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Abstract

We examine the use of sextupole magnets to correct nonlinearities in the longitudinal phase

space transformation of a relativistic beam of charged particles in a dispersionless

translating section, or dogleg.  Through heuristic analytical arguments and examples derived

from recent experimental efforts, augmented by simulations using the particle tracking

codes PARMELA and ELEGANT, sextupole corrections are found to be effective in

optimizing the use of such structures for beam compression or for shaping the current

profile of the beam, by manipulation of the second-order longitudinal dispersion.  Recent

experimental evidence of the use of sextupoles to manipulate second-order horizontal and

longitudinal dispersion of the beam is presented.  The theoretical and experimental results

indicate that these manipulations can be used to create an electron bunch with a current

profile having a long ramp followed by a sharp cut-off, which is optimal for driving large

amplitude wake fields in a plasma wake field accelerator.
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I.  INTRODUCTION

Several experiments [1-4] in the field of beam physics have recently been proposed

that require, or may benefit from, the successful transport (with or without compression) of

bunches of charged particles at large energy spread through a dispersionless translating

section or dogleg.  This device, consisting of two consecutive bend magnets of opposite

sense separated by dispersion-matching focusing optics, is commonly used in linear

accelerator systems to translate the beam axis transversely, and it may also be used as a tool

to compress or shape the current profile of a relativistic electron bunch.  Examples of three

such beamline structures are shown in Fig. 1.

FIG. 1. (Color) Cartoon drawings of the dispersionless translating sections at (a) ATF-

VISA, (b) UCLA Neptune, and (c) ORION-SLAC.  Each drawing is scaled to fit the figure.

Wedges, blue lenses, and red rectangles represent dipoles, quadrupoles, and sextupoles

respectively. In each drawing an approximate representation of the horizontal dispersion

function ηx  is superimposed.



For beams of large energy spread, this type of transport line tends to have a longitudinal

(temporal) dispersion function with significant nonlinear contributions, i.e. containing

higher than first order dependences in powers of the momentum error.  The physical effect

of these nonlinear contributions is to introduce quadratic and possibly higher-order

correlations between energy and longitudinal position within the bunch.  In applications that

are sensitive to the beam's distribution in the longitudinal phase space, it is desirable to have

the ability to manipulate these nonlinear effects.  Such manipulations can be employed to

shape the phase space distribution and thereby linearize the transport.  In Section II we

present several analytical results which help to illuminate these effects as well as their

control using sextupole correction.  In the interest of clarity and brevity, important

derivations are reserved for the Appendices.

Our main results, contained in Sections III and IV, consist of numerical and

experimental studies pertaining to the control of nonlinear longitudinal effects in the dogleg

sections on the linear accelerators at the UCLA Neptune Laboratory and the ORION

beamline at SLAC, shown in Fig. 1(b) and 1(c).  The goal of these studies is to shape the

current profile of the beam in order to optimize it for use as a drive beam for the plasma

wake field accelerator (PWFA).  Simulations of the dogleg sections on these beamlines,

presented in Section III, indicate that sextupole corrections could be implemented in order to

linearize their longitudinal transport. With such transport, these doglegs can act as bunch

compressors capable of producing electron bunches that rise linearly in density from head

to tail, followed by a sharp drop.  This type of longitudinal beam profile has been predicted

to produce large-amplitude wake fields and high transformer ratios [5], making it ideal as a

PWFA drive beam.  In Section IV, we present new experimental results of horizontal

dispersion and CTR bunch length measurements on the UCLA beamline of Fig. 1(b), which

demonstrate the viability of using sextupoles to manipulate the bunch shape in a dogleg

compressor.



Two additional applications, related to the VISA Brookhaven Accelerator Test Facility

(ATF) dogleg section of Fig. 1(a), are presented Appendices C and D.  In Appendix C, we

discuss simulations of second-order nonlinear bunch compression, which have helped to

explain the improved gain of the VISA self-amplified spontaneous emission free electron

laser (SASE-FEL) when running the beam slightly off-energy, an effect which was

observed but not fully understood during the first phase of that experiment [1].  In

Appendix D, we discuss similar calculations for the currently ongoing second phase of the

VISA experiment, which indicate that these second order effects can be minimized using

sextupole correction, in order to transport a beam though the dogleg section while

preserving a strong linear momentum-time correlation (chirp).  This beam, when delivered to

the VISA undulator, may create a corresponding frequency chirp in the FEL output

radiation pulse [2]. As a point of reference, values for various parameters used in the

discussions of Section II, including the beam energy E, the bend radius ρ, bend angle θ,

total path length ∆s, normalized emittance εN, RMS momentum spread σδ, and the

(TRANSPORT notation [6]) matrix elements R5 6, T566, and U5666 (without sextupole

correction) are given in Table I below for the dogleg sections on each of these beamlines.

TABLE I.  Various parameter values for the dogleg sections of Figure 1.

Facility E (MeV) ρ(m) θ(deg) ∆s(m) εN(µm) σδ(%) R5 6(m) T566(m) U5666(m)

UCLA 14 0.30 45 2 5 1.7 0.05 2.54 14.3

VISA-I 71 1.15 20 15 3.7 1.02 -0.0045 -10.1 172.5

VISA-II 71 1.15 20 15 2.42 0.56 -0.016 -7.17 48.7

ORION 55 0.84 22 14 4.4 2.2 -0.014 -1.8 29.1



II. BACKGROUND AND HEURISTIC ANALYSIS

The transformation of the 6D trace space vector X = (x, ′ x , y, ′ y , z,δ)  of a beam

produced by a system of magnetic elements can be represented to arbitrary order in terms of

TRANSPORT matrices [6].  In component form, the transformation from the initial to final

coordinates ( X0 → X f ) reads

X f( )
i

= Rij X0( ) j
+ Tijk X0( ) j

X0( )k
+ Uijkl X0( ) j

X0( )k
X0( )l

+ ...    (1)

where Rij , Tijk , Uijkl , ... are transport matrices (or tensors) of increasing order, and there is

an implied summation on repeated indices.  Since we are concerned with the transformation

of the longitudinal phase space of the beam, we will focus upon the z or i=5 component of

