(3s.) v. 321 (2014): 193-205.
ISSN-00378712 in press doi:10.5269/bspm.v32i1. 13457

Some Differential Identities in Prime Γ-rings

Mohammad Ashraf and Malik Rashid Jamal

Abstract

Let M be a prime Γ-ring and U be a nonzero ideal of M. An additive mapping $d: M \longrightarrow M$, where M is a Γ-ring, is called a derivation if for any $a, b \in M$ and $\alpha \in \Gamma, d(a \alpha b)=d(a) \alpha b+a \alpha d(b)$. In this paper, we investigate the commutativity of prime Γ-ring satisfying certain differential identities.

Key Words: Γ-rings, prime Γ-rings, derivations, ideals, commutativity.

Contents

1 Introduction

2 Main Results

1. Introduction

Let M and Γ be additive abelian groups. If for any $a, b, c \in M$ and $\alpha, \beta \in \Gamma$, the following conditions are satisfied, (i) $a \alpha b \in M(i i)(a+b) \alpha c=a \alpha c+b \alpha c, a(\alpha+\beta) b=$ $a \alpha b+a \beta b, a \alpha(b+c)=a \alpha b+a \alpha c(i i i)(a \alpha b) \beta c=a \alpha(b \beta c)$, then M is called a Γ ring. An additive subgroup U of M is called a right (resp. a left) ideal of M if $U \Gamma M \subseteq U$ (resp. $M \Gamma U \subseteq U$). U is said to be an ideal of M if it is both a right as well as a left ideal of $M . M$ is said to be prime Γ-ring if $a \Gamma M \Gamma b=\{0\}$ implies that either $a=0$ or $b=0$ for $a, b \in M$. The centre of Γ-ring M will be denoted by $Z(M)$ i.e.; $Z(M)=\{a \in M \mid a \alpha b=b \alpha a$ for all $b \in M$ and $\alpha \in \Gamma\}$. Following Jing [5], an additive mapping $d: M \longrightarrow M$ is called a derivation on M if $d(a \alpha b)=d(a) \alpha b+a \alpha d(b)$ for all $a, b \in M$ and $\alpha \in \Gamma$. For any $a, b \in M$ and $\gamma \in \Gamma$, we write $[a, b]_{\gamma}=a \gamma b-b \gamma a$ and $a \circ_{\gamma} b=a \gamma b+b \gamma a$.

Throughout this paper M will denote a Γ-ring satisfying $a \alpha b \beta c=a \beta b \alpha c$ for all $\alpha, \beta \in \Gamma$ and for all $a, b, c \in M$. We shall use the following identities without any specific mention:
If $a \alpha b \beta c=a \beta b \alpha c$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$, then
(i) $[a, b \beta c]_{\gamma}=[a, b]_{\gamma} \beta c+b \beta[a, c]_{\gamma}$,
(ii) $a \circ_{\alpha}(b+c)=a \circ_{\alpha} b+a \circ_{\alpha} c$,
(iii) $a \circ_{\alpha}(b \beta c)=\left(a \circ_{\alpha} b\right) \beta c+b \beta[c, a]_{\alpha}=b \beta\left(a \circ_{\alpha} c\right)+[a, b]_{\alpha} \beta c$.

[^0]The study of Γ-ring was initiated by Nobusawa in [4]. Further, the condition on Γ-ring was slightly weakened by Barnes [3] in sense of Nobusawa. Since then various analogous concepts and analogous results of ring theory have been studied in Γ-rings (for reference see [3], [5], [6] and [7], where further references can be found). In the present paper, we have obtained some analogous results in Γ-ring earlier obtained for rings.

2. Main Results

In the year 1992, Daif and Bell [4] obtained commutativity of semiprime ring R satisfying differential identity $d([x, y])= \pm[x, y]$ for all $x, y \in R$. Further, the first author together with Rehman [2] established the commutativity of semiprime ring R satisfying the above identity for a well behaved subset of R viz. Lie ideal of R. Later on, many authors explored commutativity of prime and semiprime rings satisfying various conditions on rings (for reference see, [2] etc. where further references can be found). In the present paper, our objective is to investigate commutativity of prime Γ-rings satisfying certain identities involving derivations on Γ-rings. We facilitate our discussion with the following results which are necessary for developing the proofs of our theorems:

Lemma 2.1. [Lemma 2, [7]] Let M be a prime Γ-ring and U be a nonzero right ideal of M such that $U \subseteq Z(M)$. Then M is commutative.

Lemma 2.2. Let M be a prime Γ-ring and U be a commutative nonzero right ideal of M. Then M is commutative.

Proof: Since U is commutative, $[x, y]_{\gamma}=0$ for all $x, y \in M$ and $\gamma \in \Gamma$. Replace y by $y \alpha r$, we have

$$
\begin{aligned}
0 & =[x, y \alpha r]_{\gamma} \\
& =[x, y]_{\gamma} \alpha r+y \alpha[x, r]_{\gamma} \\
& =y \alpha[x, r]_{\gamma} .
\end{aligned}
$$

Again replacing y by $y \beta r_{1}$, we get $y \beta r_{1} \alpha[x, r]_{\gamma}=0$. Since M is prime, either $y=0$ or $[x, r]_{\gamma}=0$. If $y=0$, then $U=\{0\}$, a contradiction. Therefore $[x, r]_{\gamma}=0$. This implies $x \in Z(M)$ i.e., $U \subseteq Z(M)$. Therefore, by Lemma 2.1, M is commutative.

Theorem 2.3. Let M be a prime Γ-ring and U be a nonzero ideal of M. If d is a nonzero derivation on M satisfying $[d(x), x]_{\gamma}=0$ for all $x \in U, \gamma \in \Gamma$, then M is commutative.

