

(3s.) **v. 32** 1 (2014): **193–205**. ISSN-00378712 in press doi:10.5269/bspm.v32i1.13457

Some Differential Identities in Prime Γ -rings

Mohammad Ashraf and Malik Rashid Jamal

ABSTRACT: Let M be a prime Γ -ring and U be a nonzero ideal of M. An additive mapping $d : M \longrightarrow M$, where M is a Γ -ring, is called a derivation if for any $a, b \in M$ and $\alpha \in \Gamma$, $d(a\alpha b) = d(a)\alpha b + a\alpha d(b)$. In this paper, we investigate the commutativity of prime Γ -ring satisfying certain differential identities.

Key Words: Γ -rings, prime Γ -rings, derivations, ideals, commutativity.

Contents

Introduction 1

2 Main Results

1. Introduction

Let M and Γ be additive abelian groups. If for any $a, b, c \in M$ and $\alpha, \beta \in \Gamma$, the following conditions are satisfied, (i) $a\alpha b \in M$ (ii) $(a+b)\alpha c = a\alpha c + b\alpha c$, $a(\alpha+\beta)b =$ $a\alpha b + a\beta b$, $a\alpha(b+c) = a\alpha b + a\alpha c$ (*iii*) $(a\alpha b)\beta c = a\alpha(b\beta c)$, then M is called a Γ ring. An additive subgroup U of M is called a right (resp. a left) ideal of M if $U\Gamma M \subset U$ (resp. $M\Gamma U \subset U$). U is said to be an ideal of M if it is both a right as well as a left ideal of M. M is said to be prime Γ -ring if $a\Gamma M\Gamma b = \{0\}$ implies that either a = 0 or b = 0 for $a, b \in M$. The centre of Γ -ring M will be denoted by Z(M) i.e.; $Z(M) = \{a \in M \mid a\alpha b = b\alpha a \text{ for all } b \in M \text{ and } \alpha \in \Gamma\}$. Following Jing [5], an additive mapping $d: M \longrightarrow M$ is called a derivation on M if $d(a\alpha b) = d(a)\alpha b + a\alpha d(b)$ for all $a, b \in M$ and $\alpha \in \Gamma$. For any $a, b \in M$ and $\gamma \in \Gamma$, we write $[a, b]_{\gamma} = a\gamma b - b\gamma a$ and $a \circ_{\gamma} b = a\gamma b + b\gamma a$.

Throughout this paper M will denote a Γ -ring satisfying $a\alpha b\beta c = a\beta b\alpha c$ for all $\alpha, \beta \in \Gamma$ and for all $a, b, c \in M$. We shall use the following identities without any specific mention:

If $a\alpha b\beta c = a\beta b\alpha c$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$, then

- (i) $[a, b\beta c]_{\gamma} = [a, b]_{\gamma}\beta c + b\beta [a, c]_{\gamma}$,
- (*ii*) $a \circ_{\alpha} (b+c) = a \circ_{\alpha} b + a \circ_{\alpha} c$,
- (*iii*) $a \circ_{\alpha} (b\beta c) = (a \circ_{\alpha} b)\beta c + b\beta [c, a]_{\alpha} = b\beta (a \circ_{\alpha} c) + [a, b]_{\alpha}\beta c.$

Typeset by $\mathcal{B}^{\mathcal{S}}\mathcal{P}_{\mathcal{M}}$ style. © Soc. Paran. de Mat.

193

194

²⁰⁰⁰ Mathematics Subject Classification: 16W25, 16N60,16U80 ² This research is partially and the second s

This research is partially supported by a grant from DST (SR/S4/MS:556/08)

The study of Γ -ring was initiated by Nobusawa in [4]. Further, the condition on Γ -ring was slightly weakened by Barnes [3] in sense of Nobusawa. Since then various analogous concepts and analogous results of ring theory have been studied in Γ -rings (for reference see [3], [5], [6] and [7], where further references can be found). In the present paper, we have obtained some analogous results in Γ -ring earlier obtained for rings.

2. Main Results

In the year 1992, Daif and Bell [4] obtained commutativity of semiprime ring R satisfying differential identity $d([x, y]) = \pm [x, y]$ for all $x, y \in R$. Further, the first author together with Rehman [2] established the commutativity of semiprime ring R satisfying the above identity for a well behaved subset of R viz. Lie ideal of R. Later on, many authors explored commutativity of prime and semiprime rings satisfying various conditions on rings (for reference see, [2] etc. where further references can be found). In the present paper, our objective is to investigate commutativity of prime Γ -rings satisfying certain identities involving derivations on Γ -rings. We facilitate our discussion with the following results which are necessary for developing the proofs of our theorems:

Lemma 2.1. [Lemma 2, [7]] Let M be a prime Γ -ring and U be a nonzero right ideal of M such that $U \subseteq Z(M)$. Then M is commutative.

Lemma 2.2. Let M be a prime Γ -ring and U be a commutative nonzero right ideal of M. Then M is commutative.

Proof: Since U is commutative, $[x, y]_{\gamma} = 0$ for all $x, y \in M$ and $\gamma \in \Gamma$. Replace y by $y\alpha r$, we have

$$0 = [x, y\alpha r]_{\gamma}$$

= $[x, y]_{\gamma}\alpha r + y\alpha [x, r]_{\gamma}$
= $y\alpha [x, r]_{\gamma}.$

Again replacing y by $y\beta r_1$, we get $y\beta r_1\alpha[x,r]_{\gamma} = 0$. Since M is prime, either y = 0 or $[x,r]_{\gamma} = 0$. If y = 0, then $U = \{0\}$, a contradiction. Therefore $[x,r]_{\gamma} = 0$. This implies $x \in Z(M)$ i.e., $U \subseteq Z(M)$. Therefore, by Lemma 2.1, M is commutative.

Theorem 2.3. Let M be a prime Γ -ring and U be a nonzero ideal of M. If d is a nonzero derivation on M satisfying $[d(x), x]_{\gamma} = 0$ for all $x \in U, \gamma \in \Gamma$, then M is commutative.

