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Robust Synthesis of Feedforward Compensators

Alvaro Giusto and Fernando Paganini

Abstract—The design of a feedforward compensator for robustHHH111
or HHH2 performance under structured uncertainty is considered. For
linear time-invariant uncertainty, a convex method based on linear
matrix inequalities (LMI’s) across the frequency variable is given. For
nonlinear or time-varying perturbations and HHH111 performance, the
design problem is reduced exactly to a state-space LMI, and extensions
to HHH2 performance are discussed. An example illustrates the application
of these techniques to two-degree-of-freedom control design.

Index Terms—Feedforward compensator,HHH111 and HHH2 performance,
prefilter design, robust synthesis.

I. INTRODUCTION

One of the central problems in robust control is the design of a
controller in the presence of uncertainty of spatial structure

� = diag[�1Ik ; � � � ; �m Ik ; �1; � � � ; �m ]: (1)

While the robustnessanalysis question has been addressed with
considerable success (see [3], [10]–[12], [16], [17]), the general
synthesisproblem (see [2] and [11]) is widely recognized to be
of intrinsically harder complexity. This paper discusses how the
robust synthesis problem simplifies under the special structure of
feedforwardcompensation, depicted in Fig. 1.

We mention two motivations for such a configuration. The first,
depicted in Fig. 2, is a tracking problem in whichP is the feedfor-
ward part of a two-degree-of-freedom controller [7]–[9], [18]. The
feedbackF and the feedforwardP must be designed so that the
output s tracks the referencer, in the presence of disturbancesw
and uncertainty�.

Although P and F could be synthesized jointly as a controller
K, their roles are quite distinct:F is the only part which affects
stability and disturbance rejection, andP influences the command
response; this suggests the possibility of a two-stage design. In the
absence of uncertainty, this approach is validated in [14] where it
is shown that the achievable closed-loop transfer functions fromr

to s are not restricted by the choice of a stabilizingF . While the
overall controller order may increase, there is added flexibility in the
specifications for each stage. One can first designF for stability and
disturbance rejection by, e.g.,H1 control, and thenP for tracking
with other criteria (fixed input response,H2, channel decoupling,
etc.).

For systems with uncertainty�, this decomposition is restrictive
and the feedbackF (the main tool for canceling uncertainty) will
affect the achievable robust tracking performance. Still, since the joint
synthesis problem is hard it may be useful to break down the design
in this way, allowing also for different kinds of requirements at each
stage. Some references taking this approach are [9] and [15]. Given
a robustly stabilizing feedbackF , the subsequent synthesis ofP to
satisfy a tracking performance objective falls in the setup of Fig. 1.
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Fig. 1. Robust feedforward compensation problem.

Fig. 2. Two-degree-of-freedom controller.

The second motivation for the configuration of Fig. 1 is a “dis-
turbance feedforward” situation, wherer is a disturbance which we
cannot control but is available for measurement.

In this paper we study the design problem of Fig. 1 for the general
case of dynamic uncertainty of spatial structure (1), and where the
blocks can be linear time-invariant (LTI), linear time-varying (LTV),
or nonlinear (NL). For the characterization of system performance,
we will consider both theH1 and theH2 performance criteria on
the closed-loop map fromr to z. Generally speaking, we show that
robust feedforward synthesis has the complexity of the corresponding
robustnessanalysis problem. In particular, convex conditions for
robust synthesis are derived, which parallel the robustness analysis
conditions of [3], [10]–[12], and [16].

The paper is organized as follows: the problem formulation is
explained in Section II. Section III presents convex frequency domain
methods for prefilter design, which apply to problems with LTI
uncertainty. Section IV provides state-space methods for problems
with NLTV uncertainty. An application example is considered in
Section V, and conclusions are given in Section VI. For a more
extensive treatment of the material in this note, the reader is referred
to [6].