Proof: We have $[d(x), x]_{\gamma}=0$ for all $x \in U$ and $\gamma \in \Gamma$. Replace x by $x+y$, to get

$$
[d(x), y]_{\gamma}+[d(y), x]_{\gamma}=0 \text { for all } x, y \in U, \gamma \in \Gamma
$$

Further, replacing y by $y \alpha x$ in the above condition and using the same along with the given condition, we have

$$
[y, x]_{\gamma} \alpha d(x)=0 \text { for all } x, y \in U \text { and } \alpha, \gamma \in \Gamma
$$

Again, replacing y by $y \beta z$ and using the above condition, we get $[y, x]_{\gamma} \beta z \alpha d(x)=$ 0 for all $x, y, z \in U$ and $\alpha, \beta, \gamma \in \Gamma$. Now replacing z by $r \delta z$ and using the primeness of M, we get either $[y, x]_{\gamma}=0$ or $U \Gamma d(x)=\{0\}$. Now let $U_{1}=\left\{x \in U \mid[y, x]_{\gamma}=\right.$ 0 for all $y \in M, \gamma \in \Gamma\}$ and $U_{2}=\{x \in U \mid U \Gamma d(x)=\{0\}\}$. Then it can be seen that U_{1} and U_{2} are additive subgroups of U whose union is U. But a group can not be union of two of its proper subgroups, we find that either $U \Gamma d(x)=$ $\{0\}$ for all $x \in U$ or $[x, y]_{\gamma}=0$ for all $x, y \in U$ and $\gamma \in \Gamma$. If $U \Gamma d(x)=\{0\}$, then by primeness of M either $U=\{0\}$ or $d(x)=0$ for all $x \in U$. But $U \neq\{0\}$ implies that $d(x)=0$ for all $x \in U$. Hence $d(x \gamma r)=0$. Therefore $x \gamma d(r)=0$. This implies $d(r)=0$ by primeness of M. Therefore $d=0$, a contradiction. Hence $[x, y]_{\gamma}=0$ for all $x, y \in U$ and $\gamma \in \Gamma$ and U is commutative. Therefore M is commutative.

Corollary 2.4. Let M be a prime Γ-ring and d be a nonzero derivation on M satisfying $x-d(x) \in Z(M)$ for all $x \in U$, then M is commutative.

Proof: We have $x-d(x) \in Z(M)$ i.e., $[x-d(x), x]_{\gamma}=0$ for all $x \in U$ and $\gamma \in \Gamma$. Hence $[d(x), x]_{\gamma}=0$ for all $x \in U$ and $\gamma \in \Gamma$. Therefore by Theorem 2.3, M is commutative.

Theorem 2.5. Let M be a 2-torsion free prime Γ-ring and U be a nonzero ideal of M. Suppose M admits a nonzero derivation d satisfying any one of the following conditions:
(i) $[d(x), d(y)]_{\gamma}=0$ for all $x, y \in U$ and $\gamma \in \Gamma$,
(ii) $[d(x), d(y)]_{\gamma}=[x, y]_{\gamma}$ for all $x, y \in U$ and $\gamma \in \Gamma$,
(iii) $[d(x), d(y)]_{\gamma}=[y, x]_{\gamma}$ for all $x, y \in U$ and $\gamma \in \Gamma$,
(iv) $d\left([x, y]_{\gamma}\right)=[x, y]_{\gamma}$ for all $x, y \in U$ and $\gamma \in \Gamma$.

Then M is commutative.
Proof: (i). Given that $[d(x), d(y)]_{\gamma}=0$ for all $x, y \in U$ and $\gamma \in \Gamma$. Replace y by $y \alpha z$ and use the given condition, we get

$$
\begin{equation*}
d(y) \alpha[d(x), z]_{\gamma}+[d(x), y]_{\gamma} \alpha d(z)=0 \tag{2.1}
\end{equation*}
$$

Replacing z by $z \beta r$ for $r \in M$ in (2.1) and using (2.1), we have

$$
d(y) \alpha z \beta[d(x), r]_{\gamma}+[d(x), y]_{\gamma} \alpha z \beta d(r)=0 .
$$

Again, replacing r by $d(x)$, we get $[d(x), y]_{\gamma} \alpha z \beta d^{2}(x)=0$ for all $x, y, z \in M$ and $\alpha, \beta, \gamma \in \Gamma$. By primeness of M, we have either $[d(x), y]_{\gamma}=0$ or $z \beta d^{2}(x)=0$.
Take $U_{1}=\left\{x \in U \mid[d(x), y]_{\gamma}=0\right.$ for all $y \in U$ and $\left.\gamma \in \Gamma\right\}$ and $U_{2}=\{x \in U \mid$ $z \beta d^{2}(x)=0$ for all $z \in U$ and $\left.\beta \in \Gamma\right\}$. Then U_{1} and U_{2} are additive subgroups of U such that $U_{1} \cup U_{2}=U$. But a group can not be the set theoretic union of its two proper subgroups, either $U_{1}=U$ or $U_{2}=U$. If $U_{1}=U$, then $[d(x), y]_{\gamma}=0$ for all $x, y \in U$ and $\gamma \in \Gamma$. Therefore in particular $[d(x), x]_{\gamma}=0$ for all $x \in U, \gamma \in \Gamma$ and hence M is commutative by Theorem 2.3. If $U_{2}=U$, then $U \beta d^{2}(x)=\{0\}$ for all $x \in U$ and $\beta \in U$. Since M is prime and $U \neq\{0\}$, we get $d^{2}(x)=0$ for all $x \in U$. Replacing x by $w \alpha y$, we find that $d^{2}(w \alpha y)=0$ for all $w, y \in U, \alpha \in \Gamma$. Since $d^{2}(x)=0$ for all $x \in U$ and Γ-ring is 2-torsion free, we have $d(w) \alpha d(y)=0$ for all $w, y \in U$ and $\alpha \in \Gamma$. Further, replacing w by $w \beta z$ and using this condition along with primeness of M, we get either $d(w) \beta z=0$ or $d(x)=0$. Again, since M is prime, either $d(U)=\{0\}$ or $U=\{0\}$. Since it is given that $U \neq\{0\}, d(U)=\{0\}$. But $d(U)=\{0\}$ implies $U \Gamma d(M)=\{0\}$. Again, primeness of M gives $d(M)=\{0\}$, which is a contradiction.
(ii). Replacing y by $y \beta z$ in $[d(x), d(y)]_{\gamma}=[x, y]_{\gamma}$, we get

$$
[d(x), d(y \beta z)]_{\gamma}=[x, y \beta z]_{\gamma} \text { for all } x, y, z \in U \text { and } \beta, \gamma \in \Gamma
$$