Eq. (1), which has the general form z f = z0 + [chromatic terms] + [geometrical terms]. For

beams of small transverse emittance but with a large energy spread the chromatic terms in

the transformation will tend to dominate the final form of the longitudinal profile.  Among

these, the strongest contributors are the longitudinal dispersion terms, which are dependent

on the momentum; the coupling of final longitudinal position to the initial transverse

coordinates is relatively quite small.  Hence, we may formulate the following approximation,

including terms up to third order in the momentum error δ,

zf ≅ z0 + R56δ + T566δ 2 + U 5666δ 3 + ...   (2)

The first order coefficient R56 ≡ (∂z f /∂δ)δ →0  represents the longitudinal dispersion

function.  It is proportional to the negative of the temporal dispersion function, sometimes

denoted by ητ .  The remaining elements, T566, U5666, ... , are higher-order momentum-error

contributions to the longitudinal dispersion.  We may consider Eq. (2) to apply to a beam of

small transverse emittances and large energy spread.  It is also presumed that the beam is

sufficiently relativistic that space-charge may be neglected.  The point at which higher-order

terms in Eq. (2) may be truncated depends upon the energy spread of the beam.  In practice



it is rarely necessary to consider higher than third-order contributions for single-pass

transport.  

For a dogleg structure in which the quadrupoles have been successfully used to

eliminate the linear horizontal dispersion and its derivative with respect to path length

(ηx , ′ηx → 0 ), the analytical forms of the first and second order terms may then be

expressed as follows:

R56 =
∆s

γ 0
2 − 2ρ(θ − sinθ )                             (3)

      T566 = 4ρ  sin2 (θ / 2) cos (θ / 2) + ai6kTi6k
W

∑      (4)

Here ρ is the bend radius, θ is the bend angle, ∆s  is the total path length (including the

bends), and γ 0 is the central energy of the beam.  The summation in the second expression

is over the set W of values of i, k corresponding to the nonzero transverse second order

chromatic terms,

W = {(i, k} : (i,k) = (1,1),  (1, 2),  (1,6),  (2,1),  (2,2),  (2, 6),  (5,1),  (5,2)},  (5)

and ai6k  are the corresponding coefficients, which are functions of θ and ρ.  For the sake of

space, we will relegate the explicit forms of these functions to Appendix A, where Eqs. (3)

and (4) are derived.

In view of Eq. (4) and by virtue of the same argument by which the coupled

transverse-chromatic terms were ignored in Eq. (2), we expect the dominant dependence of

the second order longitudinal dispersion term T566 to derive from the second order

horizontal dispersion terms T166 and T266.  Sextupole magnets are the obvious candidate for

eliminating this sort of nonlinear effect, as they are inherently second-order and are

routinely used for making chromatic corrections to T166 and T266 in bending transport.  

Since the second order transport matrix for a pure sextupole contains only

geometrical terms, coupling to T566 is accomplished by placing the sextupoles in a region of



large horizontal dispersion.  The sextupole field strength then couples to the x-coordinate,

which affects T566 via the first and second order horizontal dispersion, R16 and T166.  If we

assume that the arrangement of quadrupoles and drifts between the two dipole magnets is

symmetric about the midpoint of the dogleg and include two symmetrically placed sextupole

magnets whose geometrical field strengths are κ and α κ  respectively then Eq. (5) is found

to assume a linear dependence upon the sextupole field strength of the form

T566(κ ) = A − C(1− α)κ  ,  (6)

where A and C are algebraic functions of θ and ρ, as well as the drift lengths and

quadrupole focal lengths.  These functions and the derivation of Eq. (6) are found in

Appendix A.

If the goal is to eliminate T566 altogether, then (i) to avoid asymptotic behavior, the

value of α (the ratio of the two sextupole field strengths) should not approach unity, and (ii)

in order to minimize κ the quantity C(1-α) should be large and therefore α should be

negative.  A simple choice in agreement with these requirements is α = −1, corresponding to

sextupole fields equal in magnitude but of opposite polarity.  As a rule, the minimum

number of sextupoles needed is equal to the number of second order matrix elements one

wishes to eliminate.  Therefore α = 0 is also a possibility, although the elimination of one

sextupole would disrupt the optical symmetry and would require the surviving one to have

twice the field strength.  Minimization of the required sextupole fields, through appropriate

placement of the correcting magnets, is desirable from the standpoint of preventing the

inadvertent introduction of strong second-order geometrical effects, as well as third order

chromatic effects.

The sextupole correction of T566 in this system often has the added effect of

minimizing the horizontal emittance growth, due to the coupling of T566 to the second-order

horizontal dispersion discussed above.  For a beam of large energy spread and small



transverse emittance, the nonlinear emittance growth is dominated by the second-order

horizontal dispersion elements T166 and T266.  The final RMS emittance is then

approximately (see Appendix B)

ε x, f ≅ det[M x Σ x ,0M x
T + σ δ

2d  dT + 3σ δ
4 D DT ] , (7)

where d and D are the first and second-order horizontal dispersion vectors respectively,

σδ = δ 2 1 /2
 is the RMS momentum spread, Mx  is the 2 × 2 linear transport matrix for the

(x, ′ x )  trace space plane, and Σ x,0  is the corresponding initial matrix of second moments,

i.e.

d ≡
R16

R26

⎛
⎝⎜

⎞
⎠⎟

 , D ≡
T166

T266

⎛
⎝⎜

⎞
⎠⎟

 , M x =
R11 R12

R21 R22

⎛
⎝⎜

⎞
⎠⎟

 , Σ x,0 =
x0

2 x0 ′x0

x0 ′x0 ′x0
2

⎛

⎝
⎜

⎞

⎠
⎟ (8)

The first of the three terms inside the determinant in Eq. (7) is the contribution from the

initial emittance, which would be invariant if the transformation were governed solely by the

linear matrix Mx. Consequently, if the first order horizontal dispersion and its derivative are

eliminated in accordance with the discussion surrounding Eqs. (3-4) then d → 0 and the

emittance growth described by Eq. (7) is dominated by the third term in square brackets.

The coupling of longitudinal to horizontal dispersion is such that for the sextupole

configuration described above the values of T166 and T266 tend to be reduced under the

sextupole correction of T566.  Consequently, in many cases sextupole correction of

longitudinal dispersion also has a reducing effect upon the transverse emittance.