II. PROBLEM FORMULATION

We consider the configuration of Fig. 1, where the generalized
plant Gff is assumed to be finite-dimensional LTI, of state-space
realization

Gff (s) =
A B E M

C L H N
(2)

with A 2 IRn�n stable. In (2) we are using the customary notation

C(sI � A)�1B +D =
A B

C D
:

The inputs ofGff are partitioned as in Fig. 1. The dimensions of
the signalsp, r, u, q, andz are, respectively,dp, dr, du, dq, anddz .
For simplicity letm := dp = dq.
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The uncertain component� is defined by a class of operators
over the spaceL2 of square-integrable signals.B� denotes the set
of causal, possibly NL operators of spatial structure (1) withL2-
induced norm less than 1. We can also restrict these operators to be
LTV, or further to be LTI, as will be specified in each case.

The first design requirement is robust stability. This property must
be assumed for the open loop, however, since the feedforwardP

has no stabilizing effect (in a two-degree-of-freedom context, the
feedbackF must be robustly stabilizing). Then a stableP will
maintain closed-loop stability and give the transfer function

TP (s) := Gff

I 0
0 I

0 P

(3)

between(p; r) and(q; z). Now given�, the closed-loop map from
r to z is denotedTzr(�) and is the object of our performance
specifications. For a prespecified, the system is said to haverobust
H1 performancelevel  if

sup
�2B

kTzr(�)kL !L < : (4)

For LTI uncertainty, theL2-induced norm is the standardH1 norm
from Hardy space theory. The uncertain system will haverobustH2

performancelevel , if

sup
�2B

kTzr(�)k2 < :

For an LTI systemT , theH2 norm is given by

kTk22 :=
1

�1

trace(T (j!)�T (j!))
d!

2�
: (5)

When systems are not LTI there is no universally accepted inter-
pretation for theH2 criterion; in Section IV-B we will comment on
alternative approaches for robustH2 performance design.

The problem under consideration is to findP , if it exists, such that
Tzr satisfies the robust (H1 or H2) performance specification. We
will provide synthesis methods based on known robust performance
analysis conditions [2], [3], [10]–[12], [16]; these involve scaling
matrices

X = diag[X1; � � � ; Xm ; x1Ik ; � � � ; xm Ik ] (6)

which commute with� in (1). denotes the set of positive definite
matrices of this form.

III. FREQUENCY DOMAIN METHODS FORLTI UNCERTAINTY

In this section we will state two convex conditions for the robust
synthesis problem with LTI uncertainty, for the cases ofH1 andH2

performance. For proofs we refer to [6].
Let us partitionTP in (2) asTP = [T0 T1] = [T0 T11+T12P ]

in correspondence to the inputsp andr. The main observation is that
if at a certain frequency!, (7), which is shown at the bottom of the
page, holds, then for any LTI perturbation of the structure (1) we have
Tzr(�(j!))�Tzr(�(j!)) � Y (!). This follows by the methods of
the structured singular value theory [11]; for details see [6].

Also notice that the left-hand side of (7) isaffine in
the unknowns X(!), Y (!), and P (!); we denote it by
	(!; X(!); Y (!); P (j!)). This leads to the following statements.

Proposition 1: A stable prefilterP (s) ensures a level of robust
H2 performance in the presence of LTI uncertainty if there exist
functionsX(!) 2 , Y (!) such that

+1

�1

trace(Y (!))
d!

2�
� 

2

	(!; X(!); Y (!); P (j!))< 0; 8!:

Proposition 2: A stable prefilterP (s) ensures a level of robust
H1 performance in the presence of LTI uncertainty if there exists a
function X(!) 2 such that

	(!; X(!); 2I; P (j!)) < 0; 8!:

Thus prefilter synthesis is reduced to the minimization of a
linear objective subject to convex infinite-dimensional constraints
(stability of P (s) is also a convex constraint). To obtain a finite-
dimensional approximation there are two well-known approaches:
frequency gridding and optimization over the span of a set of basis
functions [1]. The stability ofP (s) is easily imposed in the latter,
but for frequency gridding an approximation step is required.

Propositions 1 and 2 also can also be extended to the case of real
parametric uncertainty, by extending the function	 in terms of a
“G-scaling”; see [6].