This implies that for all $x, y, z \in U$ and $\beta, \gamma \in \Gamma$, we get
$[d(x), d(y)]_{\gamma} \beta z+d(y) \beta[d(x), z]_{\gamma}+[d(x), y]_{\gamma} \beta d(z)+y \beta[d(x), d(z)]_{\gamma}=[x, y]_{\gamma} \beta z+y \beta[x, z]_{\gamma}$.
Using the given condition, we arrive at

$$
d(y) \beta[d(x), z]_{\gamma}+[d(x), y]_{\gamma} \beta d(z)=0 \text { for all } x, y, z \in M \text { and } \beta, \gamma \in \Gamma
$$

Now using the same arguments as used after (2.1), we get the required result.
(iii). Using the similar techniques as above, one can get the required result.
(iv). Given that $d\left([x, y]_{\gamma}\right)=[x, y]_{\gamma}$ for all $x, y \in U$ and $\gamma \in \Gamma$. After the simplification, we get

$$
\begin{equation*}
[d(x), y]_{\gamma}+[x, d(y)]_{\gamma}=[x, y]_{\gamma} \text { for all } x, y \in U \text { and } \gamma \in \Gamma \tag{2.2}
\end{equation*}
$$

Replacing y by $z \beta y$, we get

$$
\begin{gathered}
\left([d(x), z]_{\gamma}+[x, d(z)]_{\gamma}\right) \beta y+z \beta\left([d(x), y]_{\gamma}+[x, d(y)]_{\gamma}\right)+d(z) \beta[x, y]_{\gamma}+[x, z]_{\gamma} \beta d(y) \\
=[x, z]_{\gamma} \beta y+z \beta[x, y]_{\gamma} \text { for all } x, y, z \in U \text { and } \beta, \gamma \in \Gamma .
\end{gathered}
$$

Using (2.2), we find that

$$
d(z) \beta[x, y]_{\gamma}+[x, z]_{\gamma} \beta d(y)=0 \text { for all } x, y, z \in U \text { and } \beta, \gamma \in \Gamma
$$

Further, replacing y by x, we get $[x, z]_{\gamma} \beta d(x)=0$ for all $x, z \in U$ and $\beta, \gamma \in \Gamma$. Again, replacing z by $w \alpha z$, we get $[x, w]_{\gamma} \alpha z \beta d(x)=0$ for all $x, w, z \in U$ and
$\alpha, \beta, \gamma \in \Gamma$. Since M is prime, we have either $U \Gamma d(x)=\{0\}$ or $[x, z]_{\gamma}=0$. Take $U_{1}=\{x \in U \mid U \Gamma d(x)=\{0\}\}$ and $U_{2}=\left\{x \in U \mid[x, w]_{\gamma}=0\right.$ for all $w \in U, \gamma \in$ $\Gamma\}$. It can be easily seen that U_{1} and U_{2} are additive subgroups of U such that $U_{1} \cup U_{2}=U$. Therefore either $U_{1}=U$ or $U_{2}=U$. If $U_{1}=U$, then $U \Gamma d(x)=\{0\}$ for all $x \in U$. Since $U \neq\{0\}$ and M is prime, we arrive at a contradiction that $d=0$. Therefore, now assume that $U_{2}=U$. Hence $[x, w]_{\gamma}=0$ for all $x, w \in U$ and $\gamma \in \Gamma$. This yields that U is commutative. By Lemma 2.2, M is commutative.

Corollary 2.6. Let M be a prime Γ-ring and U be a nonzero ideal of M. If $d \neq 0$ is a derivation on M such that $d\left([x, y]_{\gamma}\right)=[y, x]_{\gamma}$ for all $x, y \in U$ and $\gamma \in \Gamma$, then M is commutative.

Proof: Given that $d([x, y])_{\gamma}=[y, x]_{\gamma}$ for all $x, y \in U$ and $\gamma \in \Gamma$. This implies that $(-d)\left([x, y]_{\gamma}\right)=[x, y]_{\gamma}$ for all $x, y \in U$ and $\gamma \in \Gamma$. Since $-d$ is a derivation on M, by Theorem $2.5(i v), M$ is commutative.

Corollary 2.7. Let M be a prime Γ-ring and U be a nonzero ideal of M. Suppose M admits a derivation d satisfying any one of the following conditions:
(i) $d\left([x, y]_{\gamma}\right)=[d(x), y]_{\gamma}$ for all $x, y \in U$ and $\gamma \in \Gamma$,
(ii) $d\left(x \circ_{\gamma} y\right)=d(x) \circ_{\gamma} y$ for all $x, y \in U$ and $\gamma \in \Gamma$.

Then M is commutative.
Proof: (i). On simplifying the given condition, we have $x \gamma d(y)=d(y) \gamma x$ for all $x, y \in U$ and $\gamma \in \Gamma$. Replacing x by $x \beta d(z)$, we have $x \gamma[d(y), d(z)]_{\beta}=0$. Since M is prime and $U \neq\{0\}$, we have $[d(y), d(z)]_{\beta}=0$ for all $y, z \in U$ and $\beta \in \Gamma$. Hence M is commutative by Theorem 2.5(i).
(ii). Using similar arguments as used in (i), we get the required result.

Theorem 2.8. Let M be a prime Γ-ring and U be a nonzero ideal of M. Suppose M admits a nonzero derivation d such that for all $x, y \in U$ and $\alpha, \gamma \in \Gamma$, d satisfying any one of the following conditions:
(i) $d(x \alpha y)=d(y \alpha x)$,
(ii) $d(x \alpha y)=-d(y \alpha x)$,
(iii) $[d(x), y]_{\gamma}=[x, d(y)]_{\gamma}$.