Proof: We have $[d(x), x]_{\gamma} = 0$ for all $x \in U$ and $\gamma \in \Gamma$. Replace x by x + y, to get

$$[d(x), y]_{\gamma} + [d(y), x]_{\gamma} = 0 \text{ for all } x, y \in U, \ \gamma \in \Gamma.$$

Further, replacing y by $y\alpha x$ in the above condition and using the same along with the given condition, we have

$$[y, x]_{\gamma} \alpha d(x) = 0$$
 for all $x, y \in U$ and $\alpha, \gamma \in \Gamma$.

Again, replacing y by $y\beta z$ and using the above condition, we get $[y, x]_{\gamma}\beta z\alpha d(x) = 0$ for all $x, y, z \in U$ and $\alpha, \beta, \gamma \in \Gamma$. Now replacing z by $r\delta z$ and using the primeness of M, we get either $[y, x]_{\gamma} = 0$ or $U\Gamma d(x) = \{0\}$. Now let $U_1 = \{x \in U \mid [y, x]_{\gamma} = 0$ for all $y \in M, \gamma \in \Gamma\}$ and $U_2 = \{x \in U \mid U\Gamma d(x) = \{0\}\}$. Then it can be seen that U_1 and U_2 are additive subgroups of U whose union is U. But a group can not be union of two of its proper subgroups, we find that either $U\Gamma d(x) = \{0\}$ for all $x \in U$ or $[x, y]_{\gamma} = 0$ for all $x, y \in U$ and $\gamma \in \Gamma$. If $U\Gamma d(x) = \{0\}$ implies that d(x) = 0 for all $x \in U$. Hence $d(x\gamma r) = 0$. Therefore $x\gamma d(r) = 0$. This implies d(r) = 0 by primeness of M. Therefore d = 0, a contradiction. Hence $[x, y]_{\gamma} = 0$ for all $x, y \in U$ and $\gamma \in \Gamma$ and U is commutative. \Box

Corollary 2.4. Let M be a prime Γ -ring and d be a nonzero derivation on M satisfying $x - d(x) \in Z(M)$ for all $x \in U$, then M is commutative.

Proof: We have $x - d(x) \in Z(M)$ i.e., $[x - d(x), x]_{\gamma} = 0$ for all $x \in U$ and $\gamma \in \Gamma$. Hence $[d(x), x]_{\gamma} = 0$ for all $x \in U$ and $\gamma \in \Gamma$. Therefore by Theorem 2.3, M is commutative.

Theorem 2.5. Let M be a 2-torsion free prime Γ -ring and U be a nonzero ideal of M. Suppose M admits a nonzero derivation d satisfying any one of the following conditions:

- (i) $[d(x), d(y)]_{\gamma} = 0$ for all $x, y \in U$ and $\gamma \in \Gamma$,
- (ii) $[d(x), d(y)]_{\gamma} = [x, y]_{\gamma}$ for all $x, y \in U$ and $\gamma \in \Gamma$,
- (*iii*) $[d(x), d(y)]_{\gamma} = [y, x]_{\gamma}$ for all $x, y \in U$ and $\gamma \in \Gamma$,
- (iv) $d([x, y]_{\gamma}) = [x, y]_{\gamma}$ for all $x, y \in U$ and $\gamma \in \Gamma$.

Then M is commutative.

Proof: (i). Given that $[d(x), d(y)]_{\gamma} = 0$ for all $x, y \in U$ and $\gamma \in \Gamma$. Replace y by $y \alpha z$ and use the given condition, we get

$$d(y)\alpha[d(x), z]_{\gamma} + [d(x), y]_{\gamma}\alpha d(z) = 0.$$
(2.1)

Replacing z by $z\beta r$ for $r \in M$ in (2.1) and using (2.1), we have

$$d(y)\alpha z\beta[d(x),r]_{\gamma} + [d(x),y]_{\gamma}\alpha z\beta d(r) = 0.$$

Again, replacing r by d(x), we get $[d(x), y]_{\gamma} \alpha z \beta d^2(x) = 0$ for all $x, y, z \in M$ and $\alpha, \beta, \gamma \in \Gamma$. By primeness of M, we have either $[d(x), y]_{\gamma} = 0$ or $z\beta d^2(x) = 0$. Take $U_1 = \{x \in U \mid [d(x), y]_{\gamma} = 0 \text{ for all } y \in U \text{ and } \gamma \in \Gamma\}$ and $U_2 = \{x \in U \mid z \in U \mid z \in U\}$ $z\beta d^2(x) = 0$ for all $z \in U$ and $\beta \in \Gamma$. Then U_1 and U_2 are additive subgroups of U such that $U_1 \cup U_2 = U$. But a group can not be the set theoretic union of its two proper subgroups, either $U_1 = U$ or $U_2 = U$. If $U_1 = U$, then $[d(x), y]_{\gamma} = 0$ for all $x, y \in U$ and $\gamma \in \Gamma$. Therefore in particular $[d(x), x]_{\gamma} = 0$ for all $x \in U, \gamma \in \Gamma$ and hence M is commutative by Theorem 2.3. If $U_2 = U$, then $U\beta d^2(x) = \{0\}$ for all $x \in U$ and $\beta \in U$. Since M is prime and $U \neq \{0\}$, we get $d^2(x) = 0$ for all $x \in U$. Replacing x by $w\alpha y$, we find that $d^2(w\alpha y) = 0$ for all $w, y \in U, \alpha \in \Gamma$. Since $d^2(x) = 0$ for all $x \in U$ and Γ -ring is 2-torsion free, we have $d(w)\alpha d(y) = 0$ for all $w, y \in U$ and $\alpha \in \Gamma$. Further, replacing w by $w\beta z$ and using this condition along with primeness of M, we get either $d(w)\beta z = 0$ or d(x) = 0. Again, since M is prime, either $d(U) = \{0\}$ or $U = \{0\}$. Since it is given that $U \neq \{0\}, d(U) = \{0\}$. But $d(U) = \{0\}$ implies $U\Gamma d(M) = \{0\}$. Again, primeness of M gives $d(M) = \{0\}$, which is a contradiction.

