2.1 FKG-horizontally oriented lattices

We consider a canonical probability space (0, B, lP') on which all the random variables are
defined, and denote lE (resp. Cov) the expectation (resp. covariance) under lP'. By orientations,
we mean a stationary family of {-l,+l}-valued centered random variables (EY)YEZ' with the
following properties:

1. Associated random variables:
For any m ~ 0, for any finite collection (EO, ... , Em), for any coordinatewise nondecreas­
ing functions I,g on {-l,+l}m,

Cov [I(EO'"'' Em); g(EO,'''' Em)] ~ O.

2. Summable power-law decay of correlations:
There exists ex > 1 such that

In our set-up, these orientations are natural extensions of Rademacher random variables of
[4]. They have the same one-dimensional law (lP'[EO = +1] = lP'[EO = -1] = !) but they not
necessarily independent. The notion of associated random variables (see [18]) is very natural
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in the context of Gibbs measures in statistical mechanics where it is equivalent to the FKG
property of the joint distribution v of the random field € = (€Y)YEZ ([1:1.]). In such cases, we
also say that the orientations are positively correlated. Examples of such distributions are
ferromagnetic, possibly long range, Ising models, described in Section 4 at the end of this
paper.

We use these associated random variables to build our FKG-horizontally oriented lattices.
These lattices are oriented version of Zz: the vertical lines are not oriented and the horizontal
ones are unidirectional, the orientation at a level y E Z being given by the random variable
€y (say right if the value is +1 and left if it is -1). More formally we give the

Definition 2.1 (FKG-horizontally oriented lattices) Let € = (€Y)YEZ be a sequence of
{-I, +1}-valued, associated and centered random variables. The FKG-horizontally oriented
lattice V = ('V, A€) is the directed graph with vertex set V = ZZ and edge set A€ defined by
the condition that for u = (UI, uz), v = (VI, vz) E ZZ, (u, v) E A€ if and only if

1. either VI = Ul and vz = Uz ± 1

2.2 Simple random walk on lI.}

We consider the usual simple random walk M = (Mn)nEl'l on II.}. Its transience is proved in
[4] for almost every orientation when they are i.i.d random variables (€Y)YEZ, Le. when the
law v of the random field € is a product probability measure. We generalize this result in this
positively correlated and possibly non-independent context.

Theorem 2.2 For v-a.e. realization of the orientation €, the simple random walk on the
FKG-horizontally oriented lattice II} is transient.

We also answer in this general set-up to an open question of [4] and obtain a functional
limit theorem with a suitable and unconventional normalization. We consider a Brownian
motion (Wtk:~o and denote (Lt(x)k:::o its corresponding local time at x E RMoreover, we
introduce a pair of independent Brownian motions Z+(x), Z_(x), x ~ 0. We assume these
processes to be defined on one probability space and to be independent of each other so that
the following process is well-defined:

(2.3)

(2.5)

This process is a particular example from a family of new self similar processes obtained in
[15] as functional limits of Z-valued random walks in random sceneries. Moreover, it has
a continuous version which is self-similar with index ~ and has stationary increments. We
also introduce a real constant m = ~, defined later as the mean of some geometric random
variables related to the horizontal behavior of the walk.

Theorem 2.4 The following convergence holds:

(n;/4 M[nt])t~O ~ (1 +:)3/4 (.b.t,O)t~O

where;£. means convergence in the space of cadlag functions D( [0,00), ~Z) endowed with the
Skorohod topology.
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3 Proofs

3.1 Vertical and horizontal embeddings of the simple random walk

The simple random walk M defined on (n, B, IP') can be decomposed into a vertical and an
horizontal part by restriction to the corresponding axis. The vertical part is a simple random
walk Y = (Yn)nEN on the line. The (independent) cr-algebras generated by this vertical walk
Y and the orientation E are denoted respectively by

F = cr(Yn1 n E N) and g = cr(EY1 Y E Z).

We also define for all n E Nand Y E Z the local time at level y of the walk Y to be

n

"7n(Y) = L lYk=Y'
k=O

The horizontal embedding is a random walk with N~valued geometric jumps. More formally, a
doubly infinite family (~;Y))iEN*,YEZ of independent geometric random variables of parameter
p = ! (and mean m = ~) is given and one defines the embedded horizontal random walk
X = (Xn)nEN by Xo = 0 and for n ~ 1,

'l)n-l (y)

X n = LEy L ~;y)
yEZ i=l

with the convention that the last sum is zero when "7n-l(Y) = O. Of course, the walk Mn does
not coincide with (Xn , Yn ) but these objects are closely related: define for all n EN

'l)n-l (y)

Tn=n+ L L dy
)

yEZ i=l

to be the instant just after the random walk M has performed its nth vertical move. The
following Lemma is proved in [4].