Then M is commutative.
Proof: (i). For all $x, y \in U$ and $\alpha \in \Gamma$, we have $d(x \alpha y)=d(y \alpha x)$. On simplifying, we have

$$
\begin{equation*}
[d(x), y]_{\alpha}+[x, d(y)]_{\alpha}=0 \text { for all } x, y \in U \text { and } \alpha \in \Gamma . \tag{2.3}
\end{equation*}
$$

Replacing y by $y \beta z$ in (2.3) and using (2.3), we get

$$
d(y) \beta[x, z]_{\alpha}+[x, y]_{\alpha} \beta d(z)=0 \text { for all } x, y, z \in U \text { and } \alpha, \beta \in \Gamma .
$$

Replace z by x to get $[x, y]_{\alpha} \beta d(x)=0$ for all $x, y \in U$ and $\alpha, \beta \in \Gamma$. Again, replacing y by $y \gamma w$ in the latter condition, we get

$$
\begin{equation*}
[x, y]_{\alpha} \gamma w \beta d(x)=0 \text { for all } x, y, w \in U \text { and } \alpha, \beta, \gamma \in \Gamma \tag{2.4}
\end{equation*}
$$

Since M is prime, we have $[x, y]_{\alpha}=0$ or $U \Gamma d(x)=\{0\}$. The sets $x \in U$ for which these two properties hold forms additive subgroups of U whose union is U. Hence by Brauer's trick, either $[x, y]_{\alpha}=0$ for all $x, y \in U$ and $\alpha \in \Gamma$ or $U \Gamma d(x)=\{0\}$ for all $x \in U$. If $U \Gamma d(x)=\{0\}$, then by primeness of M, either $U=\{0\}$ or $d(x)=0$ for all $x \in U$. But $d(x)=0$ for all $x \in U$ gives $d=0$ on M, a contradiction. Therefore $[x, y]_{\alpha}=0$ for all $x, y \in U, \alpha \in \Gamma$ and hence U is commutative and by Lemma 2.2, M is commutative.
(ii). For all $x, y \in U$ and $\alpha \in \Gamma$, we have $d(x \alpha y)=-d(y \alpha x)$. This implies that $d(x) \alpha y+x \alpha d(y)=-d(y) \alpha x-y \alpha d(x)$ for all $x, y \in U$ and $\alpha \in \Gamma$. Replace y by $y \beta x$ and use the given condition, to get

$$
\begin{equation*}
x \alpha y \beta d(x)+y \alpha x \beta d(x)=0 \text { for all } x, y \in U \text { and } \alpha, \beta \in \Gamma . \tag{2.5}
\end{equation*}
$$

Now, replace y by $y \gamma z$ in (2.5) and use (2.5), to get

$$
[x, y]_{\alpha} \gamma z \beta d(x)=0 \text { for all } x, y, z \in U \text { and } \alpha, \beta, \gamma \in \Gamma
$$

Now using the same arguments, as used in proof of (i) after (2.3), we get the required result.
(iii). Replacing y by $y \beta z$ in the given condition, we have

$$
[x, y]_{\gamma} \beta d(z)+d(y) \beta[x, z]_{\gamma}=0
$$

Replacing z by x, we get $[x, y]_{\gamma} \beta d(x)=0$ for all $x, y \in M$ and $\beta, \gamma \in \Gamma$. Again replacing y by $y \alpha z$, we find that $[x, y]_{\gamma} \alpha z \beta d(x)=0$. Since M is prime, either $[x, y]_{\gamma}=0$ or $U \Gamma d(x)=\{0\}$. By the same argument given in the proof of (i) after (2.3), we get the required result.

Theorem 2.9. Let M be a prime Γ-ring and U be a nonzero ideal of M. Suppose d is a derivation on M satisfying any one of the following conditions:
(i) $d(x \gamma y)-x \gamma y \in Z(M)$ for all $x, y \in U$ and $\gamma \in \Gamma$,
(ii) $d(x \gamma y)-y \gamma x \in Z(M)$ for all $x, y \in U$ and $\gamma \in \Gamma$,
(iii) $d(x) \gamma d(y)-x \gamma y \in Z(M)$ for all $x, y \in U$ and $\gamma \in \Gamma$.

Then M is commutative.

Proof: (i). It is given that $d(x \gamma y)-x \gamma y \in Z(M)$ for all $x, y \in U$ and $\gamma \in \Gamma$. If $d=0$, then we have $x \gamma y \in Z(M)$. Therefore $[x \gamma y, x]_{\beta}=0$. Therefore $x \gamma[y, x]_{\beta}=0$ for all $x, y \in U$ and $\beta, \gamma \in \Gamma$. Now replacing y by $y \alpha z$, we find that $x \gamma y \alpha[z, x]_{\beta}=0$ for all $x, y, z \in U$ and $\alpha, \beta, \gamma \in \Gamma$. By the primeness of M, we have either $x=0$ or $U \Gamma[z, x]_{\beta}=\{0\}$. But $x=0$ also implies that $U \Gamma[z, x]_{\beta}=\{0\}$. Therefore in both the cases, we get $U \Gamma[z, x]_{\beta}=\{0\}$. Since M is prime, either $U=\{0\}$ or $[z, x]_{\beta}=0$. Since $U \neq\{0\},[z, x]_{\beta}=0$ for all $x, z \in U, \beta \in \Gamma$ and U is commutative. Therefore M is commutative by Lemma 2.2.
Now assume that $d \neq 0$. Given that $d(x \gamma y)-x \gamma y \in Z(M)$. This implies that $d(x) \gamma y+x \gamma d(y)-x \gamma y \in Z(M)$. Replacing y by $y \beta z$ and using the given condition, we have

$$
\begin{align*}
0 & =[d(x) \gamma y \beta z+x \gamma d(y \beta z)-x \gamma y \beta z, z]_{\alpha} \\
& =[x \gamma y \beta d(z), z]_{\alpha} \tag{2.6}\\
& =x \gamma y \beta[d(z), z]_{\alpha}+x \gamma[y, z]_{\alpha} \beta d(z)+[x, z]_{\alpha} \gamma y \beta d(z)
\end{align*}
$$

Again, replacing x by $w \delta x$ for $w \in U$ and $\delta \in \Gamma$ in (2.6), we get

$$
w \delta\left(x \gamma y \beta[d(z), z]_{\alpha}+x \gamma[y, z]_{\alpha} \beta d(z)+[x, z]_{\alpha} \gamma y \beta d(z)\right)+[w, z]_{\alpha} \delta x \gamma y \beta d(z)=0 .
$$

