
Information Processing Letters 79 (2001) 93–98

Small generic hardcore subsets for the discrete logarithm:
Short secret DL-keys

C.P. Schnorr∗
Fachbereich Mathematik/Informatik, Universität Frankfurt, 60439 Frankfurt, Germany

Received 14 March 1999; received in revised form 12 May 2000
Communicated by S. Zaks

Abstract

Let G be a group of prime orderq with generatorg. We study hardcore subsetsH ⊂ G of the discrete logarithm (DL)
logg in the model of generic algorithms. In this model we count group operations such as multiplication and division, while
computations with non-group data are for free. It is known from Nechaev [Math. Notes 55 (1994) 165] and Shoup [Lecture
Notes in Comp. Sci., Vol. 1233, Springer, Berlin, 1997, p. 256] that generic DL-algorithms for the entire groupG must perform√

2q generic steps. We show that DL-algorithms for small subsetsH ⊂ G require 1
2m+ o(m) generic steps for almost allH

of size #H =m with m� √
q. Conversely,12m+ 1 generic steps are sufficient for allH ⊂G of even sizem. Our main result

justifies to generate secret DL-keys from seeds that are only1
2 log2q bits long. 2001 Elsevier Science B.V. All rights reserved.

Keywords:Computational complexity; Cryptography; Discrete logarithm (DL); Generic algorithms; Generic complexity; Hardcore subsets

1. Introduction

Many cryptographic schemes for digital signatures,
encryption and key exchange rely on the hardness of
the discrete logarithm (DL) problem [1–3,7,8]. The se-
curity of these schemes requires that the problem to
compute the discrete logarithm of random group ele-
ments is hard. For security, private–public key pairs,
ciphertexts and signatures must represent random in-
stances of the DL-problem. As the computational costs
of the DL-cryptosystems increase with the size of the
group it raises the question whether the entire group
must be used. We show that the DL-problem restricted

* This work was initiated in 1998 during a stay at Bell Laborato-
ries, Murray Hill, New Jersey. The support of Bell Laboratories is
gratefully acknowledged.

E-mail address:schnorr@cs.uni-frankfurt.de (C. Schnorr).

to small random subsetsH of the groupG has nearly
the same generic complexity as for the entire group.
This suggests that DL-cryptosystems can be optimized
by using small random subsets of the group. An ex-
ample of such an optimization is to generate the secret
key of a DL-cryptosystem from random seeds that are
only 1

2 log2q bits long. The1
2 log2q threshold is tight,

its proof requires the generic model.
Let us mention some recent security results in the

generic model which give reasonable evidence that
various practical cryptosystems are secure. Shoup [9]
proves security of the Schnorr identification scheme
against active attacks. He also proves lower bounds
for the Diffie–Hellman problem and the decisional
Diffie–Hellman problem. The intractability of the
latter problems is assumed in the security proofs of [1].
Schnorr [10] proves that almost all discrete log bits

0020-0190/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(00)00173-3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357557002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

94 C.P. Schnorr / Information Processing Letters 79 (2001) 93–98

are simultaneously secure. Schnorr and Jakobsson [11]
show that signed ElGamal encryption is non-malleable
and plaintext aware provided that the hash function is
random.

1.1. The generic DL-complexity

Let G be a group of prime orderq with generator
g and letZq denote the field of integers moduloq .
The discrete logarithm logg(h) of h ∈G is the integer
x modq in Zq that satisfiesgx = h. The discrete
logarithm is defined moduloq as the order ofg is q .
Roughly speaking, an algorithm is generic if it does
not use the binary encoding of the group elements.
It can only use group elements for group operations
such as multiplication/division (generic steps) and for
equality tests. There are many groups for which the
fastest known DL-algorithms are generic:
(1) general elliptic curves,
(2) general hyper-elliptic curves of genus 2,
(3) subgroups of prime orderq of the multiplicative

group Z
∗
p of integers modulo a primep for

which p/q is so large that sieving methods are
inefficient.

Following Nechaev [6] and Shoup [9] generic algo-
rithms that compute logg(h) for all h ∈ G must per-
form �(

√
q) multiplications/divisions. We slightly

extend the generic model of Shoup by allowing for
generic steps arbitrary multivariate exponentiations.
Let the generic DL-complexityof a subsetH ⊂ G

be the minimal number of generic steps to compute
logg(h) for all h ∈H .