Lemma 3.6

2. For a given orientation E, the transience of (MTn)nEN implies the transience of (Mn)nEN.

3.2 Associated random variables

The extension from the i.i.d. case to our case is made possible by a comparison of the joint
characteristic functions of associated random variables with the product of the marginal ones,
due to Newman et al. ([18]).

Lemma 3.7 Let E = (Ey )YEZ be a sequence of associated random variables. Then, for all
t E JR., n E N

IJE[eit~YEZEy'I)n(Y)IF] - II JE[eitEY'I)n(y) IF] I ~ ~t2L"7n(X)"7n(Y)JE[EXEyJ. (3.8)
yEZ x=ly
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Proof. It is based on Theorem 1 in [18], which states that for a finite family of p associated
r.v.'s (Zl,"" Zp) and real numbers (1'1, ••• , 1'p),

p

IJE[eiI:~=lTkZkJ - IIJE[eiTkZkJI::; ~ L Irjll1'kICov(Zj,Zk)'
k=l lSj#kSp

(3.9)

The sum and product of the 1.h.s of (3.8) have a finite number of terms because 'f/n(Y) = 0 for
lyl > n. It is thus straightforward to derive (3.8) from (3.9) using the F-measurability of the
local times 'f/n(Y), the associativity of € and its independence with the vertical walk Y. •

3.3 Proof of the transience of the simple random walk

The vertical walk Y is known to be recurrent and its asymptotic behavior is rather well
controlled. The transience is due to the behavior of the embedded horizontal random walk X
and to exploit it we introduce a partition of 0 between typical or untypical paths of Y.

In all this proof, for any i EN, Oi is a strictly positive real number and we write dn,i =
n ~+Oi. Define the sets

An = {w E 0; max \Ykl < n~+81} n {w E 0; max 'f/2n-l(Y) < n~+02}
OSkS2n yEZ

and
En = {w E An; I L€y'f/2n-l(y)1 > n~+03}.

yEZ

By Lemma 3.6, the transience of M will be insured as soon as

L l?[X2n = 0; Y2n = 0] < 00

nEN

and to do so we first decompose I~[X2n = 0; Y2n = 0] into

(3.10)

l?[X2n = 0; Y2n = 0; A~] + l?[X2n = 0; Y2n = 0; En] + l?[X2n = 0; Y2n = 0; An \ En]. (3.11)

Some results of the Li.d. case of [4] still hold and in particular we can prove using standard
techniques the following

Lemma 3.12 For any 01,02 > 0,

L l?[X2n = 0; Y2n = 0; A~] < 00.

nEN

The second term of (3.11) is also a generic term of convergent series due to the untypical
character of the paths in En. Again from [4] with standard techniques, we have the

Lemma 3.13 For any 03 > 0,

L JPl[X2n = 0; Y2n = 0; En] < 00.

nEN
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Now, we denote
Pn = lP[X2n = 0; Y2n = 0; An \ En].

To prove the theorem, it remains to show that for some <51l 62, <53 > 0

LPn < 00.

nEN

Decompose

Pn = lE [lY2n=olE[lX2n=olE[lAn\Bn IF V gJ IF]].
It is well known that for the simple random walk Y, there exists C > 0 s.t.

and we can prove as in [4] the

Lemma 3.11 On the set An \ En, we have,

(3.14)

(3.15)

(3.16)

(3.18)

Hence, the transience of the simple random walk is a direct consequence of the following

Proposition 3.19 For 0: > 1, it is possible to choose <51 , <52 , <53 > 0 such that there exists
<5 > 0 and

(3.20)

Proof. We first follow the lines of the proof of Proposition 4.6 in [4]. Using an auxiliary
centered Gaussian random variable with variance d~ 3 , by the inequality of Anderson and
Plancherel's formula, we get '

(3.21)

where

j w . 22
In = -w lE[e~tL:YEz€y1)2n-l(Y)IF]e-tdn,3/2dt.