Using (2.6), we get $[w, z]_{\alpha} \delta x \gamma y \beta d(z)=0$. Since M is prime, we find that for each fixed $z \in U$, either $[w, z]_{\alpha} \delta x=0$ or $U \Gamma d(z)=\{0\}$. Let $U_{1}=\left\{z \in U \mid[w, z]_{\alpha} \delta x=0\right.$ for all $x, w \in U, \alpha, \delta \in \Gamma\}$ and $U_{2}=\{z \in U \mid U \Gamma d(z)=\{0\}\}$. Since U_{1} and U_{2} are additive subgroups of U whose union is U, we find that either $U_{1}=U$ or $U_{2}=U$. If $U_{1}=U$, then $[w, z]_{\alpha} \delta x=0$ for all $x, w, z \in U$ and $\alpha, \delta \in \Gamma$. Since M is prime, either $U=\{0\}$ or $[w, z]_{\alpha}=0$ for all $w, z \in U$ and $\alpha \in \Gamma$. Since $U \neq\{0\}$, U is commutative, and hence M is commutative by Lemma 2.2. If $U_{2}=U$, then $U \Gamma d(z)=\{0\}$ for all $z \in U$. This implies that either $U=\{0\}$ or $d=0$, and hence in both the cases we arrive at contradictions.
(ii). If $d=0$, then using similar techniques as used in the beginning of the proof of (i), we find that M is commutative.
Now assume that $d \neq 0$. Since $d(x \gamma y)-y \gamma x \in Z(M)$ for all $x, y \in U, r \in M$ and $\gamma \in$ Γ, we have $[d(x \gamma y)-y \gamma x, r]_{\alpha}=0$ for all $x, y \in U, r \in M$ and $\alpha, \gamma \in \Gamma$. After simplification, we get

$$
\begin{equation*}
[d(x) \gamma y+x \gamma d(y), r]_{\alpha}=[y \gamma x, r]_{\alpha} \text { for all } x, y \in U, r \in M \text { and } \alpha, \gamma \in \Gamma \tag{2.7}
\end{equation*}
$$

Replacing y by $y \beta r$ for $r \in M, \beta \in \Gamma$ in (2.7) and using (2.7), we get

$$
\begin{equation*}
[y \gamma x, r]_{\alpha} \beta r+[x \gamma y \beta d(r), r]_{\alpha}=[y \beta r \gamma x, r]_{\alpha} . \tag{2.8}
\end{equation*}
$$

Again replacing y by $x \delta y$ for $x \in U, \delta \in \Gamma$ in (2.8) and using (2.8), we get
$x \delta[y \beta r \gamma x, r]_{\alpha}+[x, r]_{\alpha} \delta y \gamma x \beta r+[x, r]_{\alpha} \delta x \gamma y \beta d(r)=x \delta[y \beta r \gamma x, r]_{\alpha}+[x, r]_{\alpha} \delta y \beta r \gamma x$.
After simplifying, we get

$$
\begin{equation*}
[x, r]_{\alpha} \delta y \gamma[x, r]_{\beta}+[x, r]_{\alpha} \delta x \gamma y \beta d(r)=0 \tag{2.9}
\end{equation*}
$$

Replacing r by $r+x$ in (2.9) and using (2.9), we get

$$
[x, r]_{\alpha} \delta x \gamma y \beta d(x)=0 \text { for all } x, y \in U, r \in M \text { and } \alpha, \beta, \gamma, \delta \in \Gamma
$$

Since M is prime, we get $[x, r]_{\alpha} \delta x=0$ for all $x \in U, r \in M$ and $\alpha, \delta \in \Gamma$ or $U \Gamma d(x)=\{0\}$ for all $x \in U$. If $[x, r]_{\alpha} \delta x=0$, then $\left[x, r \gamma r_{1}\right]_{\alpha} \delta x=0$. Therefore, $[x, r]_{\alpha} \gamma r_{1} \delta x=0$. By primeness of M, either $x=0$ or $[x, r]_{\alpha}=0$. But $x=0$ also gives $[x, r]_{\alpha}=0$. Hence, there remain only two cases namely either $[x, r]_{\alpha}=0$ or $U \Gamma d(x)=\{0\}$. Take $U_{1}=\left\{x \in U \mid[x, r]_{\alpha}=0\right.$ for all $\left.r \in M, \alpha \in \Gamma\right\}$ and $U_{2}=\{x \in U \mid U \Gamma d(x)=\{0\}\}$. But these are two additive subgroups of U whose union is U. Therefore either $U_{1}=U$ or $U_{2}=U$. If $U_{1}=U$ then $U \subseteq Z(M)$. Therefore M is commutative by Lemma 2.1. If $U_{2}=U$, then either $U=\{0\}$ or $d=0$, and we find contradictions in both the cases.
(iii). If $d=0$, then $-x \gamma y \in Z(M)$ for all $x, y \in U$. Therefore $x \gamma y \in Z(M)$ and as above, M is commutative.
Now suppose that $d \neq 0$. If we replace y by $y \alpha r$, then for all $x, y \in U, r \in M$ and $\alpha, \gamma \in \Gamma$, we find that $(d(x) \gamma d(y)-x \gamma y) \alpha r+d(x) \gamma y \alpha d(r) \in Z(M)$. Therefore

$$
[(d(x) \gamma d(y)-x \gamma y) \alpha r+d(x) \gamma y \alpha d(r), r]=0
$$

Using the given condition, we arrive at

$$
\begin{equation*}
[d(x) \gamma y \alpha d(r), r]_{\beta}=0 \tag{2.10}
\end{equation*}
$$

Replacing y by $d(z) \delta y$ in (2.10), we get

$$
[d(x), r]_{\beta} \gamma d(z) \delta y \alpha d(r)=0 \text { for all } x, y, z \in U, r \in M \text { and } \alpha, \beta, \delta, \gamma \in \Gamma
$$

Since M is prime, either $U \Gamma d(r)=\{0\}$ or $[d(x), r]_{\beta} \gamma d(z)=0$. Take $M_{1}=\{r \in M \mid$ $U \Gamma d(r)=\{0\}\}$ and $M_{2}=\left\{r \in M \mid[d(x), r]_{\beta} \gamma d(z)=0\right.$ for all $x, z \in U$ and $\beta, \gamma \in$ $\Gamma\}$.
But M_{1} and M_{2} are two additive subgroups of M whose union is M. Therefore either $M_{1}=M$ or $M_{2}=M$. If $M_{1}=M$, then $U \Gamma d(r)=\{0\}$. Since $U \neq\{0\}$ and M is prime, we find that $d=0$, a contradiction. Hence assume that $M_{2}=M$. This yields that $[d(x), r]_{\beta} \gamma d(z)=0$ for all $r \in M$. Hence $\left[d(x), r \alpha r_{1}\right]_{\beta} \gamma d(z)=0$. This implies that $[d(x), r]_{\beta} \alpha r_{1} \gamma d(z)=0$. By primeness of M, either $[d(x), r]_{\beta}=0$ for all $x \in U, r \in M$ and $\beta \in \Gamma$ or $d(z)=0$ for all $z \in U$. But $d(z)=0$ gives $d=0$, which is a contradiction. Therefore $[d(x), r]_{\beta}=0$. In particular, $[d(x), x]_{\beta}=0$ for all $x \in U$ and $\beta \in \Gamma$. Therefore by Theorem 2.3, M is commutative.