1.2. Our results

Let m = #H denote the size ofH . We show that
the generic DL-complexity is at least1

2m + o(m) for
almost allH of sizem � √

q. 1 On the other hand
�1

2m� + 1 generic steps are always sufficient. Thus
the generic DL-complexity is12m + o(m) for almost
all subsetsH ⊂ G of sizem � √

q . Form = √
q the

generic DL-complexity is1
2
√
q + o(

√
q), i.e., about

1
2
√

2
times the generic DL-complexity

√
2q for the

1 The asymptotics as o(m),o(1) is for m → ∞. “For almost all
H ” means that the fraction of exceptedH is negligible, i.e., less
than O(m−c) for all constantc > 0.

entire groupG. Our main theorem shows a generic
DL-complexity lower bound for subsetsH of size
m= o(

√
q). We subsequently extend this result to the

casem� √
q. Interestingly, our generic lower bounds

hold for arbitrary multivariate exponentiations and not
just for multiplications/division.

It is interesting to compare the optimal generic DL-
algorithms with the brute-force method: given the
set of logarithms logg(H) test gx = h for all x ∈
logg(H). This requires in the worst casem and on

the average12m generic steps. We show that the brute-
force method is—up to a factor 2—optimal for almost
all subsetsH of sizem� √

q .

1.3. Short secret keys

Our main result justifies to generate secret keys of
DL-cryptosystems from random seeds with1

2 log2q

bits. For this expand a random integerx ′ ∈R [0,√q]
of 1

2 log2 q bits using a strong hash functionSH into
a pseudo-random integerSH(x ′) ∈PR [0, q[. The cor-
responding pairx ′, gSH(x ′) is a DL-key pair that is—
for generic attacks—nearly as strong as pairsx,gx for
truly randomx ∈R [0, q[. This is because the generic
DL-complexity is for almost all subsetsH ⊂ G of
size

√
q about 1

2
√

2
times the generic DL-complexity

for G. Clearly, a strong hash functionSH yields a
set of pseudo-random public keysSH[0,√q] ⊂ [0, q[
of size�(

√
q) since otherwise collisionsSH(x ′) =

SH(x ′′) can be constructed using o(
√
q) function eval-

uations[0,√q] � x �→ SH(x). Moreover, it is reason-
able to assume that the setSH[0,√q] does not fall into
the exceptional class of subsetsH ⊂G where the DL
is easy in the generic model. Generating secret keys
from short random seeds can be practical if a strong
hash functionSH is at hand anyway. Now, there is a
theoretical justification that seeds of length1

2 log2q

are nearly of the highest security level while shorter
seeds are less secure.

Moreover, as the generic DL-complexity is12m +
o(m) for almost all subsetsH ⊂ G of sizem, it is
sufficient to generate secret DL-keys from seedsx ′
ranging over a set of sizem that is so large that12m
generic steps are infeasible—at presentm � 280 is
sufficient.

C.P. Schnorr / Information Processing Letters 79 (2001) 93–98 95

1.4. Fast pseudo-random exponentiation

An intriguing challenge along this line is to replace
SH in the short secret key representation by a pseudo-
random functionF that speeds up the exponentiation
x ′ �→ gF(x

′).

2. The generic model

Thedataof a generic algorithm are partitioned into
group elements inG and non-group data(arbitrary
data except elements ofG). We assume that the
prime moduleq and the set logg(H) are given, other
non-group data are the collisions defined below. The
generic stepsof a generic algorithm aremultivariate
exponentiations: 2

mex :Zd
q ×Gd →G,

(a1, . . . , ad, g1, . . . , gd) �→
∏
i

g
ai
i with d � 0.

Multiplications/divisions are exponentiations withd =
2, a1 = 1, a2 = ±1. The operations mex withd = 0
are theinputsin G—e.g.,g, h are inputs for the DL-
computation.

Definition. A generic algorithmis a sequence oft
generic steps
• f1, . . . , ft ′ ∈G (inputs), 1� t ′ < t ,
• fi = ∏i−1

j=1f
aj
j for i = t ′ + 1, . . . , t , where (a1,

. . . , ai−1) ∈ Z
i−1
q depends arbitrarily oni, the non-

group input and the set

COi−1 := {
(j, k) | fj = fk, 1 � j < k � i − 1

}
of previouscollisionsof group elements.