To use that for tdn ,3 small enough, e7t2d;',3/2 dominates the term under the expectation, we

split the integral in two parts. For bn = t 2
, we writen,3

with

I~ = r lE[eitL:YEz€y1)2n-l(Y)IF]e-t2d~,3/2dt
J1tl"5:bn

I; = r lE[eitL:YEz€y1)2n-l(Y)IF]e-t2d~,3/2dt.
J1tl>bn

We easily control the integral I~ like in [4] to get for some <54 > 0,

I; = O(e-nc54
).
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Denote I~ the integral which corresponds to I~ in the U.d case, where factorization is
possible by independence. If (f~)YEZ is a sequence of U.d. random variables with marginal

distribution JP>[f~ = -1] = JP>[f~ = +1] = !, we write

I~ = 1 ITIE[eit€~7'/2n-l(Y)IF]e-t2d~,3/2dt = r IT COS(7J2n_l(y)t)e-t2d~,3/2dt
Itl9n yEZ J1tl9n yEZ

and decompose

I~ = I~ + (I~ - I~).

In order to get a validity of our result for any summable power law decay of correlations, we
estimate I~ by the following

Lemma 3.22 For 83 > 282,

271" )pn,y

2n7J2n-l (y)

Proof. We first use Holder's inequality to get

1
2n '12n-l(y)

II~I ::; IT [(. ICOS(7J2n_1(y)t)I'12n-1(y)dt) 2n ].
y Itl$bn

Denote for all Y E Z, n EN, Pn,y = 1]2n2~ (y), Cn = {y : 7J2n-l (y) =1= O} and, for y E en

to get II~I ::; ITy J~~,/. Now, using the fact that we work on An, we choose 153 > 282 in order
to have bn7J2n-l (y) -+ 0 uniformly in y when n goes to infinity. If one substitutes the cosinus
in the latter inequality by an exponential, one has

IT(
Y

(271")~ l:yPn,y exp ( - ~ LPn,ylog(2n7J2n-l(Y))).
y

The vector p = (Pn,Y)YECn defines a probability measure on Cn and we have

1 1 1
-2 LPn,y log(2n7J2n-l(Y)) = -log2n - 2LPn,y logPn,y = -log2n + 2H (P)

y Y

where H(·) is the entropy of the probability vector p, always bounded by logcardCn . We thus
have on the set An,

•
To proceed when the orientations are not independent but FKG with summable power

law decay of correlations, we use Lemma 3.7 to compare I~ to I~ and control their difference.
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Lemma 3.23 For 63 > 262 and f3 = 363 + a - 1 - 462,

II~ - I~I = O(n- f3 ). (3.24)

Proof. We have

II~ - I~I ~ I n := 1 IE [eit l:YEZ Ey1/2n-l(y) IF] - II E[eitEy1/2n-l(y) IF] le-t2d~'3/2dt
Itl$bn yEZ

and by Lemma 3.7 and the trivial F-measurability of the 'T]'s:

I n ~ ~L 'T]2n-l (X)'T]2n-l (y)I8:[ExEy]1 t
2
dt.

x'fy ItlSbn

b3

< ; L'T]2n-l(X)'T]2n-l(y)E[EX Ey].
x=/=y

Using the positivity of the correlations and the fact that we only work on An, we rewrite:

382 2n 2n
n 1 +82 '""' . () '""' 1U'[ ]~+383 n"2 L..J 'T/2n-l Y L..J .1CJ ExEy .

6n 2 y=-2n x=-2n,x=/=y

By stationarity of the associated r.v.'s Ey , we have for all y E [-2n,2n],

2n 2n 2n-y 4n

L I8:[Ex Ey] = L E[EOEx - y] = L E[EoEz ] ~ L E[EOEz].

x=-2n,x=/=y x=-2n,x=/=y z=-2n-y,z=/=0 z=-4n,z=/=0

Thus, still by stationarity,

In our case of summable power law decay of correlation, we have with a > 1

4n
E [EOEy] = O(lyl-Q) ===:;. L E[EOEy] = O(n1- Q)

y=l

and thus

with f3 = 363 + a - 1 - 462.

Now, using (3.21), write with the usual notation dn,3 = n~+83:

JP>[An \ BnlFJ ~ Cdn,3(II~1 + II~ - I~I + II~I)·

Consider 63 > 262. By the previous lemmata, we have

d 10 - O( _1+83+~) d 1121- O( _n
C4

)n,3' n - n 4 2, n,3 n - e

and

•

dn,3 ·II~ - I~I = O(n~+83-f3).

