
CS1, Arcade Games and the Free Java Book
 Daniel L. Schuster

MCIS Dept
Western State College
Gunnison, CO 81231

970-943-2999

dschuster@western.edu

ABSTRACT
Computer game programming has been adopted by some
instructors and schools in an effort to motivate students and make
the learning more relevant to the student's world than the console
programs many of their instructors learned with. This paper
describes the author's experience teaching CS1 using the ACM
Java library to write arcade game programs. An online book, the
Free Java Book, has been written to support this approach.
Experience over the last two years teaching with this approach
will be shared and the book will be described.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education—computer science education, curriculum.

General Terms
Design, Human Factors

Keywords
CSI, Games, ACM Java, Free Java Book

1. INTRODUCTION
About eight years ago the author began to struggle with what he
felt was an increasing lack of relevance in the CS1 course. The
work done in CS1 looked nothing like the computer applications
the student grew up with. Many students appeared bored, and
certainly the author was bored. Alternatives were explored but all
were thought to be lacking in one way or another.

In August of 2006 the ACM Java Task Force released the first
version of the ACM Java Library. This library includes a wealth
of tools that bring more advanced Java subjects to the introductory
level. In particular, the graphics library makes simple graphics
and animation accessible at the very beginning of the introductory
course. An updated version of the library was released in 2008.

Games are a well known motivator for students learning to
program [1]. Studies have indicated that generally students prefer
game assignments to non-games [2]. Game programming
assignments allow the students to work in a visual, interactive
domain that is perhaps more interesting and more real than the

console based environment that some other approaches use.
Schools have reported success with a gaming approach [1,2,3,4]
and some have tried gaming to introduce more advanced topics
[5].

The author began teaching with the ACM Java Library in the
spring of 2007, and each semester has included more elements of
animation and gaming in the CS1 course. Currently CS1 at
Western State College of Colorado uses graphics and game
programming for about 95% of the course, the remainder being
console programming. Note also that at Western essentially all
students enter CS1 with no programming experience and
sometimes little idea of what programming is, so CS1 must begin
at the very beginning.

A textbook has been written to support this approach. The Free
Java Book (FJB) is available online at www.freejavabook.org and
is available at no charge to educational institutions.

It is important to recognize that it is not the purpose of this CS1
course to teach game programming or the ACM Java library.
They are merely a means to an end. The purpose of the course is
to teach the usual CS1 topics—loops, decisions, modularity,
objects, problem analysis, etc. Game programming provides an
interesting application domain and the ACM Java Library
provides a thin layer that makes this domain accessible to the
beginner.

2. THE ACM JAVA LIBRARY
The ACM Java Library provides several fundamental classes that
are the foundation of the arcade game approach.
The GraphicsProgram class and the GObject class provide an
application window and a variety of visual shapes to work with.
These include rectangles, ovals, lines and labels. These shapes can
be collected into a compound object with its own constructors and
methods.
The ConsoleProgram class provides simplified input and output
for console programs, which are helpful for illustrating some very
basic concepts.
A useful random generation capability is also provided by the
ACM library.
Standard Java provides the necessary mouse and keyboard
interactivity.
All programs run as Java applets, but this is invisible to the
student.
The current website for the latest version of the ACM Java
Library is www-cs-faculty.stanford.edu/~eroberts/jtf.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’10, March 10–13, 2010, Milwaukee, Wisconsin, USA.
Copyright 2010 ACM 978-1-60558-885-8/10/03...$10.00.

549

3. THE FREE JAVA BOOK
CS1 as taught at Western State College has transitioned from
Pascal to C to C++ and most recently Java. For two and a half
years the course has been taught increasingly in the arcade game
domain.

As is sometimes the case, handouts became more extensive notes
which became crude chapters which grew and eventually became
the FJB. As of this writing, the FJB is incomplete. Eleven chapters
are ready or almost ready for release, with the remainder to
written as time allows.

Twenty years of teaching CS1 and five semesters of experience
with this approach have led the author to the following topic
ordering and general content:

1) Fundamentals – a quick introduction to programming
and the basics of the ACM Java library. The student is
able to write simple console programs and draw simple
static graphic images.

2) ACM Java Graphics – a detailed look at some of the
components of the ACM Java Library including
rectangles, ovals, lines, labels, graphic images, and the
application window. The student is able to characterize
the application window, manipulate graphic objects and
create simple animations.