2 We count the same generic steps as in [9] however we allow
arbitrary multivariate exponentiations while Shoup merely uses
multiplication and division. On the surface the technical setup
in [9] looks different as groupsG are additive and associated
with a random injective encodingσ :G → S of the groupG into
a setS of bit strings—the generic algorithm performs arbitrary
computations on these bit strings. Addition/subtraction is done by
an oracle that computesσ(fi ± fj) when givenσ(fi), σ (fj) and
the specified sign bit. As the encodingσ is random it contains only
the information about which group elements coincide—this is what
we call the set ofcollisions. We dispense with the encodingσ and
let the algorithm make arbitrary use of the set of collisions. We
distinguish group and non-group data, a distinction that in the Shoup
setup comes automatically with the oracle for the group operation.

The following operations are free of charge: testing
equality of group elements, arbitrary computations
using non-group data, the selection of the exponents
a1, . . . , ai−1 of a generic step and the selection of a
non-group output. A generic algorithm for computing
h �→ logg(h) for h ∈ H can use the set logg(H) of all
logarithms of elements inH for free. The probability
associated with DL-algorithms refers to the random
input h ∈R H . Generic algorithms are deterministic,
internal coin tosses are useless as the algorithm can
always select an optimal coin flip that maximizes its
probability of success. The only possible way that
the generic steps affect the computation of non-group
data such as discrete log’s is by collisions of group
elements.3 The example below shows how collisions
reveal logg h.

3. A generic algorithm for computing logg(h) for
random h ∈H

We give an example demonstrating the power of
generic algorithms. The example algorithm is twice as
fast as the brute-force method. It provides a generic
DL-complexity upper bound that matches the lower
bound of the main theorem. The generic steps of
the example algorithm are determined by solving
linear equations overZq related to logg(H)—that
computation is free of charge. Let us emphasize that
H is an arbitrary subset ofG, not a subgroup. In
particular, the neutral element ofG needs not be in
H . For convenience we assume that the generatorg is
in H .

3.1. Determining the step sequence of the algo-
rithm A

We constructu1, . . . , ut , v1, . . . , vt ∈ Zq for the
generic stepsfi = gui hvi , i = 1, . . . , t , as follows.
Select distinct elementsx1, . . . , x2t−2 ∈ logg(H), with
x1 = 1 = logg(g), and recursively determineu1, . . . ,

ut , v1, . . . , vt ∈ Zq such that

(u1, v1) := (1,0), (u2, v2) := (0,1),

3 The decision to terminate with a generic step may arbitrarily
depend on the non-group input—such asq and logg(H)—and the
previous collisions. Thus,t arbitrarily depends on the given non-
group data.

96 C.P. Schnorr / Information Processing Letters 79 (2001) 93–98

and thus

x1(v1 − v2)= u2 − u1,

x2i−4(v1 − vi)= ui − u1,
for i = 3, . . . , t.

x2i−3(v2 − vi)= ui − u2,

This system of equations in the unknownsu3, . . . , ut ,
v3, . . . , vt is always solvable. Givenu1, . . . , ui−1,
v1, . . . , vi−1 the two linear equations forui, vi have
determinantx2i−4 − x2i−3 which is nonzero inZq .
Thereforeui andvi are uniquely determined. Note that
we cannot havev1 = vi or v2 = vi . If v1 = vi we have
u1 = ui and this impliesui − u2 = x2i−3(v2 − vi) =
u1 − u2 = x1(v2 − v1), hencex2i−3 = x1. This has
been excluded as thexi are distinct. Asv1 �= vi, v2 �=
vi we have

x2i−4 = ui − u1

v1 − vi
, x2i−3 = ui − u2

v2 − vi
.

Moreover,(ui, vi) �= (uj , vj) holds for 3� i, j,� t

and i �= j—since otherwise we must havex2i−4 =
x2j−4 which is excluded asx1, . . . , x2t are distinct. In
summary, the pairs(u1, v1), . . . , (ut , vt) are pairwise
distinct.