(*ii*). Replacing y by $y\beta z$ in $[d(x), d(y)]_{\gamma} = [x, y]_{\gamma}$, we get

 $[d(x), d(y\beta z)]_{\gamma} = [x, y\beta z]_{\gamma}$ for all $x, y, z \in U$ and $\beta, \gamma \in \Gamma$.

This implies that for all $x, y, z \in U$ and $\beta, \gamma \in \Gamma$, we get

 $[d(x),d(y)]_{\gamma}\beta z + d(y)\beta[d(x),z]_{\gamma} + [d(x),y]_{\gamma}\beta d(z) + y\beta[d(x),d(z)]_{\gamma} = [x,y]_{\gamma}\beta z + y\beta[x,z]_{\gamma}.$

Using the given condition, we arrive at

$$d(y)\beta[d(x),z]_{\gamma} + [d(x),y]_{\gamma}\beta d(z) = 0$$
 for all $x, y, z \in M$ and $\beta, \gamma \in \Gamma$.

Now using the same arguments as used after (2.1), we get the required result.

(*iii*). Using the similar techniques as above, one can get the required result.

(*iv*). Given that $d([x, y]_{\gamma}) = [x, y]_{\gamma}$ for all $x, y \in U$ and $\gamma \in \Gamma$. After the simplification, we get

$$[d(x), y]_{\gamma} + [x, d(y)]_{\gamma} = [x, y]_{\gamma} \text{ for all } x, y \in U \text{ and } \gamma \in \Gamma.$$

$$(2.2)$$

Replacing y by $z\beta y$, we get

$$\begin{aligned} ([d(x), z]_{\gamma} + [x, d(z)]_{\gamma})\beta y + z\beta([d(x), y]_{\gamma} + [x, d(y)]_{\gamma}) + d(z)\beta[x, y]_{\gamma} + [x, z]_{\gamma}\beta d(y) \\ &= [x, z]_{\gamma}\beta y + z\beta[x, y]_{\gamma} \text{ for all } x, y, z \in U \text{ and } \beta, \gamma \in \Gamma. \end{aligned}$$

Using (2.2), we find that

 $d(z)\beta[x,y]_{\gamma} + [x,z]_{\gamma}\beta d(y) = 0$ for all $x, y, z \in U$ and $\beta, \gamma \in \Gamma$.

Further, replacing y by x, we get $[x, z]_{\gamma}\beta d(x) = 0$ for all $x, z \in U$ and $\beta, \gamma \in \Gamma$. Again, replacing z by $w\alpha z$, we get $[x, w]_{\gamma}\alpha z\beta d(x) = 0$ for all $x, w, z \in U$ and $\alpha, \beta, \gamma \in \Gamma$. Since M is prime, we have either $U\Gamma d(x) = \{0\}$ or $[x, z]_{\gamma} = 0$. Take $U_1 = \{x \in U \mid U\Gamma d(x) = \{0\}\}$ and $U_2 = \{x \in U \mid [x, w]_{\gamma} = 0$ for all $w \in U, \gamma \in \Gamma\}$. It can be easily seen that U_1 and U_2 are additive subgroups of U such that $U_1 \cup U_2 = U$. Therefore either $U_1 = U$ or $U_2 = U$. If $U_1 = U$, then $U\Gamma d(x) = \{0\}$ for all $x \in U$. Since $U \neq \{0\}$ and M is prime, we arrive at a contradiction that d = 0. Therefore, now assume that $U_2 = U$. Hence $[x, w]_{\gamma} = 0$ for all $x, w \in U$ and $\gamma \in \Gamma$. This yields that U is commutative. By Lemma 2.2, M is commutative. \Box

Corollary 2.6. Let M be a prime Γ -ring and U be a nonzero ideal of M. If $d \neq 0$ is a derivation on M such that $d([x, y]_{\gamma}) = [y, x]_{\gamma}$ for all $x, y \in U$ and $\gamma \in \Gamma$, then M is commutative.

Proof: Given that $d([x, y])_{\gamma} = [y, x]_{\gamma}$ for all $x, y \in U$ and $\gamma \in \Gamma$. This implies that $(-d)([x, y]_{\gamma}) = [x, y]_{\gamma}$ for all $x, y \in U$ and $\gamma \in \Gamma$. Since -d is a derivation on M, by Theorem 2.5(iv), M is commutative.

Corollary 2.7. Let M be a prime Γ -ring and U be a nonzero ideal of M. Suppose M admits a derivation d satisfying any one of the following conditions:

- (i) $d([x,y]_{\gamma}) = [d(x),y]_{\gamma}$ for all $x, y \in U$ and $\gamma \in \Gamma$,
- (ii) $d(x \circ_{\gamma} y) = d(x) \circ_{\gamma} y$ for all $x, y \in U$ and $\gamma \in \Gamma$.

Then M is commutative.

Proof: (i). On simplifying the given condition, we have $x\gamma d(y) = d(y)\gamma x$ for all $x, y \in U$ and $\gamma \in \Gamma$. Replacing x by $x\beta d(z)$, we have $x\gamma[d(y), d(z)]_{\beta} = 0$. Since M is prime and $U \neq \{0\}$, we have $[d(y), d(z)]_{\beta} = 0$ for all $y, z \in U$ and $\beta \in \Gamma$. Hence M is commutative by Theorem 2.5(i).

(*ii*). Using similar arguments as used in (*i*), we get the required result. \Box

Theorem 2.8. Let M be a prime Γ -ring and U be a nonzero ideal of M. Suppose M admits a nonzero derivation d such that for all $x, y \in U$ and $\alpha, \gamma \in \Gamma$, d satisfying any one of the following conditions:

- (i) $d(x\alpha y) = d(y\alpha x)$,
- $(ii) \ d(x\alpha y) = -d(y\alpha x),$
- (*iii*) $[d(x), y]_{\gamma} = [x, d(y)]_{\gamma}$.

Then M is commutative.