IV. STATE-SPACE LMI SYNTHESIS FORNLTV UNCERTAINTY

In this section we study the problem of feedforward design for
robust performance against structured NLTV uncertainty. We provide
a complete linear matrix inequalities (LMI) solution to the problem
for the H1 performance case, based on the analysis conditions in
[11] and [16]. In addition, we briefly discuss two approaches forH2

performance in this uncertainty class.

A. Exact Solution for theH1 Case

We will now show that the existence of dynamic prefilters that
guarantee a given level of robustH1 performance against NLTV
uncertainties is equivalent to an LMI in state space.

The following result is stated in terms of the problem formulation
(2); let ~NR be a matrix whose columns constitute a basis for the
kernel of [M 0 N 0] (prime denotes transpose) and

~LR :=
~NR 0
0 Id +d

:

Theorem 3: There exists a dynamic prefilterP (s) satisfying robust
H1 performance level under perturbations inB� if and
only if there exist symmetric positive definite matricesR 2 IRn�n,
Z 2 IRn�n, andX 2 satisfying

~L0R

AR+RA0 RC 0 BX E

CR �
X 0
0 I

LX H

XB0 XL0 �X 0
E0 H 0 0 �2I

~LR < 0 (8)

ZA0 + AZ BX ZC0

XB0 �X XL0

CZ LX �
X 0
0 I

< 0 (9)

R� Z � 0: (10)

T0(j!)X(!)T0(j!)
��

X(!) 0
0 I

T11(j!) + T12(j!)P (j!)

(T11(j!) + T12(j!)P (j!))
� �Y (!)

< 0 (7)
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Proof: It is well known [11], [16] thatH1 robust performance
is equivalent to the existence of a constant matrixX 2 , such that
kQ�1TPQk1 < 1, where we define

Q :=
X1=2 0
0 I

; Q :=
X1=2 0
0 �1I

andX1=2 denotes the positive square root of the matrixX. Using
(3), this is equivalent to the standardH1 synthesis problem

kGQ11 +G
Q
12P (I �G

Q
22P )

�1
G
Q
21k1 < 1 (11)

where

G
Q :=

A [B E]Q M

Q�1C Q�1[L H]Q Q�1N

0 [0 I]Q 0

: (12)

Applying the LMI formulation of [4] to thisH1 synthesis, (11) is
feasible if and only if there exist matricesR > 0 andS > 0 such that

L0R

AR +RA0 RC0Q�1 [B E]Q

Q�1CR �I Q�1[L H]Q

Q
B0

E0
Q

L0

H 0 Q
�1 �I

LR < 0 (13)

L0S

A0S + SA S[B E]Q C 0Q�1

Q
B0

E0
S �I Q

L0

H 0 Q
�1

Q�1C Q�1[L H]Q �I

LS < 0 (14)

R I

I S
� 0 (15)

where

LR :=

In 0
0 Q

~NR 0

0 Id +d

LS :=
In 0 0
0 U 0
0 0 Id +d

; with U =
Id

0d �d
:

We now show that (13)–(15) are equivalent to (8)–(10). The equiva-
lence of (13) and (8) follows by using the expression forLR in (13)
and left and right multiplying the last block row and column in (13)
by [X 0

0 I ]. Also, QU = [X0 ]so substituting the expression for
LS in (14), we obtain

A0S + SA SBX1=2 C 0Q�1

X1=2B0S �I X1=2L0Q�1

Q�1C Q�1LX1=2 �I
< 0 (16)

which is equivalent to

S�1A0 + AS�1 BX S�1C 0

XB0 �X XL0

CS�1 LX �Q2

< 0

and reduces to (9) if we defineZ := S�1. With this definition,
the equivalence of (10) and (15) follows by a Schur complement
operation.

Fig. 3. System interconnection for synthesis.