3) Making Decisions – logical expressions, the boolean
data type, and conditionals are covered in detail. The
student is able to write animations with changeable
behavior.

4) Loops – for and while loops and the game loop are
covered. The student can write more complex
animations and learns some loop related algorithms.

5) Methods and Objects I – covers void methods, passing
primitive data types as arguments and simple
programmer defined objects. Basic UML for objects is
introduced. The student can decompose elementary
problems into methods and objects.

6) Game Programming I – introduces standard Java applet
components, elements of simple games such as object
collision, some mouse and keyboard interactivity, and
random integers. The student is able to write simple but
real games such as Pong, keep score, provide instruction
screens and levels of play.

7) Useful Java Objects – covers Java chars, the Character
and String classes, the Math library and the ACM
Random class. The student can write String based
activities (Talk Like a Pirate translations for example)
and add significantly to game character with more
sophisticated mathematically controlled behaviors and
additional random characteristics.

8) Arrays and ArrayLists I – cover the fundamentals of
these objects so that the student can conveniently work
with large numbers of game elements.

9) Methods II – more about methods, arguments and
returned values. The student learns more techniques for
dealing with complexity.

10) Objects II – more complete coverage of objects
including accessors and mutators, the toString method,
etc. UML is revisited. The student can create more fully
featured objects.

11) Game Programming II – more sophisticated mouse and
keyboard interaction, time dependant object behavior,
more complex gaming. The student can write more
sophisticated games with more complex interaction and
object behaviors.

12) Arrays and ArrayLists II – more about arrays and
ArrayLists, searching and sorting algorithms.

Additional coverage on Text Files, Multi-dimension Arrays and
ArrayLists may be required for courses at some schools and is
planned.

Quick Reference and Setting Up Your Computer appendices have
been written. Additional appendices on compilation errors and the
standard Java language are planned. A support forum exists.

The Free Java Book has some characteristics that are beneficial to
the beginning student.

• language focus – there is no attempt to cover a large
subset of the Java language with a massive book.
Instead focus is only on those elements that form a
foundation for arcade game programming and further
study as a CS student.

• application domain focus – the application domain is
almost completely restricted to arcade game
programming. The student works constantly on
animation and games, while remaining in Java.

The result is that the student is surrounded and immersed in what
they need, but distractions and possibly extraneous material are
removed from their environment.

4. SAMPLE ASSIGNMENTS
The arcade game application domain provides a wealth of
assignments at every point in the curriculum and every level of
difficulty. A few representative problems are described.

Robot Assignment – the student produces a robot.

Figure 1. Robot

The assignment teaches sequence, familiarity with the coordinate
system and working with objects from the ACM Library.

Drop And Roll assignment – the student produces an animation
of a ball falling off and rolling away from a block, snapshots of
which are shown below.

550

Figure 2. Rolling Ball

The assignment teaches boolean expressions, loops and animation
basics.

Crash assignment – the student flies a UFO across the
application window, with a flickering exhaust or flashing lights.
When the UFO hits a space mine it blows up into several pieces
but the alien parachutes to the ground. The program concludes
with the message The End which scrolls right to left, starting at
the right side.

In this assignment the student works with multiple objects,
multiple loops, detects collision by comparing coordinates and
produces differentiated movement of objects. Some students have
produced elaborate versions with more action.

This assignment was inspired by a student who took a simpler
version of it and added the parachuting alien.

You Choose 1 assignment – the student creates an interactive
game of their choice, with the instructor's approval.

Allowing the student to select their own task increases their
engagement. The instructor's approval is required to insure that
they are taking on a task they can handle at this point in the
course, and that the assignment requires enough of the student.

Students have produced good, straightforward versions of Pong,
Helicopter in a Cave, Dodgeball, various shooting/clicking
games, a juggling game, BreakOut, Lunar Lander and Frogger as
seen in Figure 3.

Figure 3. Frogger by Curtis Prock

The assignment requires programmer created objects and
methods, mouse or keyboard control, scoring and levels.

BugBot assignment – the student creates a bug robot that
wanders a playing field, bumps into objects and searches for a

goal. The assignment does not require interactivity but makes
significant use of methods and objects.

Asteroid Escape assignment – the student creates a version of
the classic Asteroids game. The game features user created objects
for the asteroids, the spaceship, black holes, etc. The spaceship is
a complex object with several mutators and accessors. The
keyboard is used to control the spaceship. Instructions are
displayed, current spaceship status (fuel, etc.) are displayed,
scoring is kept and there are multiple levels.