Corollary 2.10. Let M be a prime Γ-ring and U be a nonzero ideal of M. If d is a derivation on M satisfying $d(x \gamma y)+x \gamma y \in Z(M)$ for all $x, y \in U$ and $\gamma \in \Gamma$, then M is commutative.

Proof: $d(x \gamma y)+x \gamma y \in Z(M)$ implies that $-d(x \gamma y)-x \gamma y \in Z(M)$ i.e., $(-d)(x \gamma y)-$ $x \gamma y \in Z(M)$. Since $-d$ is also a derivation on M, hence by Theorem 2.9(i), M is commutative.

Corollary 2.11. Let M be a prime Γ-ring and U be a nonzero ideal of M. If d is a derivation on M satisfying $d(x \gamma y)+y \gamma x \in Z(M)$ for all $x, y \in U$ and $\gamma \in \Gamma$, then M is commutative.

Theorem 2.12. Let M be a prime Γ-ring and U be a nonzero ideal of M. If d is a derivation on M such that $d\left(x \circ_{\gamma} y\right)=x \circ_{\gamma} y$ for all $x, y \in U$ and $\gamma \in \Gamma$, then M is commutative.

Proof: It is given that $d\left(x \circ_{\gamma} y\right)=x \circ_{\gamma} y$ for all $x, y \in U$ and $\gamma \in \Gamma$. If $d=0$, then $x \circ_{\gamma} y=0$ for all $x, y \in U$ and $\gamma \in \Gamma$. Replacing y by $y \alpha z$, we have $x \circ_{\gamma}(y \alpha z)=0$ for all $x, y, z \in U$ and $\alpha, \gamma \in \Gamma$. This yields that $y \alpha[z, x]_{\gamma}=0$ for all $x, y, z \in U$ and $\alpha, \gamma \in \Gamma$. Since M is prime and $U \neq\{0\}, U$ is commutative and by Lemma 2.2, we get the required result.

Now assume that $d \neq 0$. The given condition implies that

$$
\begin{equation*}
d(x) \circ_{\gamma} y+x \circ_{\gamma} d(y)=x \circ_{\gamma} y \text { for all } x, y \in U \text { and } \gamma \in \Gamma . \tag{2.11}
\end{equation*}
$$

Replace y by $y \alpha z$ in (2.11), we get

$$
d(x) \circ_{\gamma}(y \alpha z)+x \circ_{\gamma} d(y \alpha z)=x \circ_{\gamma}(y \alpha z) \text { for all } x, y, z \in U \text { and } \alpha, \gamma \in \Gamma
$$

After simplification, we find that

$$
\begin{gathered}
\left(d(x) \circ_{\gamma} y+x \circ_{\gamma} d(y)\right) \alpha z+y \alpha[z, d(x)]_{\gamma}+d(y) \alpha[z, x]_{\gamma}+\left(x \circ_{\gamma} y\right) \alpha d(z)+y \alpha[d(z), x]_{\gamma} \\
\quad=\left(x \circ_{\gamma} y\right) \alpha z+y \alpha[z, x]_{\gamma} \text { for all } x, y, z \in U \text { and } \alpha, \gamma \in \Gamma .
\end{gathered}
$$

Now using (2.11), we get

$$
y \alpha[z, d(x)]_{\gamma}+d(y) \alpha[z, x]_{\gamma}+\left(x \circ_{\gamma} y\right) \alpha d(z)+y \alpha[d(z), x]_{\gamma}=y \alpha[z, x]_{\gamma} .
$$

Replace z by x to get $\left(x \circ_{\gamma} y\right) \alpha d(x)=0$. Now, replacing y by $w \beta y$, we find that

$$
[x, w]_{\gamma} \beta y \alpha d(x)=0 \text { for all } x, y, w \in U \text { and } \alpha, \beta, \gamma \in \Gamma .
$$

Since M is prime, either $[x, w]_{\gamma}=0$ or $U \Gamma d(x)=\{0\}$. Now using the similar arguments as used in Theorem 2.5(iv), we find that M is commutative.

Corollary 2.13. Let M be a prime Γ-ring and U be a nonzero ideal of M. If d is a derivation on M such that $d\left(x \circ_{\gamma} y\right)+x \circ_{\gamma} y=0$ for all $x, y \in U$ and $\gamma \in \Gamma$, then M is commutative.

Theorem 2.14. Let M be a 2-torsion free prime Γ-ring and U be a nonzero ideal of M. Suppose $d \neq 0$ is a derivation on M such that d satisfies any one of the following conditions:
(i) $d(x) \circ_{\gamma} d(y)=0$ for all $x, y \in U$ and $\gamma \in \Gamma$,
(ii) $d(x) \circ_{\gamma} d(y)=x \circ_{\gamma} y$ for all $x, y \in U$ and $\gamma \in \Gamma$,
(iii) $d(x) \circ_{\gamma} d(y)+x \circ_{\gamma} y=0$ for all $x, y \in U$ and $\gamma \in \Gamma$.