We have found that the LMI conditions (8)–(10) are equivalent
to the solvability of the robustH1 prefilter synthesis in the NLTV
uncertainty case. Robust performance can be optimized by minimiz-
ing  subject to these constraints, which can be solved by standard
techniques [1]. Given feasible solutionsZ, R, andX for a certain,
the prefilterP (s) can be obtained by the methods proposed in [4],
and has the same order as the generalized plantG.

B. Considerations about theH2 Performance Case

The standard motivations forH2 performance (response to im-
pulses and response to stationary white noise) do not lead to the
same unequivocal choice if the system is not LTI. Thus there is more
than one generalization of (5) for NLTV systems.

One approach [3], [17] is to define theH2 norm as the energy
response to an impulsive input, which leads to LMI upper bounds for
robust performance (see [3] and [13]). It turns out that the design of
a feedforward compensator to satisfy such bounds reduces to a finite-
dimensional LMI problem, analogously to Theorem 3 (see [6] for a
full statement and proof). This provides a valuable tool for prefilter
design in tracking problems, where reference inputs such as steps or
ramps can be studied by adding suitable weighting functions.

A second approach is to interpret theH2 norm as a measure of the
worst response to white noise, characterized in a deterministic setting
[12]. Exact analysis conditions in terms of state-space LMI’s are
available [12], and it is natural to inquire whether the corresponding
robust prefilter synthesis can also be solved by an LMI. We do not
know the answer to this question; however, a basis function approach
may be used, as described in [6].

V. EXAMPLE

We will examine a problem with disturbance rejection and tracking
in the presence of structured uncertainty. The system under consid-
eration is extracted from [15] and corresponds to the control of pitch
and angle of attack of an aircraft. The uncertain model and control
configuration are depicted in Fig. 3; numerical values for the model
can be found in [6]. The uncertainty is supposed to be LTI and
norm-bounded.

Disturbances are modeled at the outputs of the plant, and we use an
H1 performance criterion weighted byW1(s) to impose disturbance
rejection,

�DR := max
�2B

kTz d(�)k1: (17)

In addition the command response requirement from [15] estab-
lishes that the step response must be as close as possible to the
desired response represented byMo(s). The weightW2(s) provides
a stable approximation to an integrator, which converts the problem
to an impulse response specification, captured by the robustH2

performance criterion

�CR := max
�2B

kTz r(�)k2: (18)
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Fig. 4. RobustH2 analysis:P0: solid; PN : circles; P1: dotted;Pltv : dashed;Pid: dash dot.

There exists a tradeoff between objectives (17) and (18): both
involve constraints on the feedbackC(s). Still, we will adopt
a two-stage design strategy, by associating the specification�DR
with C and �CR exclusively with P . As mentioned, this is a
restrictive choice, but it is natural when dealing with different robust
performance norms. We remark that we also studied the case where
both specifications employed theH1 norm (see [6]); in this case we
found that the two-stage procedure outperformed the joint synthesis
by D � K iteration as in [2].

First,C was designed for robust stability and disturbance rejection
by D � K iteration. It is important to mention that the weights
Wu andW1 were selected to satisfy the singular value-type spec-
ifications in [15]; this makes our design realistic in regard to these
conditions.

Once C is given and ensures robust stability, we address the
prefilter design problem with the methods of this paper. We start by
using a gridding approach (25 frequency points) on the condition of
Proposition 1 to obtain an optimizing frequency responseP0(!i); i =
0 � � � 24 and a performance bound of0 = 3:30. This sets a limit on
achievable performance since we have not imposed yet thatP (s) is
stable. A number of choices for a stableP are now compared.

• Fitting the pointsP0(!i) with stable transfer functions (of third
order for each entry), we obtain an approximationP1(s).

• The optimalH2 prefilter for the nominal system was computed
and namedPN (s).

• A prefilter design based on NLTV uncertainty. A difficulty arose
since the feedback controllerC was not robustly stabilizing for
this larger uncertainty set. We were forced to suitably scale down
the weightWu. With this change, the “impulsive” approach to
H2 performance mentioned in Section IV-B was employed to
obtain a prefilterPltv(s).

• The absence of prefilter, i.e.,P = I2 := Pid was also analyzed.