III.  SIMULATION RESULTS

The primary focus of our study is to test the concept of creating a beam that has a

relatively long (many ps) rising current profile, followed by a short (sub-ps) fall-time.  The

dogleg section on the beamline at the UCLA Neptune Advanced Accelerator Laboratory,

shown in Fig. 1(b), has been designed and constructed with this goal in mind [3].



Sextupole corrections on the dogleg section, shown in Fig. 1(c), of the proposed low-energy

beamline for the ORION facility at Stanford Linear Accelerator Center (SLAC) have also

been considered for the same purpose, namely the creation of a ramped current profile [4].  

This type of profile is of considerable interest as a driver for the plasma wake field

accelerator (PWFA), as it allows for a high transformer ratio (i.e. the ratio of the peak

accelerating field found in the wake to the peak decelerating field experienced by the driving

beam).  We discuss below the ramped beam experiment at UCLA-Neptune, and the

ORION project at Stanford Linear Accelerator Facility (SLAC), which we analyze with

simulations using the tracking codes ELEGANT [7] and PARMELA [8].  

A.  Optimal Current Profile for the PWFA Drive Beam

Due to their capacity to support large electric fields, plasmas have been considered

in recent years as a means for acceleration of charged particles capable of producing field

gradients larger than those achievable with traditional radio-frequency linear accelerating

cavities by several orders of magnitude.  Longitudinal field gradients well in excess of 1

GeV/m can be obtained by the excitation of large-amplitude relativistic waves in a plasma.

Various acceleration schemes have been proposed which rely upon driving such plasma

waves, using either a short intense laser beam (laser wake field accelerator, LWFA) or a

short relativistic electron beam (plasma wake field accelerator, PWFA) [9-12].  In the case

of the PWFA, the transformer ratio (the maximum longitudinal accelerating electric field in

the wake of the driving beam divided by the maximum decelerating field within the beam) is

a figure of merit which provides a measure of the maximum energy gain of a test charge

injected behind the bunch.  

For a driving bunch with a symmetric current profile and finite length, the value of

the transformer ratio can be shown to always be less than two [13,14].  Various methods

have been proposed to overcome this limitation, the most promising of which include the

use of a single asymmetric drive bunch [15] or a ramped bunch train [16].  In the case of a



single asymmetric drive bunch a "doorstep" profile (i.e. a square pulse for the first quarter

of a plasma period, followed by a triangular ramp) approximates the optimal asymmetric

current distribution that maximizes the transformer ratio and forces the retarding potential to

be constant within the bunch.  The analytically derived transformer ratio of such a beam is

found to be R = k pL  where L is the length of the bunch and kp = ω p /c  is the inverse plasma

skin-depth [5].  For such a profile R may therefore exceed two so long as the bunch is

longer than two plasma skin-depths.

An example of the longitudinal trace space distribution of such a beam, artificially

created from an idealized linear transformation (considering only R5 6). characteristic of a

dogleg applied to a beam distribution at the exit of a photoinjector electron source, as

simulated by the beam modeling code PARMELA, is shown in Fig. 2(a).  In 2(b) the

corresponding current profile (in red) is superimposed with an ideal  "doorstep" ramped

profile (in black) discussed above. A two-dimensional particle-in-cell (PIC) simulation of

the longitudinal wake field excited by this high-charge beam in a plasma of density

1016cm−3, shown in 2(c), predicts a peak field of 10 GV/m with a transformer ratio of 11.

FIG. 2. (Color)  Plot showing the longitudinal phase space (a) and density profile (b) of a

ramped beam produced by linear dogleg (negative R56) compression, as well as a PIC

simulation (c) of the wake field produced by such a beam in a plasma of density

2 × 1016cm −3, with 6 nC charge.



B.  Beam Shaping and Compression at UCLA Neptune and ORION

As was discussed in the Introduction, a scheme has been recently proposed [3] for

the creation of a beam which approximates the asymmetric ramped current profile, using

first and second order beam optics in a dogleg compressor.  The proposed method takes

advantage of the RF curvature in the longitudinal phase space distribution of a positively

chirped (i.e. back-of-crest) driving beam.  Under a pure negative R5 6 compression of the

longitudinal phase space such a distribution results in a ramp-shaped current profile of a

few picosecond to sub-picosecond duration, which is ideal for use as a driving beam for

large amplitude plasma wake fields with high transformer ratios.

A proof-of-principle experiment is currently underway at the UCLA Neptune linear

accelerator laboratory, using the dogleg section shown in Fig. 1(b) as a negative R5 6

compressor.  A PARMELA simulation of the beam at the entrance to the compressor in Fig.

3(a) shows the characteristic chirp in momentum and the RF curvature imposed by the

accelerating structure.  

FIG. 3.  (Color) Plots of the z trace space and current profile from PARMELA and

ELEGANT  simulations of the UCLA accelerator beamline showing (a) the beam at the

entrance of the dogleg compressor, and the same beam at the end (b) without sextupole

correction and (c) with sextupole correction.



The longitudinal phase space distributions at the exit of the compressor, predicted

from simulations using the matrix-based transport code ELEGANT, are shown without and

with sextupole correction in Fig. 3(b) and 3(c), respectively. The S-shaped distribution in

(b) is evidence of the quadratic momentum dependence of the z transformation produced by

the second-order T566 contribution in Eq. (2).  When sextupole fields are utilized in

accordance with the description of Section II to eliminate this contribution, the resulting

distribution (c) is found to correspond very closely to that produced by a linear R5 6

transformation, such as the one in Fig. 2.  The resulting current profile exhibits a sharp drop

in current at the back of the bunch, where the distribution begins to turn over on itself,

preceded by an approximately linear ramp of the sort described in [5] as being ideal for

generating large transformer ratios in a wake field accelerator.

It has been observed recently [17] that space-charge driven transverse phase space

bifurcation and accompanying emittance growth are potential hazards encountered in low-

energy (12-14 MeV) compression at Neptune.  To gauge the transverse effects arising

separately from nonlinearities and space-charge forces, ELEGANT and PARMELA

simulations were employed to calculate the normalized transverse emittance εn,x ≡ βγ( )0
εx  of

the beam.  The ELEGANT simulation, with sextupoles turned off, predicts an emittance

growth in the Neptune dogleg due to nonlinear effects of ∆εn,x = 13 mm - mrad over the

initial value of 5 mm-mrad at the entrance.  This is consistent with the approximation of Eq.

(7), which gives ∆εn,x ≈ 12 mm mrad.  