Proof: (i). For all $x, y \in U$ and $\alpha \in \Gamma$, we have $d(x\alpha y) = d(y\alpha x)$. On simplifying, we have

$$[d(x), y]_{\alpha} + [x, d(y)]_{\alpha} = 0 \text{ for all } x, y \in U \text{ and } \alpha \in \Gamma.$$
(2.3)

Replacing y by $y\beta z$ in (2.3) and using (2.3), we get

$$d(y)\beta[x,z]_{\alpha}+[x,y]_{\alpha}\beta d(z)=0 \text{ for all } x,y,z\in U \text{ and } \alpha,\beta\in \Gamma.$$

Replace z by x to get $[x, y]_{\alpha}\beta d(x) = 0$ for all $x, y \in U$ and $\alpha, \beta \in \Gamma$. Again, replacing y by $y\gamma w$ in the latter condition, we get

$$[x, y]_{\alpha} \gamma w \beta d(x) = 0 \text{ for all } x, y, w \in U \text{ and } \alpha, \beta, \gamma \in \Gamma.$$
(2.4)

Since M is prime, we have $[x, y]_{\alpha} = 0$ or $U\Gamma d(x) = \{0\}$. The sets $x \in U$ for which these two properties hold forms additive subgroups of U whose union is U. Hence by Brauer's trick, either $[x, y]_{\alpha} = 0$ for all $x, y \in U$ and $\alpha \in \Gamma$ or $U\Gamma d(x) = \{0\}$ for all $x \in U$. If $U\Gamma d(x) = \{0\}$, then by primeness of M, either $U = \{0\}$ or d(x) = 0for all $x \in U$. But d(x) = 0 for all $x \in U$ gives d = 0 on M, a contradiction. Therefore $[x, y]_{\alpha} = 0$ for all $x, y \in U$, $\alpha \in \Gamma$ and hence U is commutative and by Lemma 2.2, M is commutative.

(*ii*). For all $x, y \in U$ and $\alpha \in \Gamma$, we have $d(x\alpha y) = -d(y\alpha x)$. This implies that $d(x)\alpha y + x\alpha d(y) = -d(y)\alpha x - y\alpha d(x)$ for all $x, y \in U$ and $\alpha \in \Gamma$. Replace y by $y\beta x$ and use the given condition, to get

$$x\alpha y\beta d(x) + y\alpha x\beta d(x) = 0 \text{ for all } x, y \in U \text{ and } \alpha, \beta \in \Gamma.$$
 (2.5)

Now, replace y by $y\gamma z$ in (2.5) and use (2.5), to get

$$[x, y]_{\alpha} \gamma z \beta d(x) = 0$$
 for all $x, y, z \in U$ and $\alpha, \beta, \gamma \in \Gamma$.

Now using the same arguments, as used in proof of (i) after (2.3), we get the required result.

(*iii*). Replacing y by $y\beta z$ in the given condition, we have

$$[x,y]_{\gamma}\beta d(z) + d(y)\beta[x,z]_{\gamma} = 0.$$

Replacing z by x, we get $[x, y]_{\gamma}\beta d(x) = 0$ for all $x, y \in M$ and $\beta, \gamma \in \Gamma$. Again replacing y by $y\alpha z$, we find that $[x, y]_{\gamma}\alpha z\beta d(x) = 0$. Since M is prime, either $[x, y]_{\gamma} = 0$ or $U\Gamma d(x) = \{0\}$. By the same argument given in the proof of (i) after (2.3), we get the required result. \Box

Theorem 2.9. Let M be a prime Γ -ring and U be a nonzero ideal of M. Suppose d is a derivation on M satisfying any one of the following conditions:

- (i) $d(x\gamma y) x\gamma y \in Z(M)$ for all $x, y \in U$ and $\gamma \in \Gamma$,
- (ii) $d(x\gamma y) y\gamma x \in Z(M)$ for all $x, y \in U$ and $\gamma \in \Gamma$,
- (iii) $d(x)\gamma d(y) x\gamma y \in Z(M)$ for all $x, y \in U$ and $\gamma \in \Gamma$.

Then M is commutative.

Proof: (i). It is given that $d(x\gamma y) - x\gamma y \in Z(M)$ for all $x, y \in U$ and $\gamma \in \Gamma$. If d = 0, then we have $x\gamma y \in Z(M)$. Therefore $[x\gamma y, x]_{\beta} = 0$. Therefore $x\gamma [y, x]_{\beta} = 0$ for all $x, y \in U$ and $\beta, \gamma \in \Gamma$. Now replacing y by $y\alpha z$, we find that $x\gamma y\alpha [z, x]_{\beta} = 0$ for all $x, y, z \in U$ and $\alpha, \beta, \gamma \in \Gamma$. By the primeness of M, we have either x = 0 or $U\Gamma[z, x]_{\beta} = \{0\}$. But x = 0 also implies that $U\Gamma[z, x]_{\beta} = \{0\}$. Therefore in both the cases, we get $U\Gamma[z, x]_{\beta} = \{0\}$. Since M is prime, either $U = \{0\}$ or $[z, x]_{\beta} = 0$. Since $U \neq \{0\}, [z, x]_{\beta} = 0$ for all $x, z \in U, \beta \in \Gamma$ and U is commutative. Therefore M is commutative by Lemma 2.2.

Now assume that $d \neq 0$. Given that $d(x\gamma y) - x\gamma y \in Z(M)$. This implies that $d(x)\gamma y + x\gamma d(y) - x\gamma y \in Z(M)$. Replacing y by $y\beta z$ and using the given condition, we have

$$0 = [d(x)\gamma y\beta z + x\gamma d(y\beta z) - x\gamma y\beta z, z]_{\alpha}$$

= $[x\gamma y\beta d(z), z]_{\alpha}$
= $x\gamma y\beta [d(z), z]_{\alpha} + x\gamma [y, z]_{\alpha}\beta d(z) + [x, z]_{\alpha}\gamma y\beta d(z).$ (2.6)

Again, replacing x by $w\delta x$ for $w \in U$ and $\delta \in \Gamma$ in (2.6), we get

$$w\delta(x\gamma y\beta[d(z),z]_{\alpha} + x\gamma[y,z]_{\alpha}\beta d(z) + [x,z]_{\alpha}\gamma y\beta d(z)) + [w,z]_{\alpha}\delta x\gamma y\beta d(z) = 0$$