Let A’s generic steps compute

fk := gukhvk for k = 1, . . . , t,

in particular fork = 1,2 we getf1 = g, f2 = h. We
have

fi = fj

iff ui + vi logg(h)= uj + vj logg(h)

iff logg(h)= uj − ui

vi − vj
.

A gets from a collisionfi = fj the logarithm

logg(h)= uj − ui

vi − vj
.

By the construction ofu1, . . . , ut , v1, . . . , vt , A gets
logg(h) for logg(h) ∈ {x1, . . . , x2t−3}. OtherwiseA
guesses that logg(h) = x2t−2. A succeeds for random
h ∈R H , #H = m, with probability (2t − 2)/m. The
case that logg(h) = x2t−2 contributes 1/m to the
success probability.

In order to succeed for allh ∈H of even sizem we
use the algorithm witht = 1

2(m+2). Then 2t −2=m

andx1, . . . , x2t−2 exhaustH . The number of generic

steps is1
2m+ 1. This proves the following proposition

where we letm—for simplicity—be even.

Proposition 1. The above-mentioned algorithmA
computeslogg(h) for randomh ∈ H and evenm =
#H with probability(2t − 2)/m usingt generic steps.
A always succeeds fort = 1

2m+ 1.

Main Theorem 2. Every generic algorithmA with t

generic steps satisfies for almost all subsetsH ⊂G of
sizem with m= o(

√
q):

Prh∈RH
[
A(h)= logg(h)

]
� 2t

m
+ o(1).

4. The generic DL-complexity for small subsets

The upper bound 2t/m+ o(1) of A’s probability of
success in Theorem 2 is tight as the example algorithm
succeeds with probability(2t − 2)/m. Hence, the
generic complexity of logg is at least12m + o(1) for
almost all subsetsH of sizem = o(

√
q). Below we

extend the latter result to the casem� √
q .

Proof of Theorem 2. Let H = {gx1, . . . , gxm} ⊂ G

be a random multiset, where the random elements
xi ∈R Zq for i = 1, . . . ,m are chosen independently
at random with repetition.H has sizem counted with
multiplicities. As m = o(

√
q), repetitionsxi = xj ,

i < j , have probability o(1) and are disregarded in
the following. Importantly, the elements inH are
mutually independent. LetA’s generic steps compute

fk := gukhvk for k = 1, . . . , t,

where the pairs(uk, vk) ∈ Z
2
q are pairwise distinct and

(uk, vk) depends arbitrarily on the set of logarithms
logg(H)⊂ Zq and on previous collisionsfi = fj with
i < j < k. The distinctness of the(ut , vt) is not a
restriction as repetitions can easily be removed. For
simplicity we do not require thatg,h ∈ {f1, . . . , ft }.

We first considerconstant step sequencesu =
(u1, . . . , ut), v = (v1, . . . , vt) ∈ Z

t
q for which uk, vk

do not depend on previous collisions but depend
arbitrarily on logg(H). In case of a collisionfi = fj
we have

logg(h)= uj − ui

vi − vj
.

C.P. Schnorr / Information Processing Letters 79 (2001) 93–98 97

(We havevi �= vj , asvi = vj impliesui = uj and the
case(ui , vi)= (uj , vj) has been excluded.) We denote

xi,j := uj − ui

vi − vj

and

Hu,v := {
xi,j ∈ logg(H) | 1 � i < j � t

}
.

Thus A succeeds if logg(h) ∈ Hu,v . Hence p :=
#Hu,v/m is, for randomh ∈R H , the probability that
there is a collision.

If logg(h) /∈ Hu,v then all A gets to know is
that logg(h) ∈ logg(H) \ Hu,v . ThenA can at best
guess for logg(h) one of them − #Hu,v elements in
logg(H) \Hu,v . ThusA’s probability of success is for
givenH and randomh ∈H at most

p + (1− p)
1

m− #Hu,v
= p + 1

m
= #Hu,v

m
+ 1

m
.

We see from Lemma 3 that #Hu,v � 2t + o(m)
for almost allH ⊂ G of sizem. Here we use that
t2/q = o(1) holds for t = o(

√
q), and also that

exp(−2mt)� exp(−2
√
m) is negligible fort � 1

2m−√
m while #Hu,v � 2t + o(m) is trivial for t > 1

2m−√
m. Therefore Lemma 3 proves Theorem 2 for con-

stantu,v.