With sextupoles turned on, ELEGANT predicts a much improved

∆εn,x = 1.7mm mrad , due to partial cancellation of the T166 and T266 as discussed in Section

II.  To gauge the effect of space-charge velocity field forces in the dogleg compressor, a

calculational model for sextupoles was introduced into the PARMELA source code and

simulations were run using PARMELA’s point-to-point space-charge routine.  With the

space-charge routine turned off, the PARMELA results match the ELEGANT prediction of



∆εn,x = 1.7mm mrad . With the space-charge routine turned on, PARMELA predicts a total

emittance growth of ∆εn,x = 11.6mm mrad , for a 300 pC beam, indicating a significant

additional contribution due to space-charge forces.  These results lie in the intermediate

range of ∆εn,x  values measured in [17] and do not show evidence of the sort of phase space

bifurcation reported there.  The predicted growth in transverse emittance, however, imposes

restrictions upon the focusability of the beam, requiring sharper focusing angles and higher

gradient quadrupole magnets in order to, for example, match the beam into a PWFA.  To

meet these concerns, a high-gradient (100 T/m) focusing system is being developed using

permanent magnet quadrupoles for use after the Neptune dogleg.

This beam-shaping scheme has also been proposed [4] for future implementation on

the dogleg leading from the main transport line to the low-energy (50 MeV) experimental

section of the ORION beamline at the Stanford Linear Accelerator, shown schematically in

Fig. 1(c). Here the goal is again that of providing a venue for PWFA experiments using

ramped bunches.  The symmetrical placement of a pair of quadrupole triplets at the extreme

ends of the structure is due to the spatial constraint imposed by a wall through which the

middle section of the beamline passes.  This quadrupole configuration, when compared with

a more conventional arrangement such as that of Fig. 1(b), is found to result in T566 values

which are larger by about 45% and therefore require stronger compensating fields in the

sextupoles.  However, other significant nonlinear effects (T266, T166, T561, and T562) are

found to be reduced by this geometry, offsetting the danger of amplifying such terms by the

use of stronger sextupoles.  

Of more critical concern is the prediction of strong third order effects in ELEGANT

simulation results, primarily U5666, due in part to the large (2.2% RMS, nearly 9% full)

momentum spread found in this scenario.  The momentum spread is enhanced at ORION

with respect to Neptune and ATF (all three have similar S-band photoinjectors), by use of

X-band post-acceleration linacs. The large third-order chromatic effect arising from U5666 is

shown in the simulation results of Fig. 4 in which a chirped beam (a) with a 2.2% RMS



energy spread is injected into the ORION dogleg section producing at its exit the final

distributions (b) without sextupole correction and (c) with sextupole correction.  Qualitative

comparison reveals in the corrected distribution in Fig. 4(c) the presence of a low-energy

"tail" which is not observed, for example, in the ramped distribution of Fig. 3(c).

Examination of the extra component to the transformation exhibited by this tail reveals it to

be primarily third order and to possess a dominant component that is cubic in the

momentum error, corresponding to the term U5666 in Eq. (2).  This effect may be

compensated to some degree by the insertion of symmetrically positioned octupole magnets

outside of the focusing triplets.  However, the resulting collusion of second and third order

effects distorts the current profile and destroys the desired hard edged cutoff at the back of

the beam.  As shown in Fig. 4(d) over-compensating with the octupoles can restore this

hard edge but results in a new low-energy tail extending in the forward (positive z)

direction.  A full treatment of these effects requires an examination of third order effects,

which we reserve for future study.

FIG. 4. (Color) Plots of the z trace space and current profiles from PARMELA and

ELEGANT  simulations of the ORION dogleg section showing (a) the beam at the

entrance, and the same beam at the end (b) without sextupole correction and (c) with

sextupole correction.  In (d) symmetrically placed octupoles are inserted for third-order

correction.  Beam currents are in arbitrary units, but the scale is the same on all plots.



IV. RECENT EXPERIMENTAL RESULTS

Initial investigations of the effects of sextupole correction on the dogleg beamline of

Fig. 1(b), dubbed S-Bahn1, have been conducted at the UCLA Neptune Laboratory.  A

more detailed diagram of this beamline is shown in Fig. 5. The recent experiments include

measurements of the horizontal dispersion to second order in momentum error and coherent

transition radiation (CTR) interferometry bunch length measurements. Both types of

measurements were performed parametrically  as functions of the sextupole field strengths.  

FIG. 5. (Color) Schematic of the linear accelerator beamline at the UCLA Neptune

Laboratory, with a blowup of the S-Bahn dogleg section.

The linear horizontal dispersion function ηx (or R1 6) was minimized in accordance

with the discussion surrounding Eqs. (3-4) by adjusting the quadrupoles to reduce

horizontal deflection of the beam centroid at the midpoint of the dogleg (Screen 11 in Fig.

5) with respect to a fractional perturbation ζ of the field strengths of all quadrupoles and

dipoles on the dogleg section (labeled B1, Q1, Q2, and B2).  The centroid deflection ∆xcen

                                                
1 After a train system in Hamburg, Germany, and in honor of its geometry.



under these conditions is equivalent to that which would be experienced by an off-

momentum particle with momentum error – ζ, and is given to second order in powers of ζ

by

∆xcen = −R16ζ + T166ζ 2 + O(ζ 3). (9)

Consequently, the first and second order horizontal dispersion terms R1 6 and T166

can be obtained empirically by fitting the measured centroid deflection to a quadratic in ζ.

Empirical values of T166 at the location of Screen 13 in Fig. 5 were obtained using this

method, and are compared in Table II with the ELEGANT simulation predictions for three

different configurations of the sextupole fields.  The geometrical field strength κ and ratio α

correspond with the quantities in Eq. (6).

Experimental errors in Table II correspond to a 95% confidence level.  Since the

quadrupoles were set to eliminate the linear dispersion, R1 6 in all three cases was found to be

zero to within the experimental error.  Measurements of the RMS beam size on screens 5,

10, 11, 12, 13, and 14 agree with the ELEGANT simulation results to within 20%.

TABLE  II.  Comparison of experimental and simulated second order horizontal dispersion

values for various sextupole field settings.