Then M is commutative.
Proof: (i). Replacing y by $y \alpha z$ in the given condition, we get

$$
\left(d(x) \circ_{\gamma} d(y)\right) \alpha z+d(y) \alpha[z, d(x)]_{\gamma}+y \alpha\left(d(x) \circ_{\gamma} d(z)\right)+[d(x), y]_{\gamma} \alpha d(z)=0 .
$$

Using the given condition, we have

$$
\begin{equation*}
d(y) \alpha[z, d(x)]_{\gamma}+[d(x), y]_{\gamma} \alpha d(z)=0 \text { for all } x, y, z \in U \text { and } \alpha, \gamma \in \Gamma . \tag{2.12}
\end{equation*}
$$

Replacing z by $z \beta d(x)$, we get

$$
\left(d(y) \alpha[z, d(x)]_{\gamma}+[d(x), y]_{\gamma} \alpha d(z)\right) \beta d(x)+[d(x), y]_{\gamma} \alpha z \beta d^{2}(x)=0 .
$$

Using (2.12), we get $[d(x), y]_{\gamma} \alpha z \beta d^{2}(x)=0$ for all $x, y, z \in U$ and $\alpha, \beta, \gamma \in \Gamma$. Primeness of M yields that either $[d(x), y]_{\gamma} \alpha z=0$ or $d^{2}(x)=0$. Take $U_{1}=\{x \in$ $\left.U \mid d^{2}(x)=0\right\}$ and $U_{2}=\left\{x \in U \mid[d(x), y]_{\gamma} \alpha z=0\right.$ for all $y, z \in U$ and $\left.\alpha, \gamma \in \Gamma\right\}$. Since U_{1} and U_{2} are additive subgroups of U such that $U_{1} \cup U_{2}=U$. Therefore by Brauer's trick either $U_{1}=U$ or $U_{2}=U$. If $U_{1}=U$, then $d^{2}(x)=0$ for all $x \in U$. Therefore by using the arguments as used in the proof of Theorem $2.5(i), d=0$ which is a contradiction. Now assume that $U_{2}=U$ i.e., $[d(x), y]_{\gamma} \alpha z=0$ for all $x, y, z \in U$ and $\alpha, \gamma \in \Gamma$. Since $U \neq\{0\}$ and M is prime, $[d(x), y]_{\gamma}=0$ for all $x, y \in U$ and $\gamma \in \Gamma$. Hence $[d(x), x]_{\gamma}=0$ for all $x \in U$ and M is commutative by Theorem 2.3.
(ii). If $d=0$, then $x \circ \gamma=0$ for all $x, y \in U$ and $\gamma \in \Gamma$. Therefore M is commutative by the argument used in the Theorem 2.12. Now assume that $d \neq 0$. Replace y by $y \alpha z$ to get

$$
\begin{equation*}
d(y) \alpha[z, d(x)]_{\gamma}+y \alpha\left(x \circ_{\gamma} z\right)+[d(x), y]_{\gamma} \alpha d(z)-y \alpha[z, x]_{\gamma}=0 \tag{2.13}
\end{equation*}
$$

for all $x, y, z \in U$ and $\alpha, \gamma \in \Gamma$.
Replacing y by $r \beta y$ in (2.13), we find that

$$
\begin{gathered}
r \beta\left(d(y) \alpha[z, d(x)]_{\gamma}+y \alpha\left(x 0_{\gamma} z\right)+[d(x), y]_{\gamma} \alpha d(z)-y \alpha[z, x]_{\gamma}\right)+d(r) \beta y \alpha[z, d(x)]_{\gamma} \\
+[d(x), r]_{\gamma} \beta y \alpha d(z)=0 \text { for all } x, y, z \in U, r \in M \text { and } \alpha, \beta, \gamma \in \Gamma .
\end{gathered}
$$

Using (2.13), the above yields that

$$
d(r) \beta y \alpha[z, d(x)]_{\gamma}+[d(x), r]_{\gamma} \beta y \alpha d(z)=0 .
$$

Further replacing r by $d(x)$, we get $d^{2}(x) \beta y \alpha[z, d(x)]_{\gamma}=0$ for all $x, y, z \in U$ and $\alpha, \beta, \gamma \in \Gamma$. Take $U_{1}=\left\{x \in U \mid d^{2}(x)=0\right\}$ and $U_{2}=\left\{x \in U \mid U \Gamma[z, d(x)]_{\gamma}=\{0\}\right.$ for all $z \in U$ and $\gamma \in \Gamma\}$. If $U_{1}=U$ then $d^{2}(x)=0$ for all $x \in U$. Using similar techniques as used in Theorem $2.5(i)$ we get $d=0$, a contradiction. Therefore $U_{2}=U$. Hence $U \Gamma[z, d(x)]_{\gamma}=\{0\}$ for all $x, z \in U$ and $\gamma \in \Gamma$. Since M is prime
and $U \neq\{0\},[z, d(x)]_{\gamma}=0$. Hence $[d(x), x]_{\gamma}=0$ for all $x \in U$ and $\gamma \in \Gamma$ and M is commutative by Theorem 2.3.
(iii). By the similar arguments as used in (ii), we can get the required result.

Theorem 2.15. Let M be a 2-torsion free prime Γ-ring and U be a nonzero ideal of M. Suppose $d \neq 0$ is a derivation on M such that d satisfies any one of the following condition:
(i) $[d(x), d(y)]_{\gamma}=y \gamma x$ for all $x, y \in U$ and $\gamma \in \Gamma$,
(ii) $[d(x), d(y)]_{\gamma}=x \gamma y$ for all $x, y \in U$ and $\gamma \in \Gamma$,
(iii) $d\left([x, y]_{\gamma}\right)=x \circ_{\gamma} y$ for all $x, y \in U$ and $\gamma \in \Gamma$,
(iv) $d\left(x \circ_{\gamma} y\right)=[x, y]_{\gamma}$ for all $x, y \in U$ and $\gamma \in \Gamma$.

Then M is commutative.
Proof: (i). Replacing y by $y \alpha w$ in the given condition, we find that

$$
y \gamma x \alpha w+d(y) \alpha[d(x), w]_{\gamma}+[d(x), y]_{\gamma} \alpha d(w)=0 \text { for all } x, y, w \in U \text { and } \alpha, \gamma \in \Gamma
$$