To find a suitable 6 > 0 such that Proposition 3.19 holds, we need the following relations to
be verified:
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• 03 < t -~.
• ! + 03 - {J < 0, or equivalently 03 > 202 + !(~ - a)

and we still need 03 > 202. We distinguish two cases:

• a E)1, H the system reduces to

{

03 > 202 + ! (~ - a)

03 < t -~.
where 01 and 02 can be taken as small as possible so the existence of 0 > 0 in Proposition
3.19 requires that

131
2(2 - a) < 4

Le. a> 1, which is always verified under our hypothesis.

• a 2: ~: the systenireduces to.

{

63> 202

03 < t -~.
and one only has to choose 01 and 02 such that 202 < t - ~ to find a suitable 0 > O.

This proves Proposition 3.19.

•
Combining Equations (3.15), (3.16), (3.18) and (3.20), we obtain (3.14) and then (3.10).

By Borel-Cantelli's Lemma, we get

lP[MTn = (0,0) Lo.] = lP[IP'[MTn = (0,0) Lo.IQ)] = 0

and thus (MTn)nEN is transient for v-a.e. orientation E. Theorem 2.2 follows from Lemma 3.6.

3.4 Proof of the functional limit theorem.

Proposition 3.25 The sequence of random processes n-3/ 4 (X[ntjk::o weakly converges in the
space D([O, oo[,~) to the process (m.6. t k:::o.

Proof Let us first prove that the finite dimensional distributions of n-3/ 4 (X[ntj k:::o converge
to those of (m.6.t k:::o as n -. 00. We can rewrite for every n E N,

x = X(1) + X(2)n n n

where

and

XA2
) = m L Ey 'Tfn-1(Y).

yEZ
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Lemma 3.26 The sequence of random variables n-3/4(X~1))nEN converges in probability to
oas n -t +00.

Proof It is enough to prove the convergence to 0 for the L2-norm.

7)n-} (x) 7)n-l (y)

E[(X~1))2] =E[ L €x€y L L E[(~ix) -m)(~)Y) -m)IFVgj]
x,yEZ i=l j=l

Since by independence of the ~iY)'s with both the vertical walk and the orientations,

we obtain
n-3/2E[(X~1))2] = m 2n-3/2 L17n_l(X) = m 2n-1

/
2 = 0(1).

xEZ

•
Lemma 3.27 The finite dimensional distributions of (n-3/4X~1]k~o converge to those of

(mb.tk::o as n -t O.

Proof Let °::; tl ::; t2 ::; ... ::; tk and e1, e2, ... ,ek E R By the definition of X~2), we have

k k

-3/4'" e X(2) _2", e '" ( )n LJ j [ntj] = mn 4 LJ j LJ €y17[ntjJ-l Y .
j=l j=l yEll,

For (h > 0, we define the event

Dn = {w E n; max 17n(Y) < n~+<il}.
yEll,

One has

k

IE [exp (in-3/ 4 '" e·X(2) )]LJ J [ntj]
j=l

k

= E [E[exP(imn-3/4L ej L €y17[ntjJ-l(Y))IF:I]
j=l yEll,

k

- E [1B:[exp(imn-3/4 L ej L €y17[ntj]-l (y)) IF] IDn ]

j=l yEll,
k

+ E [E[exP(imn-3/4L ej L €Y17[ntj]-l(Y))IF]lD~]
. j=l yEll,

- I:l(n) + I:2(n) (say)

Firstly, by Proposition 4.1 in [4], we have

\I:2(n)1 ::; JP(D~) ::; e-cncl2

for some c and 62 strictly positive.
Secondly, we compare on the particular set Dn (on which uniformly in Y E .z, the local
time of the simple random walk is dominated by n3/ 4 ) the characteristic function of the linear
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lim ~12(n) =
n-+oo '

combinations of our process conditionally to the random walk with the marginal characteristic
functions, using Lemma 3.7. Therefore we decompose

where

k

~1,1 (n) = E [lDn {E[exP(imn-3
/
4 L OJ L €y71[ntjJ-1 (y)) IF]

j=l yET..

k

II E[exp(imn-3
/
4

€y L Oj71[ntj]-l (y))IF]}]
yET.. j=l

and
k

~1,2(n) = E [lDn II I8:[exp(imn-3
/
4

€y L OJ71[ntj]-l (y))IFJJ.
yET.. j=l

From Proposition 1 in [15], we have that

J~~E[exp ( - ~2 n-~ L(tOj71[ntj]-l(y)f)]
yET.. j=l

2100
k

= E [exp ( - ~ -00(f; OjLtj (x))2dx)] by Lemma 6 in [15]

k

= E [exp (im L Oj~tj)]' see Lemma 5 in [15].
j=l

It remains to prove that ~l,l(n) tends to 0 as n goes to infinity. By Lemma 3.7, we have
that