κ (m2) α T166,exp(m) T166,sim(m)

0 0 2.56±0.59 2.54

537 -2.13 0.22±0.77 0.26

995 -1.55 -1.27±0.93 -1.69

Since the horizontal dispersion does not provide a diagnostic of the longitudinal

trace space, the measurements of Table II were performed using a beam with no momentum

chirp and a relatively small (0.5%) energy spread.  To obtain information about the effect of

the sextupoles on the longitudinal distribution of the beam, the beam was then chirped in

momentum by injecting it with an RF phase offset of -28˚ relative to the crest of the



accelerating field in the standing wave linac cavity.  The bunch length was then measured at

different sextupole settings using CTR autocorrelation.  Transition radiation emitted by the

beam at a metal foil on Screen 14 of Fig. 5, oriented at 45˚ incidence, was autocorrelated

using a Martin-Puplett type interferometer with wire grid polarizing beam splitters [18]. The

bunch length σt was extracted from the interferograms using the time-domain fitting

procedure of Ref. [19].  The extracted values are plotted in Fig. 6 as a function of sextupole

field strength κ.   The ratio of the two sextupole fields was set to α = −1.  The data show

the dependence of bunch length upon the magnitude of the sextupole correction, with an

approximately two-fold compression occurring near the field value κ=1094 m-3.  

   

FIG. 6.  CTR Autocorrelator measurements of electron bunch length a as a function of

sextupole field strength, with superimposed theoretical result (dashed line) obtained from

PARMELA/ELEGANT simulation combined with an autocorrelation algorithm.

It should be noted that, due to both the limited frequency bandwidth of the

autocorrelator apparatus and the nature of the fitting procedure used to extract the pulse

length from the data (which assumes a gaussian current profile), for a beam whose temporal

profile is asymmetric, the value of σt obtained from the interferogram is more closely

connected with the FWHM than with the RMS width of the distribution.  Consequently, we

have found that obtaining a theoretical prediction to complement the data of Fig. 6 involves a



somewhat complicated computational procedure, the final result of which is superimposed

as a dashed curve.

To produce this theoretical curve, first the creation and transport of the beam in the

accelerating section were simulated using the tracking code PARMELA. This detailed

simulation employed  5000 macroparticles, whose initial temporal profile (inherited from the

laser pulse) was modulated in a way consistent with observations of the energy modulation

of the beam, and a -28˚ phase offset in the linac, producing a chirped beam.  The set of

output 6D trace space coordinates obtained from PARMELA was then used as the input

beam for an ELEGANT simulation of the dogleg section, including a truncation of outlying

particles consistent with the observed 60% electron transmission efficiency through the

device.  The longitudinal (z) coordinates of the particles were extracted from the ELEGANT

simulation at the location corresponding to Screen 14, where the CTR foil was inserted.  An

algorithm was used to reconstruct from the extracted z-coordinates the predicted

autocorrelation function, including appropriate filtering of the frequency content due to

diffraction, collection, and transport efficiency effects.  

The simulated autocorrelation function was then subjected to the same fitting

procedure that was used to extract σt from the empirical interferograms, yielding values

which produce the dashed curve in Fig. 6.  These simulation results suggest that the

observed compression and decompression results from a "folding over" of the longitudinal

trace space due to the quadratic T566 dependence in Eq. (2), where particles of both high and

low energy begin to occupy the same longitudinal position within the bunch.  This scenario

is illustrated by the trace space plots in Fig. 7.   The maximum compression (b) occurs at

the sextupole field value where this folding over begins to change direction in z,

corresponding to the point at which the second order term T566 changes sign.  The

discrepancy between theory and data near the fourth data point in Fig. 6 appears to be due

to the sensitivity of the theoretical autocorrelation algorithm to the sharp spikes in the

temporal distribution displayed in Fig. 7 (c) and (d).



FIG. 7. (Color) Parts (a), (b), (c), and (d) show the longitudinal phase space plots and

density profiles obtained from the ELEGANT results corresponding to the sextupole values

κ=0, 1094, 1641, and 2735 m-3 respectively from the plot in Fig. 6, illustrating the

progression of the phase space compression and decompression.  The corresponding

simulated T566 values are -2.11, 0.02, 1.08, and 3.22 m respectively.

Although the temporal RMS of the distribution is smaller in (c) than in (d), the spike

is more pronounced in (c).  That the physical data appears less sensitive to this effect may

be related to additional frequency filtering produced by the interferometer in the short

wavelength components of the spectrum. These effects may aris e from the poor high

frequency performances of the wire grid beam splitters in the Martin-Puplett device.  Of

course, one cannot rule out the possibility that the beam performance is not completely

consistent with the predictions of simulations.

These sorts of uncertainties highlight the limited utility of CTR interferometry in

this context and point to the need for more sophisticated measurements of the longitudinal

phase space.  The proposed diagnostic for performing longitudinal profile measurements in

the Neptune experiment is a 9-cell deflecting mode cavity driven at an X-Band frequency of

9.596 GHz, which is being designed in collaboration with the INFN Laboratori Nazionali di

Frascati.  When operating in the dipole mode TM110 such a cavity imparts to the beam a

horizontal (x) momentum kick that varies linearly with longitudinal position within the



bunch.  Consequently, the longitudinal distribution of the beam is deflected transversely and

may be reconstructed from the image of the beam's cross-section on a simple profile

monitor downstream of the cavity.  Thus one may obtain the beam’s longitudinal profile,

with an estimated resolution of 30 microns (100 fs).

By combining the RF deflector with a magnetic dipole deflection along the ortho-

gonal transverse (y) axis, one obtains a complete reconstruction of the longitudinal trace

space in both coordinate and momentum [20,21].  At the time of this writing, design work,

using the commercial RF modeling code HFSS, has been completed, and a cold-test

prototype has been constructed and tested.  Completion and installation of a final cavity

design are expected to occur in early 2005, providing the means to explore in much greater

detail the complex dynamics contained in the results of Figs. 6 and 7.

V. CONCLUSIONS

We have examined the use of sextupole magnets to control second order nonlinear

chromatic effects and thereby optimize the compression and shaping of a relativistic electron

bunch in a dispersionless translating section, or dogleg.  For a beam of small transverse

emittance, heuristic analytical arguments and simulation results indicate that the

transformation of the distribution of the beam in z is dominated by the first and second-

order TRANSPORT matrix elements R5 6 and T566, which represent the linear and quadratic

(in powers of momentum error) contributions to the longitudinal dispersion.  Insertion of a

pair of sextupole magnets with field strengths of equal magnitude κ and opposite polarity

provides a convenient method of manipulating the second-order term T566, which is found to

be linear in κ.  