The student works with more sophisticated objects and significant
additional complexity.

You Choose 2 assignment – the student creates an interactive
game of their choice, with the instructor's approval. Suggested
games include Missile Command, Helicopter Rescue or various
puzzles. Students have also turned in excellent versions of
Frogger, Asteroids and shoot-em-ups.

At Western State College, this assignment is the final project of
the CS1 course. The student builds on their existing tools and
skills and adds the capability to handle large amounts of data and
implement more sophisticated behavior. It is expected that
resultant game (or activity, because some students opt for puzzles,
etc.) will be at least reasonably professional. And some of them
are. Figure 4 is a screen capture from an elaborate version of
Asteroids written by a student with little previous programming
experience.

Figure 4. Asteroids by Peter Lewis

5. COMMENTS ABOUT THIS APPROACH
Most topics of the ACM library are taught as "black magic", with
as little explanation as possible. The student learns about the
ACM objects and methods as tools, not as interesting in
themselves. For the sake of brevity, some obvious topics such as
GPolygons are simply left out. The author's experience is that
some more advanced students will ask for more powerful tools
and a reference to online documentation on GPolygons has been
sufficient.
Much of the course is taught Just In Time (JIT). Thus a topic is
taught when it is needed and when the student is likely to be ready
for it, and not before.
Consider the introduction to objects. At this point in the course
students are writing programs of perhaps 200 lines of code, with a
fair amount of this being repeated code. Void methods have been
introduced to encapsulate tasks such as displaying instructions.

551

Students are also writing programs that move a multi-part graphic
object, perhaps 3-component UFO as seen in Figure 5.

Figure 5. UFO
To move this UFO using what the student already knows at this
point requires moving each of the three components. The student
realizes, as one of mine said, "there must be a better way." And
there is—objects. Gathering these three components into one
object makes the student's work simpler. The student learns the
default and non-default constructors. Objects are embraced by the
students because they are easy to grasp and they are necessary.
Later in the course, when the student's increasing sophistication
demands more powerful objects, more thorough coverage is
appropriate.

In this approach game playing is also introduced JIT. The student
learns basic mouse and keyboard interactivity, object collision,
randomizing the action, how to keep time and score and play
levels early in the course. This allows them to write good, basic,
playable games just a few weeks into the course. More
sophisticated interactivity and time dependant object behavior
should be delayed until the student is ready for it.

The majority of students will turn in simple but playable and fun
games. These students will have accomplished the goals of a CS1
course, but not created works of the gaming art. They might
produce little better than a good version of Space Invaders or
Break Out. On the other hand a few will produce stunningly good
programs. Students in this course have written wonderful,
colorful, complex versions of Missile Command and Asteroids
and other games created with this course as their only
programming experience. They've been challenged, had a lot of
fun and learned what they needed to learn.

6. OTHER APPROACHES WITH GAMING
The ACM Library provides a thin layer over standard Java and
might be viewed as the minimal toolkit needed to accomplish
graphics game programming at the CS1 level, while still keeping
the student immersed in Java. The ACM Library works with any
programming editor capable of working with Java. Thus this
approach involves as much standard Java and standard tools as
possible.

Greenfoot is, to the author's understanding, a thicker layer above
standard Java that allows more sophisticated simulation and game
creation. The student writes Java code that runs in the Greenfoot
framework. Development takes place in the Greenfoot
application, with significant tools for abstraction and visualization
[6].

Alice is another level (or several) up the abstraction ladder, with
the student creating a program using a drag-and-drop interface,
with visual elements corresponding to standard programming
language statements. Developers work within the Alice
application [7].

7. PROS AND CONS OF THIS APPROACH
In five semesters of increased reliance on the arcade game
approach, including three that use essentially only gaming, the

author has perceived several important advantages of an arcade
gaming approach:

• increased motivation and interest – it is very clear
that students are far more interested. Students ask more
questions in class, come in for more help, take on more
extra challenges. A problem that could be solved in 200
lines of code is likely to have an extra 300 lines because
of extra features that students has added.

• real java programming – the ACM Java Library is a
thin layer, so the student is writing real Java programs
from the beginning.