Lemma 3. For randomH of sizem andmt := m −
2t + 2 we have

PrH
[

max
u,v∈Zt

q

#Hu,v � 2t − 2+mt t
2/q

]
� exp(−2mt).

Proof. Let (u,v) ∈ Z
2t
q be a constant step sequence

such that #Hu,v is maximum for someH . Consider
the corresponding equations

xi,j (vi − vj)= uj − ui for xi,j ∈Hu,v. (1)

Select a maximum subset of the linear equations in (1)
that are linearly independent—when the constantsu1,

. . . , ut , v1, . . . , vt are replaced by variables overZq .
That linear independence is a property of the set
of triples (xi,j , i, j) with xi,j ∈ Hu,v . Let I denote
the set of pairs(i, j) corresponding to these linearly
independent equations and letHI := {xi,j | (i, j) ∈ I }.
We next show that #I = 2t − 2. The solutions of
Eqs. (1) for(i, j) ∈ I form a linear space of dimension
� 2: if (u,v) is a solution then so is(αu, βv) for
α,β ∈ Zq , and thus #I � 2t − 2. Moreover fort �

4, #I = 2t − 2 and randomxi,j ∈R Zq Eqs. (1) for
(i, j) ∈ I are linearly independent except for an event
of probability O(1/q).

Next we prove that 2t − 2 linearly independent
equations for(i, j) ∈ I determine the step sequence
(u,v) ∈ Z

2t
q up to constant factorsα,β ∈ Zq . Suppose

there exist two such step sequences(u,v), (u′,v′)
satisfying(u,v) �= (αu′, βv′) for all α,β ∈ Zq . If two
such step sequences satisfy the linear equations (1) for
all (i, j) ∈ I for the sameI then there existλ,λ′ ∈ Zq

and(i, j) /∈ I such that

λ(uj − ui)+ λ′(u′
j − u′

i)

λ(vi − vj)+ λ′(v′
i − v′

j)
∈ logg(H) \Hu,v

holds for some 1� i < j � t . Then (u∗,v∗) :=
λ(u,v)+ λ′(u′,v′) is a step sequence for whichHu,v

is properly contained inHu∗,v∗—contradicting to the
assumption that #Hu,v is maximum. This proves the
claim that the step sequence(u,v) is determined—up
to constant factors—by thexi,j ∈HI via Eqs. (1).

We call the xj ∈ logg(H) \ HI free. There are
m− #I = mt freexj ∈ logg(H). The freexj are sta-
tistically independent of(u,v) as(u,v) is determined
by thexi,j ∈HI . The freexj are uniformly distributed
over logg(H). Hence,

PrH
[
xj ∈Hu,v \HI

] =
((
t
2

) − #I
)

q
.

Therefore, the expected number of freexj ∈Hu,v \HI

is

mt

((
t
2

) − #I
)

q
�mt

(
t
2

)
q
.

Next we bound the deviation from the expected value.
The events[xj ∈ Hu,v \ HI], for the freexj , are

mt Poisson trials that are mutually independent. By
Chernoff’s bound we have forε > 0:

PrH

[
#
{
freexj ∈Hu,v \HI

}
�mt

(
t
2

)1+ ε

q

]

� exp(−2εmt). (2)

(More precisely, we use Hoeffding’s bound [4] as in
Exercise 4.7 of [5].) Inequality (2) withε = 1 proves
Lemma 3 asHI consists of 2t − 2 non-freexi,j . ✷

To complete the proof of Theorem 2, consider the
case thatuk, vk are recursively defined depending on
previous collisionsfi = fj with i < j < k. Consider

98 C.P. Schnorr / Information Processing Letters 79 (2001) 93–98

the first collision for whichj is minimal. The first
collision occurs for a constant step sequence(u′,v′) ∈
Z

2t ′
q . This is because all non-group data are constant—

i.e., not depending onh—unless there is a collision.
A first collision occurs if logg(h) ∈Hu′,v′ for constant
u′,v′, which happens with probability #Hu′,v′/m.
This shows thatA’s probability of success is at
most the maximum of #Hu′,v′/m + 1/m over all
constantu′,v′ ∈ Z

t ′
q for t ′ � t . By Lemma 3 this

maximum is at most 2t/m+ o(1) for almost allH of
sizem. ✷
The case m � √

q. By the previous argument, lower
bound proofs need only to cover generic algorithms
with constant step sequencesu,v. If m � √

q we can
in the proof of Theorem 2 still disregard repetitions
xi = xj , i < j , of the randomxi ∈ logg(H) as the
expected number of repetitions is at most