Simulation results using the beam transport codes PARMELA and ELEGANT,

applying this type of correction to the Neptune and ORION beamlines, indicate that

longitudinal linearization aids in shaping the longitudinal trace space inside the dogleg



compressor for creation of a ramped asymmetric current profile.  This requires that the

negative value of the R5 6 be large enough to adequately compress the beam distribution.

Additionally, for the example of the ORION beamline, Fig. 1(c), third-order effects are

apparently a concern, due to the third-order longitudinal dispersion combined with a large

energy spread.  These effects are currently undergoing further study.  

Recent experiments conducted on the UCLA Neptune beamline provide evidence of

the use of sextupole correction to manipulate both the second order horizontal (T166) and

longitudinal (T566) dispersion elements.  The longitudinal dispersion studies were limited by

the information which can be extracted from the CTR interferometry method utilized.

Future planned experiments using a transverse deflecting mode cavity should yield detailed,

high-resolution longitudinal phase space measurements of the beam and provide a more

complete understanding of the longitudinal phase space manipulations made possible by

use of dogleg systems.
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APPENDIX A: DERIVATION OF EQS. (3), (4), (5), and (6)

First and second order TRANSPORT matrices for different types of magnetic

elements can be found in various references, including [6,22].  The first order matrices for a

bend B of bend angle θ and radius ρ, a thin-lens quadrupole Q with focal length f, and a

drift D of length l are as follows:

B(θ, ρ) =

cos  θ ρ  sin θ 0 0 0 ρ(1 − cos  θ)

−(sin θ )/ρ cos θ 0 0 0 sin θ
0 0 1 ρθ 0 0

0 0 0 1 0 0

− sinθ ρ(cosθ − 1) 0 0 1 ( ρθ
γ 0

2 − ρθ + ρ sinθ )

0 0 0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

               (A1)

Q( f ) =

1 0 0 0 0 0

1 / f 1 0 0 0 0

0 0 1 0 0 0

0 0 −1 / f 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

  ;  D(l) =

1 l 0 0 0 0

0 1 0 0 0 0

0 0 1 l 0 0

0 0 0 1 0 0

0 0 0 0 1 l / γ 0
2

0 0 0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

     (A2)

Let Y represent the linear matrix for a combination of quadrupoles, sextupoles and drifts.

The total first order matrix for a dogleg can then be written R = BY �B , where B = B(θ, ρ) ,

�B = B(−θ, −ρ) , and Y has the form

Y =

Y11 Y12 0 0 0 0

Y21 Y22 0 0 0 0

0 0 Y33 Y34 0 0

0 0 Y43 Y44 0 0

0 0 0 0 1 Y56

0 0 0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

 (A3)

The resultant horizontal dispersion function and its derivative (elements R1 6 and R2 6 of the

total transport matrix) obtained by matrix multiplication are then given by



R16 = ρ − ρ cosθ + ρ(cosθ − 1)(Y11 cosθ + ρY21 sinθ ) − sinθ(Y12 cosθ + ρY22 sinθ)

R26 = sinθ + (cosθ − 1)(ρY21 cosθ − Y11 sinθ) + sinθ(Y12 sinθ − ρY22 cosθ ) / ρ
(A4)

The longitudinal dispersion element may then be written in terms of these functions as

follows:

R56 = Y56 + 2 ρθ
γ 0

2 + (2ρ − R16 )sinθ + R26 ρ(1 − cosθ )       (A5)

Noting that Y56 + 2ρθ / γ 0
2 = ∆s / γ 0

2  where ∆s  is the total path length, we see that Eq. (A5)

reduces to Eq. (3) in the case where the quadrupoles are effectively utilized to eliminate

linear horizontal dispersion ( R16 , R26 → 0 ).  

To obtain an analytical expression for the second order longitudinal dispersion

(element T566 of the total transformation) we required the assistance of the commercial

software package Mathematica.  Due to the cumbersome algebraic manipulations involved,

we will merely outline the steps used to arrive at our results.  Tabulations of the various

second order matrix elements may be found in [6, 22].  For simplicity, we will represent the

second order counterparts to the linear matrices Bij , Yij , and �Bij  by denoting them in

component form using the same symbols but with three indices instead of two (i.e.

 Bijk ,Yijk , �Bijk ).  For Bijk  and  
�Bijk  we use the analytical forms written in terms of ρ and θ as

given by [6, 22].  For Yijk  we use a generic form equivalent to Eq. (A3) where we set to zero

all elements which would naturally vanish for a system composed only of drifts, quads, and

sextupoles.  We then produce the total second order matrix T by successive multiplication

of the matrices for the individual components, which we can write as

 Tijk = Bil[Y �B]ljk + Bilm[Y �B]lj[Y �B]mk  where [Y �B]ijk ≡ Yil
�Bljk + Yilm

�Blj
�Bmk  denotes the second

order matrix for the first two successive elements  �B  and Y  and there are implied sums on

the repeated indices.  This produces a set of equations for the elements Tijk in terms of ρ, θ,

Yij and Yijk.  Using these expressions, which are algebraically cumbersome and which we



will therefore neglect to write out explicitly, the equation for the longitudinal dispersion

element T566 may be expressed as a linear combination of the expressions for the other

matrix elements as follows:

  T566 = 4ρ  sin2 (θ / 2) cos (θ / 2) + a16R16 + a26R26 + ai6kTi6k
W

∑ (A6)

where W is the set of values in Eq. (5) and

a16 = − cosθ sinθ
a26 = ρ(1 + 2 cosθ )sin2 (θ / 2)

a161 = 2ρ cos(θ / 2)sin3(θ / 2)

a162 = − 1
2 sin2 θ

a166 = sinθ
a261 = −2ρ2 sin4 (θ / 2)

a262 = 2ρ cos(θ / 2)sin3(θ / 2)

a266 = ρ(cosθ − 1)

a561 = − ρ sin2 (θ / 2)

a562 = 1
2 sinθ

 (A.7)

In the limit where R16 , R26 → 0 , we then find that Eq. (A6) reduces to Eq. (4).