These choices were analyzed by means of Proposition 1;Y (!)
was obtained for each case, and Fig. 4 contains a plot of
z(!) := trace(Y (!)). The performance bound is then

TABLE I
ROBUSTH2 PERFORMANCE COST FOR VARIOUS DESIGNS

(
1

0
z(!)2(d!=�))1=2, presented in Table I, together with the

dynamical orders of the prefilters.
Fig. 4 shows that depending on the frequency range, one design

or another may do a better job in approximating the ideal response.1

Still, there seems to be room for overall improvement. We pursue
this by a basis function approach where we fixA and C in the
prefilter and search overB andD to reduce the cost over the grid
of frequencies; this is a convex problem. Natural choices forA, C
are the previous designs; starting fromP1 andPltv we obtained the
improved designsP1r and Pltvr. Another choice is to employ the
A andC from the feedback compensatorC(s); this has attractive
implementation features (see [5]). The resulting prefilter is denoted
PC . These three choices gave very similar performance (see Table I)
and significantly improved the earlier designs.

VI. CONCLUSIONS

The results in this paper show that robust feedforward design
for systems with structured uncertainty can be reduced to convex
optimization problems of the same nature as those available for

1Notice the poor performance of the nominalH2 design.
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robustness analysis. Infinite-dimensional convex conditions apply
to dynamic prefilter design under LTI uncertainty, which admit
well-known methods to approximate them in finite dimensions. For
NLTV uncertainty, the problem is solved exactly via an LMI in the
H1 performance case. Extensions to generalizedH2 performance
measures are given in [6].

Applying these results to tracking problems, we have shown that
there is no added difficulty in design when going from feedback
synthesis to two-degree-of-freedom synthesis by adding a prefilter:
the design problem is tractable, and the only cost is at the implemen-
tation stage. Since the performance gains can be significant, this is
an attractive design choice.

A concrete case study was examined and different alternative
designs were compared.
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Comments on “Robust Stability of Linear
Systems with Delayed Perturbations”

Tatsushi Ooba and Yasuyuki Funahashi

Abstract—This paper comments on the result of a recent paper. The
estimate of the stability robustness of linear time-delay systems in that
paper is compared with the one which is solved in a Riccati matrix
inequality framework.

Index Terms—Stability robustness, time-delay systems.

I. COMMENTS

In the above-mentioned paper,1 some results about the stability
robustness of linear time-delay systems are presented. To make a
brief comment on the paper, let us consider the basic linear system
with delayed perturbation

_x(t) = Ax(t) + E(t)x(t� h) (1)

wherex 2 n represents the state variable,A 2
n�n is a stable

matrix, E(t) 2 n�n represents the perturbations in the delayed
state, andh > 0 denotes the delayed interval. First we state the
result that is obtained from Theorem 1 of the paper1.

Theorem 1: System (1) withkE(t)k < � is asymptotically stable
if the condition

� < �k (Q; �) := �
1=2
min

[P�1(2�Q� �
2
I)P�1] (2)

is satisfied, where

0 < � < 2�min(Q) (3)

and P > O is the solution of

A
T
P + PA = �2Q; Q > O: (4)

In that paper, the author also studied the selection ofQ and �
which maximize the bound�k (Q;�). We comment that the problem
is solved in the well-known Riccati matrix inequality framework and
there is no need to introduce the auxiliary matrixQ.

Proposition 1: System (1) withkE(t)k < � is asymptotically
stable if

I + A
T
P + PA + �

2
P
2
< O and P > O (5)

are solvable.
Proof: Let

V (x(t)) = x
T (t)Px(t) +

t

t�h

x
T (�)x(�)d�: (6)

Then, by a routine calculation, we have

_V (x(t)) = x
T (t)(I + A

T
P + PA+ �

2
P
2)x(t)

� x
T (t)P (�2I � EE

T )Px(t)

� [ET
Px(t)� x(t� h)]T

� [ET
Px(t)� x(t� h)]: (7)

Thus the result follows.
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