Using (2.6), we get $[w, z]_{\alpha} \delta x \gamma y \beta d(z) = 0$. Since M is prime, we find that for each fixed $z \in U$, either $[w, z]_{\alpha} \delta x = 0$ or $U \Gamma d(z) = \{0\}$. Let $U_1 = \{z \in U \mid [w, z]_{\alpha} \delta x = 0$ for all $x, w \in U$, $\alpha, \delta \in \Gamma\}$ and $U_2 = \{z \in U \mid U \Gamma d(z) = \{0\}\}$. Since U_1 and U_2 are additive subgroups of U whose union is U, we find that either $U_1 = U$ or $U_2 = U$. If $U_1 = U$, then $[w, z]_{\alpha} \delta x = 0$ for all $x, w, z \in U$ and $\alpha, \delta \in \Gamma$. Since M is prime, either $U = \{0\}$ or $[w, z]_{\alpha} = 0$ for all $w, z \in U$ and $\alpha \in \Gamma$. Since $U \neq \{0\}$, U is commutative, and hence M is commutative by Lemma 2.2. If $U_2 = U$, then $U \Gamma d(z) = \{0\}$ for all $z \in U$. This implies that either $U = \{0\}$ or d = 0, and hence in both the cases we arrive at contradictions.

(*ii*). If d = 0, then using similar techniques as used in the beginning of the proof of (*i*), we find that M is commutative.

Now assume that $d \neq 0$. Since $d(x\gamma y) - y\gamma x \in Z(M)$ for all $x, y \in U, r \in M$ and $\gamma \in \Gamma$, we have $[d(x\gamma y) - y\gamma x, r]_{\alpha} = 0$ for all $x, y \in U, r \in M$ and $\alpha, \gamma \in \Gamma$. After simplification, we get

$$[d(x)\gamma y + x\gamma d(y), r]_{\alpha} = [y\gamma x, r]_{\alpha} \text{ for all } x, y \in U, \ r \in M \text{ and } \alpha, \gamma \in \Gamma.$$
(2.7)

Replacing y by $y\beta r$ for $r \in M$, $\beta \in \Gamma$ in (2.7) and using (2.7), we get

$$[y\gamma x, r]_{\alpha}\beta r + [x\gamma y\beta d(r), r]_{\alpha} = [y\beta r\gamma x, r]_{\alpha}.$$
(2.8)

Again replacing y by $x\delta y$ for $x \in U$, $\delta \in \Gamma$ in (2.8) and using (2.8), we get

 $x\delta[y\beta r\gamma x, r]_{\alpha} + [x, r]_{\alpha}\delta y\gamma x\beta r + [x, r]_{\alpha}\delta x\gamma y\beta d(r) = x\delta[y\beta r\gamma x, r]_{\alpha} + [x, r]_{\alpha}\delta y\beta r\gamma x.$ After simplifying, we get

$$[x,r]_{\alpha}\delta y\gamma[x,r]_{\beta} + [x,r]_{\alpha}\delta x\gamma y\beta d(r) = 0.$$
(2.9)

Replacing r by r + x in (2.9) and using (2.9), we get

$$[x,r]_{\alpha}\delta x\gamma y\beta d(x) = 0$$
 for all $x, y \in U, r \in M$ and $\alpha, \beta, \gamma, \delta \in \Gamma$.

Since M is prime, we get $[x, r]_{\alpha} \delta x = 0$ for all $x \in U$, $r \in M$ and $\alpha, \delta \in \Gamma$ or $U\Gamma d(x) = \{0\}$ for all $x \in U$. If $[x, r]_{\alpha} \delta x = 0$, then $[x, r\gamma r_1]_{\alpha} \delta x = 0$. Therefore, $[x, r]_{\alpha} \gamma r_1 \delta x = 0$. By primeness of M, either x = 0 or $[x, r]_{\alpha} = 0$. But x = 0 also gives $[x, r]_{\alpha} = 0$. Hence, there remain only two cases namely either $[x, r]_{\alpha} = 0$ or $U\Gamma d(x) = \{0\}$. Take $U_1 = \{x \in U \mid [x, r]_{\alpha} = 0$ for all $r \in M, \alpha \in \Gamma\}$ and $U_2 = \{x \in U \mid U\Gamma d(x) = \{0\}\}$. But these are two additive subgroups of U whose union is U. Therefore either $U_1 = U$ or $U_2 = U$. If $U_1 = U$ then $U \subseteq Z(M)$. Therefore M is commutative by Lemma 2.1. If $U_2 = U$, then either $U = \{0\}$ or d = 0, and we find contradictions in both the cases.

(*iii*). If d = 0, then $-x\gamma y \in Z(M)$ for all $x, y \in U$. Therefore $x\gamma y \in Z(M)$ and as above, M is commutative.

Now suppose that $d \neq 0$. If we replace y by $y\alpha r$, then for all $x, y \in U, r \in M$ and $\alpha, \gamma \in \Gamma$, we find that $(d(x)\gamma d(y) - x\gamma y)\alpha r + d(x)\gamma y\alpha d(r) \in Z(M)$. Therefore

 $[(d(x)\gamma d(y) - x\gamma y)\alpha r + d(x)\gamma y\alpha d(r), r] = 0.$

Using the given condition, we arrive at

$$[d(x)\gamma y\alpha d(r), r]_{\beta} = 0.$$
(2.10)

Replacing y by $d(z)\delta y$ in (2.10), we get

$$[d(x), r]_{\beta} \gamma d(z) \delta y \alpha d(r) = 0$$
 for all $x, y, z \in U, r \in M$ and $\alpha, \beta, \delta, \gamma \in \Gamma$.

Since *M* is prime, either $U\Gamma d(r) = \{0\}$ or $[d(x), r]_{\beta}\gamma d(z) = 0$. Take $M_1 = \{r \in M \mid U\Gamma d(r) = \{0\}\}$ and $M_2 = \{r \in M \mid [d(x), r]_{\beta}\gamma d(z) = 0$ for all $x, z \in U$ and $\beta, \gamma \in \Gamma\}$.