To determine the dependence of T566 on the sextupole field strength, let us assume

that the sextupoles lie just inside the bends and are separated from each other only by quads

and drifts.  Although the same final result may be obtained without them, these assumptions

will greatly simplify our calculation.  Let the two sextupoles, of strengths κ and α κ

respectively and of equal length d, be denoted by the symbols S and  �S  and the intervening

system of quads and drifts by H.  We can then decompose the first and second order

representations of Y as  Yij = Sik H kl
�Slj  and  Yijk = Sil[H �S]ljk + Silm[H �S]lj[H �S]mk  where

 [H �S]ijk ≡ Hil
�Sljk + Hilm

�Slj
�Smk .  Multiplying the linear matrices out explicitly and imposing

the requirements

R16 = 0,     R26 = 0,    det
H11 H12

H 21 H22

⎛
⎝⎜

⎞
⎠⎟

= 1  (A8)



we arrive at the following conditions upon H:

H12 = −(1 + H22 )(d + ρ tan[θ / 2]),

H21 = (1 − H 22 ) / (d + ρ tan[θ / 2]),

H11 = H22 .

(A9)

Applying these conditions in the calculation of the second order matrix, we arrive at the

following result for element T566 expressed in powers of κ:

T566 = 2sin2 (θ / 2)(A0ρ sinθ + A+ + A− cosθ )

    −
d

4
sin2 θ

2
[4 C0

2
(2 ReC0 − d cos

θ
2

)sin
θ
2

+ 8ρ 3 cosθ(1 − sinθ )](1 − α )κ ,
      (A10)

where for the sake of compactness we have defined the functions

A± = H162 + H 522 + d[H161 + H 262 + H 521 + d(H 261 + H 511) − 1]

          ± ρ2 (H261 + H 511),

A0 = 1 + H161 + H262 + H 521 + 2d(H 261 + H 511) − cosθ,

C0 = d cos
θ
2

+ (1 + i)ρ sin
θ
2

.

(A11)

With the associations

A = 2sin2 (θ / 2)(A0ρ sinθ + A+ + A− cosθ),

C =
d

4
sin2 θ

2
[4 sin

θ
2

C0

2
(2 ReC0 − d cos

θ
2

) + 8ρ 3 cosθ(1 − sinθ )],
(A12)

we find that Eq. (A10) takes the form of Eq. (6).  The linear dependence on κ is a reflection

of the fact the second order matrix elements for a sextupole are proportional to the field

strength.

APPENDIX B:  DERIVATION OF EQ. (7)

The full transformation in Eq. (1) represents the complete solution to the single-

particle equations of motion, which constitute a Hamiltonian system.  Therefore to the extent

to which the second-order transformation is an accurate description, it is Hamiltonian, and



thus by Liouville's theorem the distribution function f remains invariant under it.

Consequently, f (X f ) = f (X0 )  where X f  and X0  are the final and initial trace space

vectors, which are related in component form to second order by

(X f )i = Rij (X0 ) j + Tijk (X0 ) j (X0 )k .  (B1)

The matrix of second moments therefore transforms according to

 
Σ jk = [Rj� (X0 )� + Tj�m (X0 )� (X0 )m ][Rkn (X0 )n + Tknp (X0 )n (X0 )p ]∫  f (X0 )d6 X0 ,             (B2)

where the Jacobian of this transformation is

Jij =
∂(X f )i

∂(X0 )i

= Rij + Tijk (X0 )k
k

∑ (1 + δ jk ) , (B3)

with δ jk  representing the Kronecker delta.  Writing Eq. (B2) in the bracket notation, we

have

 

Σ jk = Rj�Rkn (X0 )�(X0 )n + 2TknpRj� (X0 )�(X0 )n (X0 )p

       + Tj�mTknp (X0 )�(X0 )m (X0 )n (X0 )p ,
      (B4)

where there is an implied sum on repeated indices and ... ≡ ... f (X0 )det J  d 6 X0∫ .  Now

assume the beam distribution function to be uncoupled between the three trace space planes,

to have vanishing third moments, and unit Jacobian determinant.  Then the upper left 2 × 2

submatrix of Eq. (B4) takes the form

Σ x, f = M x Σ x ,0M x
T + σ δ

2d  dT + δ 4  D DT + Σ geo  , (B5)

where d, D, Mx , and Σ x,0  are the first and second-order horizontal dispersion vectors, the

2 × 2 linear transport matrix for the (x, ′ x )  trace space plane, and the initial 2 × 2 matrix of

second moments respectively, as defined in Eq. (8), and Σgeo  is the contribution from second

order geometrical terms.  For a beam of small initial emittance and large energy spread Eq.

(B5) is dominated by the dispersion terms, and we can set Σgeo < < δ 4 D DT .  Furthermore,

if the beam distribution in the z phase plane can be approximated by a rotated bi-gaussian in



z and δ, then δ 4 ≅ 3σδ
4 .  With these approximations, insertion of Eq. (B5) into the

definition of the transverse emittance  ε x, f = det Σ x, f  immediately produces Eq. (7).

APPENDIX C:  NONLINEAR COMPRESSION - VISA I

The VISA-I experiment [1] was a UCLA collaborative effort conducted from 1998 to

2001 for the purpose of studying SASE-FEL physics in the visible to near-infrared

frequency range, using the 71 MeV high-brightness beam provided by the Brookhaven

Accelerator Test Facility (ATF) beamline.  The presence on this beamline of a 15 m long

dogleg section, shown in Fig. 1(a), combined with limitations in the transverse aperture

presented a particular challenge from the perspective of beam transport.  The beamline was

operated in a configuration where the first and second-order longitudinal dispersions were

R56 = −0.0045 m and T566 = −10.1 m respectively.  The longitudinal transformation of Eq.

(2) in the ATF dogleg section is dominated by the second-order T566 contribution, and is

therefore unsuitable for linear compression under ordinary conditions of operation.  The

gain of the SASE-FEL was found to be maximized when the beam was injected forward of

crest in the accelerating cavity, giving it a negative momentum chirp and a 0.5% RMS

energy spread.  This gain increase was due to a nonlinear compression of the beam in the

dogleg section, resulting in a higher peak current.  The pseudo-linear compression was

found to be produced by running the beam off-energy with a momentum ˜ p  differing from

the central momentum p0 of the design trajectory.  Under this condition, the beam centroid

follows the trajectory of an off-momentum particle whose momentum dispersion is

∆ = ( ˜ p − p0)/ p0.  A particle with arbitrary momentum p then has the momentum error

˜ δ = (p − ˜ p ) / ˜ p  relative to the central momentum of the beam and the momentum error

δ = (p − p0)/ p0 relative to the design momentum for which the beamline is optimized.