• various student levels are easy to accommodate – the
nature of games allow the more advanced student to add
extra features. Some choose to add extra characteristics
for more visually interesting game elements. Others add
more elaborate play such as a BugBot with more
intelligence or an Asteroids game where the spaceship
has shields. Not all of these innovations are successful
however.

• minimal knowledge of specialized techniques – time
dependant object behavior is the only game specific
technique used in this approach. The student is always
learning real and useful Java.

• natural progression to objects – there's no question of
objects early or objects later. They are introduced when
needed and further developed when required.

• enhanced opportunities for artistic expression and
creativity – many students will create only very basic
visual objects, but some will go to considerable trouble
to produce attractive, accurate or complicated game
elements and backgrounds.

• flexible problem domain – the approach builds non
game activities such as slide show software or puzzles
easily.

• infinite number of varying assignments – almost any
arcade game or puzzle is a candidate for an assignment.
However care is required to be sure that the student has
the appropriate skills at the time of assignment.

• minimal set up and cost – the student need only
download the acm.jar file containing the library,
configure the IDE to find it, and they are ready to go.
The games run successfully on older computers and the
ACM library is available at no cost. No special IDE is
required—the author has used both TextPad and Dr.
Java.

• reliability of the ACM Java Library – the author
experienced very few problems, odd behaviors or
unexplained crashes.

In the author's experience, there is one minor downside to the
gaming approach. Some learning overhead is required—the
student has to become moderately fluent with a subset of the
ACM Java library, and some very basic gaming techniques. The
trade-off is well worth it though.

552

There is also one considerable downside—the lack of support
materials. The Free Java Book is the author's attempt to overcome
this problem.

8. TRANSITIONING TO STANDARD JAVA
The transition to pure standard Java is painless, and is handled by
one example program that covers the structure of a standard
program and console input and output, with perhaps some
assigned reading.

9. CONCLUSIONS
The ACM Java library successfully brings graphics into a Java
based CS1 class. Creating, modifying and moving graphic objects
is very simple. Working with programmer defined graphic objects
is naturally more complex, but still easily accessible. Interactions
between objects is available to the beginning student. The ACM
library, combined with standard Java, provides all the tools
needed for the beginning student to work in the arcade game
application domain.
Using the ACM library as a starting point the beginning student is
able to write basic interactive arcade games within a few weeks,
and much more refined games as the course progresses. At the
end of the course strong students are able to write excellent arcade
games that fully explore the topics, skills and techniques that a
CS1 course should cover.
The arcade game application domain is suitable for CS1 and
provides a wealth of possible assignments. Students enjoy
creating animations and games, and student enthusiasm is notable.
The Free Java Book provides support for instructors wishing to
undertake this approach to the CS1 course.

10. REFERENCES
[1] deLact, M., Kuffner, J., Slattery, M., and Sweedyk, E. Panel

Session:Computer Games and CS Education: Why and How.

In Proceedings of the Thirty-Sixth SIGCSE Technical
Symposium on Computer Science Education (SIGCSE 2005),
February 23-27, St. Louis, Missouri, 2005, 256-257.

[2] Cliburn, D. The Effectiveness of Games as Assignments in
an Introductory Programming Course. In Proceedings of the
Thirty-Sixth ASEE/IEEE Frontiers in Education Conference
(FIE 2006), October 28-31, San Diego, California, 2006.

[3] Bayliss, J. Using Games in Introductory Courses: Tips from
the Trenches. In Proceedings of the Fortieth SIGCSE
Technical Symposium on Computer Science Education
(SIGCSE 2009), March 4-7, Chattanooga, Tennessee, 337-
341, 2009.

[4] Morrison, B. Engagement: Gaming throughout the
Curriculum. In Proceedings of the Fortieth SIGCSE
Technical Symposium on Computer Science Education
(SIGCSE 2009), March 4-7, Chattanooga, Tennessee, 342-
346, 2009.

[5] Kote, L., Anderson, S., Good, J., Pain, H. Learning by
Game-Building. In Conference Proceedings of the 12th
SIGCSE Annual Conference on Innovation and Technology
in Computer Science Education (ITCSE 2007), June 25-27,
Dundee, Scotland, UK, 2007

[6] Henriksend, P., Kölling, M. Greenfoot Invent – Program –
Share, http://www.greenfoot.org

[7] Carnegie Mellon University, Alice An Education Software
that teaches students computer programming in a 3D
environment, http://www.alice.org

553