Further, replacing w by $w \delta r$ and using the same, we get
$d(y) \alpha w \delta[d(x), r]_{\gamma}+[d(x), y]_{\gamma} \alpha w \delta d(r)=0$ for all $x, y, w \in U, r \in M$ and $\alpha, \gamma, \delta \in \Gamma$.
Now, replacing r by $d(x)$, we get $[d(x), y]_{\gamma} \alpha w \delta d^{2}(x)$ for all $x, y, w \in U$ and $\alpha, \gamma, \delta \in$ Γ. Since M is prime, we find that either $[d(x), y]_{\gamma} \alpha U=\{0\}$ or $d^{2}(x)=0$. Take $U_{1}=$ $\left\{x \in U \mid[d(x), y]_{\gamma} \alpha U=\{0\}\right.$ for all $\left.y \in U, \alpha, \gamma \in \Gamma\right\}$ and $U_{2}=\left\{x \in U \mid d^{2}(x)=0\right\}$. But U_{1} and U_{2} are additive subgroups of U such that $U_{1} \cup U_{2}=U$. Hence, by Brauer's trick either $U_{1}=U$ or $U_{2}=U$. If $U_{1}=U$, then $[d(x), y]_{\gamma} \alpha U=\{0\}$. Since $U \neq\{0\},[d(x), y]_{\gamma}=0$ for all $x, y \in U$ and $\gamma \in \Gamma$. In particular $[d(x), x]_{\gamma}=0$ for all $x \in U$ and $\gamma \in \Gamma$. Therefore M is commutative by Theorem 2.3. If $U_{2}=U$, then $d=0$, a contradiction.
(ii). By using the similar arguments as used in proving (i), we get the required result.
(iii). Given that $d\left([x, y]_{\gamma}\right)=x \circ_{\gamma} y$ for all $x, y \in U$ and $\gamma \in \Gamma$. On simplifying we get

$$
\begin{equation*}
[d(x), y]_{\gamma}+[x, d(y)]_{\gamma}=x \circ_{\gamma} y \text { for all } x, y \in U \text { and } \gamma \in \Gamma \tag{2.14}
\end{equation*}
$$

Further, replacing y by $y \alpha x$, we find that $[x, y]_{\gamma} \alpha d(x)=0$. Again replacing y by $r \beta y$, we get

$$
\begin{equation*}
[x, r]_{\gamma} \beta y \alpha d(x)=0 \text { for all } x, y \in U, r \in M \text { and } \alpha, \beta, \gamma \in \Gamma \tag{2.15}
\end{equation*}
$$

Take $U_{1}=\left\{x \in U \mid[x, r]_{\gamma}=0\right.$ for all $r \in M$ and $\left.\gamma \in \Gamma\right\}$ and $U_{2}=\{x \in U \mid$ $U \Gamma d(x)=0\}$. Since U_{1} and U_{2} are additive subgroups of U such that $U_{1} \cup U_{2}=U$ and by Brauer's trick either $U_{1}=U$ or $U_{2}=U$. If $U_{1}=U$ then $[x, r]_{\gamma}=0$ for all $x \in U, r \in M, \gamma \in \Gamma$, and hence $U \subseteq Z(M)$. Therefore M is commutative by Lemma 2.1. Now, we assume that $U_{2}=U$. Since M is prime and $U \neq 0$, we find that $d=0$, a contradiction.
(iv). It is given that $d\left(x \circ_{\gamma} y\right)=[x, y]_{\gamma}$. This implies that

$$
d(x) \circ_{\gamma} y+x \circ_{\gamma} d(y)=[x, y]_{\gamma} \text { for all } x, y \in U \text { and } \gamma \in \Gamma
$$

Replace y by $x \alpha y$ to get

$$
d(x) \gamma x \alpha y+d(x) \alpha y \gamma x=0 \text { for all } x, y \in U \text { and } \alpha, \gamma \in \Gamma
$$

Again, replacing y by $y \beta r$, we find that

$$
d(x) \gamma y \alpha[r, x]_{\beta}=0 \text { for all } x, y \in U, r \in M \text { and } \alpha, \beta, \gamma \in \Gamma
$$

Now using the similar arguments as used after (2.15), we get the required result.
Theorem 2.16. Let M be a 2-torsion free prime Γ-ring and U be a nonzero ideal of M. Suppose d is a derivation on M such that d satisfies any one of the following condition:
(i) $d(x) \gamma d(y)=[x, y]_{\gamma}$ for all $x, y \in U$ and $\gamma \in \Gamma$,
(ii) $d(y) \gamma d(x)=[x, y]_{\gamma}$ for all $x, y \in U$ and $\gamma \in \Gamma$,
(iii) $d(x) \gamma d(y)=x \circ_{\gamma} y$ for all $x, y \in U$ and $\gamma \in \Gamma$.

Then M is commutative.
Proof: (i). Replacing y by $y \alpha r$ in the given condition, we get

$$
d(x) \gamma d(y) \alpha r+d(x) \gamma y \alpha d(r)=[x, y]_{\gamma} \alpha r+y \alpha[x, r]_{\gamma}
$$

for all $x, y \in U, r \in M$ and $\alpha, \gamma \in \Gamma$.
Now, using the given condition, we get

$$
d(x) \gamma y \alpha d(r)=y \alpha[x, r]_{\gamma} \text { for all } x, y \in U, r \in M \text { and } \alpha, \gamma \in \Gamma .
$$

Further, replacing r by $r+x$, we get $d(x) \gamma y \alpha d(x)=0$ for all $x, y \in U$ and $\alpha, \gamma \in \Gamma$. Since M is prime and $U \neq\{0\}, d(x)=0$ for all $x \in U$. Hence our hypothesis implies that $[x, y]_{\gamma}=0$ for all $x, y \in U$ and $\gamma \in \Gamma$ i.e., U is commutative. Therefore by Lemma $2.2, M$ is commutative.

By the similar arguments as used in (i), we get the required result in cases (ii) and (iii).

References

1. M. Ashraf and N. Rehman, On derivation and commutativity in prime rings, East-West J. of Math. 3 (1) (2001), 87-91.
2. M. Ashraf and N. Rehman, On commutativity of rings with derivation, Result. Math. 42, (2002), 3-8.
3. W.E. Barnes, On the Γ-rings of Nobusawa, Pacific J. of Math. 18 (3) (1966), 411-422.
4. M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Internal. J. Math. \& Math. Sci. 15, (1992), 205-206.
5. F.J. Jing, On derivations of Γ-rings, Qu fu Shifan Daxue Xuebeo Ziran Kexue Ban 13 (4) (1987), 159-161.
6. N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1 (1964), 81-89.
7. M. Soyturk, The commutativity in prime gamma rings with derivation, Tr. J. of Math. 18 (1994), 149-155.

Mohammad Ashraf and Malik Rashid Jamal
Department of Mathematics
Aligarh Muslim University
Aligarh 202002 (INDIA)
E-mail address: mashraf80@hotmail.com, rashidmaths@gmail.com

[^0]: 2000 Mathematics Subject Classification: 16W25, 16N60,16U80
 ${ }_{2}$ This research is partially supported by a grant from DST (SR/S4/MS:556/08)