2 k

l~l,l(n)1 ::; 2~/2 L ,L Oi OjE[€x€y1][nti ]-l(X)71[ntj]-l(y)lDn]
x#yt,J=l

Using the fact that we work on Dn , there exists C > 0 such that

From the hypothesis on the power-law decay of correlations, there exists 'Y > 0 such that

n

LI8:[€o€z] = O(n-I').
z=l

So it is enough to choose 01 < 'Y in order to have ~1,1(n) = 0(1). •
From Lemma 3.26 and Lemma 3.27, we deduce the convergence of the finite dimensional

distributions of n-3/4(X[ntJk~o to those of (m~tk~o.
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In order to prove the weak convergence of (n-3/4X[nt]k::o to (m~tk2:o in V([O, 00), JR), it

remains to prove the tightness of the family (n- 3/ 4X[ntlh~o,n~l in V([O, 00), JR). By Theorem
15.6 from Billingsley ([2]), it is enough to prove that there exists C > °such that for all
tl ::; t ::; t2 E [0, T], T < 00, for all n 2:: 1,

IE [IX[nt21- X[ntlIIX[nt] - X[ntl] I] ::; Clt 2 - tIl!. (3.28)

Let us estimate

IE [IX[nt2] - X[nt]12
J < 2m2 I: IE [('I7[nt2]-I(X) - 'I7[nt]-1(X))('I7[nt2]-I(Y) - 'I7[ntl-I(Y))] IE [ExEy]

x,yEZ

2n . n [nt2]-1 [nt2]-1

= 2m
2 I: IE[EOEz] I: IE [( I: lYk=x) ( I: lYz=x+z)]

z=-2n x=-n k=[nt] 1=[nt]

2n [nt2]-1

= 2m2 I: IE[EOEz] I: JP[Yk - Yl = z]
z=-2n k,l=[nt]

2n [nt2]-1

= 2m2
{ 2 I: IE [EOEz] I: JP[Yi-k = z] + [nt2] - [nt]}.

z=-2n k,l= [nt] ik<l

Now, it is well-known that when (Yk)k>O is a simple random walk on Z, the probabilities of
transition from °to z satisfy uniformly in z E Z,

JP[Yn = z] = o(Jn)
which implies that

[nt2]-1

I: JP[Yl-k = z] = o(([nt2J - 1 - [nt])3/2)

k,l=[nt]ik<l

= o(n3/ 2 (t2 - t l )3/2).

Using the hypothesis on the power-law decay of correlations,
00

z=-oo

So we deduce that there exists C > 0 such that

IE[lX[nt2] - X[ntJ 1
2] ::; Cn3/21t2 - tI1 3

/
2.

By Cauchy-Schwarz inequality, we obtain that there exists C' > °such that

n-
3

/
2IEl/X[nt21 - X[nt]IIX[ntl- X[ntl] I] :$ n-3

/
2IEI:IX[nt2] - X[ntlI

2
J
1

/
2IEI:IX[nt] - X[ntIlI2]1/2

< C'lt2- t I1 3
/
2

so the tightness is proved. •
Let us recall that MTn = (Xn , Yn ) for every n 2:: 1. The sequence of random processes

n-3/4(Y[ntl)t~O weakly converges in V([O, 00[, JR) to 0, thus the sequence of JR2-valued ran­

dom processes n-3/4(MT[ntJ)t~O weakly converges in V([O, 00[, JR2) to the process (m~t, O)t~o.

Theorem 2.4 follows from this remark and the next lemma
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Lemma 3.29 The sequence of random variables (~)n21 converge in probability to 1 + m as
n --+ +00.

Proof. Let us remark that

7)n-l (y)

Tn = n + L L (~~y) - m) + m L 7]n-l(Y)
yEZ i=l yEZ

Now,

7)n-l(X) 7)n-l(y)

= L E[ L L (dx
) - m)(~;Y) - m)]

x,yEZ i=l j=l

!In-l(X) 7)n-l(y)

= L E[ L L E[(~~x) -m)(~jY) -m)I.rV9:1]
XNEZ i=l j=l

7)n-l(X) 7)n-l(y)

= m
2 L E[ L L 8i ,j8x ,y]

x,yEZ i=l j=l

= m
2 L E[7]n-l (X)]

xEZ

= m 2n = o(n 2
).