Applying the resultant coordinate transformation,



δ →
˜ p 

p0

˜ δ + ∆ , (C1)

to Eq. (2), the longitudinal transport relative to the displaced momentum error ˜ δ  is found to

be given by

zf = z0 + ˜ Q 5 + ˜ R 56
˜ δ + ˜ T 566

˜ δ 2 , (C2)

where the transformation elements with respect to the new central momentum of the beam

are (truncating third and higher-order contributions)

˜ Q 5 = R56∆ + T566∆2;  ˜ R 56 =
˜ p 

p0

(R56 + 2T566∆); ˜ T 566 =
˜ p 

p0

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

2

T566

 . (C3)

We may term the definitions given in Eq. (C3) the "effective" offset and momentum

dispersion of the beam.  They represent the values of Q5, R5 6, and T566 that would be needed

to obtain a similar transformation of the beam's longitudinal distribution if the beam were

run on-energy.  Using Eq. (C3) we find that operating the ATF beamline with a fractional

energy offset of ∆ = −0.76%  produces a transformation that is dominated by an effective

˜ R 56 of +0.18m which is opposite in sign, and an order of magnitude larger in amplitude

from R56.  Since ˜ R 56 is positive, the longitudinal compression which it produces is similar

to that of a magnetic chicane and is therefore suitable for compressing a beam (as in the

case of VISA-I) which has a negative (forward-of-crest) momentum chirp in z and δ.

Although this scheme mimics the linear compression of a magnetic chicane, it is a primarily

nonlinear effect, since the expression for the effective ˜ R 56 in Eq. (C3) is modified from its

nominal value by the presence of the second-order T566.  

Sextupole correction would provide a convenient mechanism for changing the

degree of compression produced by this method, through its ability to manipulate the value

of T566, as discussed in Section III.  This tunability is illustrated in Fig. C1, which shows

ELEGANT simulations of longitudinal (z-δ) phase space distributions of a 71 MeV beam



on the VISA beamline.  In (a) the phase space at the entrance of the dispersive section

shows a beam with a strong momentum chirp.  After being transported through the

dispersive section with sextupole fields set to zero (b) the beam has been compressed by a

factor of four.  With the sextupole fields in the simulation set to a field strength sufficient to

force T566 to vanish (c), the nonlinear compression is turned off and the final phase space

resembles the initial distribution.  The beam current is shown alongside each trace space

plot.

FIG. C1.  (Color)  ELEGANT simulations of the longitudinal trace space (upper plots) of

the beam at ATF for VISA-I and corresponding current profiles (lower plots).  The initial

beam (a) shows a negative chirp, which undergoes a chicane-like compression (b).  This

compression is turned off (c) by the inclusion of sextupole correction.

The widening of the distribution in (c) as compared with (a) in Fig. C1 is due to the

presence of nonlinear horizontal-to-longitudinal coupling terms, such as T561, T562, and T512,

which we have neglected in Eq. (2).  The resulting spread in z therefore measures the degree

of breakdown in the assumption of vanishing emittance.  As this effect adversely affects the

gain of the FEL radiation, minimization of the initial emittance is also a critical concern. In a

related note, it should be emphasized that use of this nonlinear compression scheme



requires running of the dogleg with non-zero dispersion, thus producing a larger effective

emittance after transport.

APPENDIX D:  LINEARIZED BEAM TRANSPORT - VISA II

Part (c) of Fig. C1 illustrates the case where the elimination of T566, combined with a

small R5 6, results in the approximate transformation zf ≅ z0 whereby the beam is

transported through the beamline with minimal perturbation of the longitudinal trace space

distribution.  This is useful in cases where it is critical to preserve the current profile of the

beam.  However, in the example of Fig. C1(c), the beam is run off-energy.  In practice, this

would result in dispersion mismatch and an offset of the beam centroid, which is generally

undesirable.  Consequently, a better course of action for this type of transport is to run on-

energy in a configuration with a relatively small natural R5 6 and with sextupole cancellation

of the T566.

The second stage of the VISA experiment [2] is a case in point, as included among its

stated goals is the study of the time-frequency correlation of SASE-FEL radiation produced

by injection of a positively chirped (back-of-crest) beam with a 2% RMS energy spread into

an undulator magnet.  In this case, successful unperturbed transport of the approximately

linear momentum chirp through the 15 m dogleg section on the ATF beamline requires

control of the horizontal dispersion. This is accomplished through effective use of

symmetrically placed quadrupoles, and the implementation of sextupole corrector magnets

in regions of large dispersion.  The results of this optimization can be seen in Fig. D1,

which shows an ELEGANT simulation of the longitudinal trace space distribution (a)

before and (b) after the dogleg section of the ATF beamline.

Here, the beam is run back of crest, giving it a negative momentum chirp and a 3%

full momentum spread.  This momentum spread, which is larger than that which can be

transmitted through a collimating region of the beamline after the initial bend, was chosen to



give a certain value of the chirp ( dp / dz ).  This chirp leads to both compression in transport

and the desired correlation between FEL radiation wavelength and longitudinal position in

the pulse. Approximately 2% momentum spread may pass the collimators, however,

corresponding to nearly a 40% loss in beam charge.

The components of the beam which are lost are ones which would yield low gain,

and also are afflicted with undesirable nonlinear z−δ correlations, as can be seen in Fig.

D1(a). With the use of sextupoles, the nearly linear chirp in the transmitted component of

the beam is successfully preserved, and enhanced in amplitude, during transit through the

beamline.  Note that there is a significant longitudinal decompression due to the dogleg's

negative R5 6, which in this configuration has a value of -1.6 cm. The peak current is

enhanced by a factor of approximately three by this effect, as is the amplitude of the linear

chirp after negotiation of the dogleg.

FIG. D1.  (Color) ELEGANT simulation of the longitudinal trace space of the chirped

beam at ATF for VISA-II, (a) before the dogleg section, and (b) after the dogleg section,

including effects of collimators, which allow approximately 2% relative momentum spread

to be transmitted.
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