But M_1 and M_2 are two additive subgroups of M whose union is M. Therefore either $M_1 = M$ or $M_2 = M$. If $M_1 = M$, then $U\Gamma d(r) = \{0\}$. Since $U \neq \{0\}$ and M is prime, we find that d = 0, a contradiction. Hence assume that $M_2 = M$. This yields that $[d(x), r]_{\beta} \gamma d(z) = 0$ for all $r \in M$. Hence $[d(x), r\alpha r_1]_{\beta} \gamma d(z) = 0$. This implies that $[d(x), r]_{\beta} \alpha r_1 \gamma d(z) = 0$. By primeness of M, either $[d(x), r]_{\beta} = 0$ for all $x \in U$, $r \in M$ and $\beta \in \Gamma$ or d(z) = 0 for all $z \in U$. But d(z) = 0 gives d = 0, which is a contradiction. Therefore $[d(x), r]_{\beta} = 0$. In particular, $[d(x), x]_{\beta} = 0$ for all $x \in U$ and $\beta \in \Gamma$. Therefore by Theorem 2.3, M is commutative.

Corollary 2.10. Let M be a prime Γ -ring and U be a nonzero ideal of M. If d is a derivation on M satisfying $d(x\gamma y) + x\gamma y \in Z(M)$ for all $x, y \in U$ and $\gamma \in \Gamma$, then M is commutative.

Proof: $d(x\gamma y) + x\gamma y \in Z(M)$ implies that $-d(x\gamma y) - x\gamma y \in Z(M)$ i.e., $(-d)(x\gamma y) - x\gamma y \in Z(M)$. Since -d is also a derivation on M, hence by Theorem 2.9(i), M is commutative.

Corollary 2.11. Let M be a prime Γ -ring and U be a nonzero ideal of M. If d is a derivation on M satisfying $d(x\gamma y) + y\gamma x \in Z(M)$ for all $x, y \in U$ and $\gamma \in \Gamma$, then M is commutative.

Theorem 2.12. Let M be a prime Γ -ring and U be a nonzero ideal of M. If d is a derivation on M such that $d(x \circ_{\gamma} y) = x \circ_{\gamma} y$ for all $x, y \in U$ and $\gamma \in \Gamma$, then M is commutative.

Proof: It is given that $d(x \circ_{\gamma} y) = x \circ_{\gamma} y$ for all $x, y \in U$ and $\gamma \in \Gamma$. If d = 0, then $x \circ_{\gamma} y = 0$ for all $x, y \in U$ and $\gamma \in \Gamma$. Replacing y by $y\alpha z$, we have $x \circ_{\gamma} (y\alpha z) = 0$ for all $x, y, z \in U$ and $\alpha, \gamma \in \Gamma$. This yields that $y\alpha[z, x]_{\gamma} = 0$ for all $x, y, z \in U$ and $\alpha, \gamma \in \Gamma$. Since M is prime and $U \neq \{0\}$, U is commutative and by Lemma 2.2, we get the required result.

Now assume that $d \neq 0$. The given condition implies that

$$d(x) \circ_{\gamma} y + x \circ_{\gamma} d(y) = x \circ_{\gamma} y \text{ for all } x, y \in U \text{ and } \gamma \in \Gamma.$$
(2.11)

Replace y by $y\alpha z$ in (2.11), we get

$$d(x) \circ_{\gamma} (y\alpha z) + x \circ_{\gamma} d(y\alpha z) = x \circ_{\gamma} (y\alpha z) \text{ for all } x, y, z \in U \text{ and } \alpha, \gamma \in \Gamma.$$

After simplification, we find that

 $\begin{aligned} (d(x) \circ_{\gamma} y + x \circ_{\gamma} d(y))\alpha z + y\alpha[z, d(x)]_{\gamma} + d(y)\alpha[z, x]_{\gamma} + (x \circ_{\gamma} y)\alpha d(z) + y\alpha[d(z), x]_{\gamma} \\ &= (x \circ_{\gamma} y)\alpha z + y\alpha[z, x]_{\gamma} \text{ for all } x, y, z \in U \text{ and } \alpha, \gamma \in \Gamma. \end{aligned}$

Now using (2.11), we get

$$y\alpha[z,d(x)]_{\gamma} + d(y)\alpha[z,x]_{\gamma} + (x \circ_{\gamma} y)\alpha d(z) + y\alpha[d(z),x]_{\gamma} = y\alpha[z,x]_{\gamma}$$

Replace z by x to get $(x \circ_{\gamma} y) \alpha d(x) = 0$. Now, replacing y by $w\beta y$, we find that

 $[x,w]_{\gamma}\beta y\alpha d(x) = 0$ for all $x, y, w \in U$ and $\alpha, \beta, \gamma \in \Gamma$.

Since M is prime, either $[x, w]_{\gamma} = 0$ or $U\Gamma d(x) = \{0\}$. Now using the similar arguments as used in Theorem 2.5(*iv*), we find that M is commutative.

Corollary 2.13. Let M be a prime Γ -ring and U be a nonzero ideal of M. If d is a derivation on M such that $d(x \circ_{\gamma} y) + x \circ_{\gamma} y = 0$ for all $x, y \in U$ and $\gamma \in \Gamma$, then M is commutative.

Theorem 2.14. Let M be a 2-torsion free prime Γ -ring and U be a nonzero ideal of M. Suppose $d \neq 0$ is a derivation on M such that d satisfies any one of the following conditions:

- (i) $d(x) \circ_{\gamma} d(y) = 0$ for all $x, y \in U$ and $\gamma \in \Gamma$,
- (ii) $d(x) \circ_{\gamma} d(y) = x \circ_{\gamma} y$ for all $x, y \in U$ and $\gamma \in \Gamma$,

(*iii*) $d(x) \circ_{\gamma} d(y) + x \circ_{\gamma} y = 0$ for all $x, y \in U$ and $\gamma \in \Gamma$.

Then M is commutative.