From this calculation and the fact that L:xEZ 7]n-l(X) = n, we deduce the lemma.

4 Examples

•

Our framework includes this of [4] where they consider i.i.d. orientations but it also in­
cludes orientations whose joint distribution is not a product measure. Natural examples of
non-product measures are given by Gibbs measures in statistical mechanics. To destroy the
independence of the random variables Ey, a family of measurable functions <I> = (<I>A)AES
indexed by the set S of finite subsets of Z is introduced. For all E, <I>A(E) represents the in-·
teraction between the random variables (EY)YEA (see [12]). A translation-invariant measure
1//3 on {-I, +I} is a Gibbs measure at inverse temperature f3 for the interaction <I> when it is
an equilibrium state regard to some variational properties in terms of thermodynamic func­
tions1. In some domains of temperature, there could be more than one Gibbs measure for an
interaction <I> , and we then say that a phase transition holds. In this Gibbsian context, most
of FKG measures are believed to be of a ferromagnetic form: if one denotes EA = ITyEA Ey,
this means that there exists a coupling J = (JA)A, JA ~ 0, such that

More precisely, it is for example proved ([11]) for the so-called two-body interactions <I> such
that <I>A = 0 if card(A) > 2. In such a case, 1/ is FKG if and only if JA = J(i,j) ~ °for all
i, j E Z. This provides us a wide family of examples suitable to our set-up.

lSee [12], an equivalent definition characterizes Gibbs measures in terms of continuity of their conditional
probabilities w.r.t. the outside of finite sets, or via the well-known DLR equation.

13



1. Ferromagnetic nearest neighbors Ising model:
The coupling is translation-invariant, positive for nearest neighbors pairs {i, j} C Z and
null otherwise:

{

J > 0
J(i,j) = 0

if li-jl = 1

otherwise.

It is well known ([12]) that this one-dimensional model does not exhibit a phase tran­
sition. By translation invariance of the potential, the unique Gibbs measure is then
translation invariant, and equivalently the family E is stationary. Moreover, the decay
of correlations of the random variables E of law v are known to be exponential ([6, 8]).
The absence of phase transition and the translation invariance property of the potential
prove also that the orientations are centered and thus fit in our framework.

2. Long range ferromagnetic Ising model:
It is similarly defined but the coupling J(i,j) is non null for any pair {i,j} and has a
power law decay: there exists 0: > 1 and J ;::: 0 such that

J(i,j) = J.li - jl-a.

Depending on the value of 0:, there could be a phase transition in some domains of
temperature, and in particular two different regimes with power law decay of correlations
are relevant in our set-up (see [7, 9, 14, 1, 20, 17, 13]).

(a) 0: > 2.
There is no phase transition and the Gibbs measure for this potential is translation
invariant. The variables are thus centered and one could also learn in the literature
that 0: also governs a power law decay of the correlations:

(b) 0: E]I, 2].
There exists a critical inverse temperature (3c which separates the domain of tem­
perature in different regimes. In the high temperature regime, there is no phase
transition and the picture is as above: the power law decay is the same as this of
the interaction, i.e. a. By translation-invariant of the .unique phase, this provides
us examples with very slow but summable power law decay of correlations for which
our theorems applied.

The later is not necessarily true at low (or critical) temperature, or at the crit­
ical value 0: = 2, because when phase transition holds the power law decay of
correlations is 0: - 1 and thus non summable.

5 Comments

We have extended the results of [4] to positively correlated orientations and solved one of their
open problems. In particular, we have proved that the simple random walk is still transient
for ferromagnetic models in absence of phase transition. As the walk can be recurrent for
deterministic orientations, it would be interesting to perturb deterministic cases in order to
get a full picture of the transience versus recurrence properties and identify a sort of phase
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transition. As a perturbation of the alternate lattice on which the walk is recurrent, we
are studying anti-ferromagnetic systems (i.e. the case of a coupling J :::; 0) for which the
recurrence should be conserved at low temperature. Similarly, one could consider negatively
correlated orientations but this requires finer results on such distributions and a complete
theory of negative dependence has not been established yet (see e.g. [19, 3]).

The ingredients used to prove the functional limit theorems still hold for any m > 0 and
Theorem 2.4 should therefore also be satisfied for more general random walks than the simple
random walk on the lattice IU. This question is currently under considerations.
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