(
m
2

)
/q �

1
2. Therefore, inequality (2) holds form � √

q. Set-
ting

m := √
q, t := 1

2
√
q(1− ε),

mt :=m− 2t + 2

we have

mt = ε
√
q + 2 and

mt

(
t
2

)
q

= ε(1− ε)2(1+ ε) · 1
8m.

As there are 2t − 2 � m(1 − ε) non-freexi,j ∈ Hu,v ,
inequality (2) shows that the event

#Hu,v

m
� (1− ε)+ 1

8ε(1− ε)2(1+ ε)

has probability at most

exp(−2εmt)≈ exp(−2ε2√q)

for randomH of sizem. Moreover,(1− ε)+ 1
8ε(1 −

ε)2(1 + ε) � 1 − ε, and exp(−2ε2√q) is negligible
for ε = q−1/5. So letε := q−1/5.

We conclude that generic algorithms witht :=
1
2
√
q − q3/10 generic steps succeed, for almost all

H of size m = √
q, at most with probability 1−

q−1/5. This shows that the generic DL-complexity
is for m = √

q at least 1
2
√
q − q3/10 = 1

2m + o(m)
for almost all subsetH of size m = √

q. More-
over, the cryptographic relevantq , q ≈ 2160, satisfy

1
2
√
q − q3/10 ≈ 1

2
√
q ≈ 279. Therefore, the generic

DL-complexity for subsets of size 280 is close
to 279.

The case m = q . ForH = G and t <
√

2q we have
that #Hu,v/q �

(
t
2

)
/q < 1. Therefore, the generic DL-

complexity is at least
√

2q for the entire groupG.

Acknowledgements

I wish to thank Carl Pomerance for some useful
communications on this subject and Marc Fischlin for
proof reading the manuscript.

References

[1] R. Cramer, V. Shoup, A practical public key cryptosystem
provably secure against adaptive chosen ciphertext attack, in:
Proc. Crypto’98, Lecture Notes in Comput. Sci., Vol. 1462,
Springer, Berlin, 1998, pp. 13–25.

[2] W. Diffie, M.E. Hellman, New directions in cryptography,
IEEE Trans. Inform. Theory 22 (6) (1976) 644–654.

[3] T. ElGamal, A public key cryptosystem and a signature scheme
based on discrete logarithms, IEEE Trans. Inform. Theory 31
(1985) 469–472.

[4] W. Hoeffding, Probability in equalities for sums of bounded
random variables, J. Amer. Stat. Assoc. 58 (1963) 13–30.

[5] R. Motwani, P. Raghavan, Randomized Algorithms, Cam-
bridge University Press, Cambridge, UK, 1995.

[6] V.I. Nechaev, Complexity of a determinate algorithm for the
discrete logarithm, Math. Notes 55 (1994) 165–172.

[7] T. Okamoto, Provably secure identification schemes and cor-
responding signature schemes, in: Proc. Crypto’92, Lecture
Notes in Comput. Sci., Vol. 740, Springer, Berlin, 1992,
pp. 31–53.

[8] C.P. Schnorr, Efficient signature generation for smart cards,
J. Cryptology 4 (1994) 161–174.

[9] V. Shoup, Lower bounds for discrete logarithms and related
problems, in: Proc. Eurocrypt’97, Lecture Notes in Comput.
Sci., Vol. 1233, Springer, Berlin, 1997, pp. 256–266.

[10] C.P. Schnorr, Security of almost all discrete log bits, in:
Electronic Colloquium on Computational Complexity, Report
TR 98-033. Available at http://www.eccc.uni-trier.de/eccc/.

[11] C.P. Schnorr, M. Jakobsson, Security of signed ElGamal
encryption, in: T. Okamoto (Ed.), Advances in Cryptology
—Asiacrypt’00, Lecture Notes in Comput. Sci., Vol. 1976,
Springer, Berlin, 2000, pp. 73–89.