Proof: (i). Replacing y by $y\alpha z$ in the given condition, we get

$$(d(x)\circ_{\gamma} d(y))\alpha z + d(y)\alpha[z, d(x)]_{\gamma} + y\alpha(d(x)\circ_{\gamma} d(z)) + [d(x), y]_{\gamma}\alpha d(z) = 0.$$

Using the given condition, we have

$$d(y)\alpha[z, d(x)]_{\gamma} + [d(x), y]_{\gamma}\alpha d(z) = 0 \text{ for all } x, y, z \in U \text{ and } \alpha, \gamma \in \Gamma.$$
(2.12)

Replacing z by $z\beta d(x)$, we get

$$(d(y)\alpha[z,d(x)]_{\gamma} + [d(x),y]_{\gamma}\alpha d(z))\beta d(x) + [d(x),y]_{\gamma}\alpha z\beta d^{2}(x) = 0.$$

Using (2.12), we get $[d(x), y]_{\gamma} \alpha z \beta d^2(x) = 0$ for all $x, y, z \in U$ and $\alpha, \beta, \gamma \in \Gamma$. Primeness of M yields that either $[d(x), y]_{\gamma} \alpha z = 0$ or $d^2(x) = 0$. Take $U_1 = \{x \in U \mid d^2(x) = 0\}$ and $U_2 = \{x \in U \mid [d(x), y]_{\gamma} \alpha z = 0$ for all $y, z \in U$ and $\alpha, \gamma \in \Gamma\}$. Since U_1 and U_2 are additive subgroups of U such that $U_1 \cup U_2 = U$. Therefore by Brauer's trick either $U_1 = U$ or $U_2 = U$. If $U_1 = U$, then $d^2(x) = 0$ for all $x \in U$. Therefore by using the arguments as used in the proof of Theorem 2.5(i), d = 0 which is a contradiction. Now assume that $U_2 = U$ i.e., $[d(x), y]_{\gamma} \alpha z = 0$ for all $x, y, z \in U$ and $\alpha, \gamma \in \Gamma$. Since $U \neq \{0\}$ and M is prime, $[d(x), y]_{\gamma} = 0$ for all $x, y \in U$ and $\gamma \in \Gamma$. Hence $[d(x), x]_{\gamma} = 0$ for all $x \in U$ and M is commutative by Theorem 2.3.

(*ii*). If d = 0, then $x \circ_{\gamma} y = 0$ for all $x, y \in U$ and $\gamma \in \Gamma$. Therefore M is commutative by the argument used in the Theorem 2.12. Now assume that $d \neq 0$. Replace y by $y \alpha z$ to get

$$d(y)\alpha[z,d(x)]_{\gamma} + y\alpha(x\circ_{\gamma} z) + [d(x),y]_{\gamma}\alpha d(z) - y\alpha[z,x]_{\gamma} = 0$$
(2.13)

for all $x, y, z \in U$ and $\alpha, \gamma \in \Gamma$. Replacing y by $r\beta y$ in (2.13), we find that

$$r\beta(d(y)\alpha[z, d(x)]_{\gamma} + y\alpha(x \circ_{\gamma} z) + [d(x), y]_{\gamma}\alpha d(z) - y\alpha[z, x]_{\gamma}) + d(r)\beta y\alpha[z, d(x)]_{\gamma} \\ + [d(x), r]_{\gamma}\beta y\alpha d(z) = 0 \text{ for all } x, y, z \in U, \ r \in M \text{ and } \alpha, \beta, \gamma \in \Gamma.$$

Using (2.13), the above yields that

$$d(r)\beta y\alpha[z, d(x)]_{\gamma} + [d(x), r]_{\gamma}\beta y\alpha d(z) = 0.$$

Further replacing r by d(x), we get $d^2(x)\beta y\alpha[z, d(x)]_{\gamma} = 0$ for all $x, y, z \in U$ and $\alpha, \beta, \gamma \in \Gamma$. Take $U_1 = \{x \in U \mid d^2(x) = 0\}$ and $U_2 = \{x \in U \mid U\Gamma[z, d(x)]_{\gamma} = \{0\}$ for all $z \in U$ and $\gamma \in \Gamma\}$. If $U_1 = U$ then $d^2(x) = 0$ for all $x \in U$. Using similar techniques as used in Theorem 2.5(i) we get d = 0, a contradiction. Therefore $U_2 = U$. Hence $U\Gamma[z, d(x)]_{\gamma} = \{0\}$ for all $x, z \in U$ and $\gamma \in \Gamma$. Since M is prime

and $U \neq \{0\}$, $[z, d(x)]_{\gamma} = 0$. Hence $[d(x), x]_{\gamma} = 0$ for all $x \in U$ and $\gamma \in \Gamma$ and M is commutative by Theorem 2.3.

(*iii*). By the similar arguments as used in (*ii*), we can get the required result. \Box

Theorem 2.15. Let M be a 2-torsion free prime Γ -ring and U be a nonzero ideal of M. Suppose $d \neq 0$ is a derivation on M such that d satisfies any one of the following condition:

- (i) $[d(x), d(y)]_{\gamma} = y\gamma x$ for all $x, y \in U$ and $\gamma \in \Gamma$,
- (*ii*) $[d(x), d(y)]_{\gamma} = x\gamma y$ for all $x, y \in U$ and $\gamma \in \Gamma$,
- (*iii*) $d([x, y]_{\gamma}) = x \circ_{\gamma} y$ for all $x, y \in U$ and $\gamma \in \Gamma$,
- (iv) $d(x \circ_{\gamma} y) = [x, y]_{\gamma}$ for all $x, y \in U$ and $\gamma \in \Gamma$.

Then M is commutative.

Proof: (i). Replacing y by $y\alpha w$ in the given condition, we find that

 $y\gamma x\alpha w + d(y)\alpha[d(x), w]_{\gamma} + [d(x), y]_{\gamma}\alpha d(w) = 0$ for all $x, y, w \in U$ and $\alpha, \gamma \in \Gamma$.

Further, replacing w by $w\delta r$ and using the same, we get

 $d(y)\alpha w\delta[d(x),r]_{\gamma} + [d(x),y]_{\gamma}\alpha w\delta d(r) = 0$ for all $x, y, w \in U, r \in M$ and $\alpha, \gamma, \delta \in \Gamma$.

Now, replacing r by d(x), we get $[d(x), y]_{\gamma} \alpha w \delta d^2(x)$ for all $x, y, w \in U$ and $\alpha, \gamma, \delta \in \Gamma$. Since M is prime, we find that either $[d(x), y]_{\gamma} \alpha U = \{0\}$ or $d^2(x) = 0$. Take $U_1 = \{x \in U \mid [d(x), y]_{\gamma} \alpha U = \{0\}$ for all $y \in U$, $\alpha, \gamma \in \Gamma\}$ and $U_2 = \{x \in U \mid d^2(x) = 0\}$. But U_1 and U_2 are additive subgroups of U such that $U_1 \cup U_2 = U$. Hence, by Brauer's trick either $U_1 = U$ or $U_2 = U$. If $U_1 = U$, then $[d(x), y]_{\gamma} \alpha U = \{0\}$. Since $U \neq \{0\}, [d(x), y]_{\gamma} = 0$ for all $x, y \in U$ and $\gamma \in \Gamma$. In particular $[d(x), x]_{\gamma} = 0$ for all $x \in U$ and $\gamma \in \Gamma$. Therefore M is commutative by Theorem 2.3. If $U_2 = U$, then d = 0, a contradiction.

(ii). By using the similar arguments as used in proving (i), we get the required result.

(iii). Given that $d([x, y]_{\gamma}) = x \circ_{\gamma} y$ for all $x, y \in U$ and $\gamma \in \Gamma$. On simplifying we get

$$[d(x), y]_{\gamma} + [x, d(y)]_{\gamma} = x \circ_{\gamma} y \text{ for all } x, y \in U \text{ and } \gamma \in \Gamma.$$

$$(2.14)$$

Further, replacing y by $y\alpha x$, we find that $[x, y]_{\gamma}\alpha d(x) = 0$. Again replacing y by $r\beta y$, we get

$$[x,r]_{\gamma}\beta y\alpha d(x) = 0 \text{ for all } x, y \in U, r \in M \text{ and } \alpha, \beta, \gamma \in \Gamma.$$
 (2.15)

Take $U_1 = \{x \in U \mid [x, r]_{\gamma} = 0 \text{ for all } r \in M \text{ and } \gamma \in \Gamma\}$ and $U_2 = \{x \in U \mid U\Gamma d(x) = 0\}$. Since U_1 and U_2 are additive subgroups of U such that $U_1 \cup U_2 = U$ and by Brauer's trick either $U_1 = U$ or $U_2 = U$. If $U_1 = U$ then $[x, r]_{\gamma} = 0$ for all $x \in U$, $r \in M$, $\gamma \in \Gamma$, and hence $U \subseteq Z(M)$. Therefore M is commutative by Lemma 2.1. Now, we assume that $U_2 = U$. Since M is prime and $U \neq 0$, we find that d = 0, a contradiction.

(*iv*). It is given that $d(x \circ_{\gamma} y) = [x, y]_{\gamma}$. This implies that

$$d(x) \circ_{\gamma} y + x \circ_{\gamma} d(y) = [x, y]_{\gamma} \text{ for all } x, y \in U \text{ and } \gamma \in \Gamma.$$

Replace y by $x\alpha y$ to get

 $d(x)\gamma x\alpha y + d(x)\alpha y\gamma x = 0$ for all $x, y \in U$ and $\alpha, \gamma \in \Gamma$.

Again, replacing y by $y\beta r$, we find that

$$d(x)\gamma y\alpha[r,x]_{\beta} = 0$$
 for all $x, y \in U, r \in M$ and $\alpha, \beta, \gamma \in \Gamma$.

Now using the similar arguments as used after (2.15), we get the required result.

Theorem 2.16. Let M be a 2-torsion free prime Γ -ring and U be a nonzero ideal of M. Suppose d is a derivation on M such that d satisfies any one of the following condition:

(i)
$$d(x)\gamma d(y) = [x, y]_{\gamma}$$
 for all $x, y \in U$ and $\gamma \in \Gamma$,

- (ii) $d(y)\gamma d(x) = [x, y]_{\gamma}$ for all $x, y \in U$ and $\gamma \in \Gamma$,
- (*iii*) $d(x)\gamma d(y) = x \circ_{\gamma} y$ for all $x, y \in U$ and $\gamma \in \Gamma$.

Then M is commutative.

Proof: (i). Replacing y by $y\alpha r$ in the given condition, we get

$$d(x)\gamma d(y)\alpha r + d(x)\gamma y\alpha d(r) = [x, y]_{\gamma}\alpha r + y\alpha [x, r]_{\gamma}$$

for all $x, y \in U$, $r \in M$ and $\alpha, \gamma \in \Gamma$. Now, using the given condition, we get

 $d(x)\gamma y\alpha d(r) = y\alpha [x,r]_{\gamma}$ for all $x, y \in U, r \in M$ and $\alpha, \gamma \in \Gamma$.

Further, replacing r by r + x, we get $d(x)\gamma y\alpha d(x) = 0$ for all $x, y \in U$ and $\alpha, \gamma \in \Gamma$. Since M is prime and $U \neq \{0\}$, d(x) = 0 for all $x \in U$. Hence our hypothesis implies that $[x, y]_{\gamma} = 0$ for all $x, y \in U$ and $\gamma \in \Gamma$ i.e., U is commutative. Therefore by Lemma 2.2, M is commutative.

By the similar arguments as used in (i), we get the required result in cases (ii) and (iii). \Box

References

- 1. M. Ashraf and N. Rehman, On derivation and commutativity in prime rings, East-West J. of Math. 3 (1) (2001), 87-91.
- M. Ashraf and N. Rehman, On commutativity of rings with derivation, Result. Math. 42, (2002), 3-8.
- 3. W.E. Barnes, On the Γ-rings of Nobusawa, Pacific J. of Math. 18 (3) (1966), 411-422.
- M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Internal. J. Math. & Math. Sci. 15, (1992), 205-206.
- 5. F.J. Jing, On derivations of $\Gamma\text{-}rings,$ Qu fu Shifan Daxue Xuebeo Ziran Kexue Ban 13 (4) (1987), 159-161.
- 6. N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1 (1964), 81-89.
- 7. M. Soyturk, The commutativity in prime gamma rings with derivation, Tr. J. of Math. 18 (1994), 149-155.

Mohammad Ashraf and Malik Rashid Jamal Department of Mathematics Aligarh Muslim University Aligarh 202002 (INDIA) E-mail address: mashraf80@hotmail.com, rashidmaths@gmail.com