
IJCAT International Journal of Computing and Technology, Volume 1, Issue 6, July 2014
ISSN : 2348 - 6090
www.IJCAT.org

301

Interactive Fuzzy based Search over XML Data for

Optimized Performance

1 Sushma. J. Basanagoudar, 2 Dr. B. G. Prasad

 1 PG Student, M. Tech (CSE), B.N.M Institute of Technology

Bangalore, Karnataka, India

2 Computer Science & Engineering, B.N.M Institute of Technology

Bangalore, Karnataka, India

Abstract - In a traditional keyword-search system over XML

data, a user composes a keyword query, submits it to the system,

and retrieves relevant answers. In the case where the user has

limited knowledge about the data, often the user feels “left in

the dark” when issuing queries, and has to use a try-and-see

approach for finding information. In this paper we study, TASX

- Type-Ahead Search in XML data, a new information-access

paradigm in which the system searches XML data on the fly as

the user types in query keywords. It allows users to explore data

as they type, even in the presence of minor errors of their

keywords. TASX provides friendly interface for users to explore

XML data and can save users typing effort.

Keywords - XML, Keyword Search, Type-ahead Search

1. Introduction

Extensible Markup Language (XML) is a markup

language that defines a set of rules for encoding

documents in a format that is both human-

readable and machine-readable. As XML is about to

become the standard format for structured documents,

there is an increasing need for appropriate information

retrieval (IR) methods. XML provides a standard method

to access information, making it easier for applications

and devices of all kinds to use, store, transmit, and display

data. XML has grown from a markup language for special

purpose documents to a standard for interchange of

heterogeneous data over Web, a common language for

distributed computation, and universal data format to

provide users with different views of data. All of these

increase the volume of data encoded in XML,

consequently increasing the need for database

management support for XML documents. An essential

concern is how to store and query potentially huge

amounts of XML data efficiently. Traditional information

systems allow users to compose and submit a query to

retrieve relevant answers. This information-access

paradigm requires the user to have certain knowledge

about the structure and content of the underlying data

repository. With limited knowledge about the data, a user

often feels “left in the dark” when issuing queries, and the

user has to use a try-and-see approach for finding

information. For instance, Fig.1 shows a traditional

interface to search on the book information. To find a

book, a user needs to fill in the form by providing

information for multiple attributes, such as book title,

author, ISBN, publisher. If the user has limited

information about the book she is looking for, such as the

exact spelling of the book title, the user needs to try a few

possible keywords, go through the returned results,

modify the keywords, and reissue a new query. She needs

to repeat this step multiple times to find the book, if lucky

enough. This search interface is neither efficient nor user

friendly.

Fig.1 Traditional Book Search Form

Many systems are introducing various features to solve

this problem. One of the commonly used method is

Autocomplete, which predicts a word or phrase that the

user may type in based on the partial string the user has

typed. More and more websites support this feature. One

limitation of Auto complete is that the system treats a

query with multiple keywords as a single string thus, it

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357556957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IJCAT International Journal of Computing and Technology, Volume 1, Issue 6, July 2014
ISSN : 2348 - 6090
www.IJCAT.org

302

does not allow multiple keywords to appear at different

places. Type-ahead search can provide users instant

feedback as users type in keywords, and it does not

require users to type in complete keywords. Type-ahead

search can help users browse the data, save users typing

effort, and efficiently find the information. Type-ahead

search in relational databases is studied. However,

existing methods cannot search XML data in a type-ahead

search manner, and it is not trivial to extend existing

techniques to support fuzzy type-ahead search in XML

data.

This is because XML contains parent-child relationships,

and we need to identify relevant XML subtrees that

capture such structural relationships from XML data to

answer keyword queries, instead of single documents. The

proposed method TASX (pronounced “task”), a fuzzy

Type-Ahead Search in XML data is used to search the

XML data on the fly as users’ type in query keywords,

even in the presence of minor errors of their keywords.

TASX provides a friendly interface for users to explore

XML data, and can significantly save users typing effort.

1.1 Notations

An XML document can be modeled as a rooted and

labeled tree. A node v in the tree corresponds to an

element in the XML document and has a label. For two

nodes u and v, we use “u <= v” to denote that node u is an

ancestor of node v. For example, consider the XML

document in Fig. 2, we have paper (node5) <= author

(node 7) which indicates node 5 is ancestor of node 7. A

keyword query consists of a set of keywords {k1, k2,….,

kl}. For each keyword ki, we call the nodes in the tree that

contain the keyword the content nodes for ki. The ancestor

nodes of the content nodes are called the quasi-content

nodes of the keyword. For example, consider the XML

document in Fig.2, title (node 16) is a content node for

keyword “DB,” and conf (node 2) is a quasi-content node

of keyword “DB.”

1.2 Problem Formulation

Given an XML document D, a keyword query

Q={k1,k2,….kl} and an edit-distance threshold τ. TASK

- a Fuzzy Type-Ahead Search method in XML data works

for queries with multiple keywords by allowing mismatch

of query keywords. It efficiently identifies the predicted

words that have prefixes similar to input partial keywords

after each keystroke from the user. TASX provides a

friendly interface for users to explore XML data and can

significantly save user’s typing effort.

2. Literature Review

Keyword search in XML data has attracted great attention

recently. Xu and Papakonstantinou [1] proposed smallest

lowest common ancestor (SLCA) to improve search

efficiency. Sun et al. [2] studied multiway SLCA-based

keyword search to enhance search performance. XSEarch

[3] focuses on the semantics and the ranking of the

results, and extends keyword search. It employs the

semantics of meaningful relation between XML nodes to

answer keyword queries, and two nodes are meaningfully

related if they are in a same set, which can be given by

administrators or users. Type-ahead search is a new topic

to query relational databases. Li et al. [4] studied type-

ahead search in relational databases, which allows

searching on the underlying relational databases on the fly

as users’ type in query keywords. Ji et al. [5] studied fuzzy

type-ahead search on a set of documents, which can on

the fly find relevant answers by allowing minor errors

between input keywords and the underlying data.

Koutrika et al. [6] proposed data clouds over structured

data to summarize the results of keyword searches over

structured data and use them to guide users to refine

searches. Chen et al. [7] gave an excellent tutorial of

keyword search in XML data and relational databases.

Fig. 2 An XML Document

3. System Analysis

3.1 Existing System

Traditional methods use query languages such as XPath

and XQuery to query XML data. These methods are

powerful but unfriendly to nonexpert users. First, these

query languages are hard to comprehend for nondatabase

users. For example, XQuery is fairly complicated to grasp.

Second, these languages require the queries to be posed

IJCAT International Journal of Computing and Technology, Volume 1, Issue 6, July 2014
ISSN : 2348 - 6090
www.IJCAT.org

303

against the underlying, sometimes complex, database

schemas. In a traditional keyword-search system over

XML data, a user composes a query, submits it to the

system, and retrieves relevant answers from XML data.

This information-access paradigm requires the user to

have certain knowledge about the structure and content of

the underlying data repository. In the case where the user

has limited knowledge about the data, often the user feels

“left in the dark” when issuing queries, and has to use a

try-and-see approach for finding information. User tries a

few possible keywords, goes through the returned results,

modifies the keywords, and reissues a new query. This

search interface is neither efficient nor user friendly.

Disadvantages:

1. XQuery hard to understand for non-database

users.

2. XQuery languages requires queries to be posed

against underlying data scheme.

3. Keyword search does not support approximate

search.

4. Keyword search interface is not efficient and user

friendly.

3.2 Proposed System

The proposed method is TASX (pronounced “task”), a

fuzzy Type-Ahead Search in XML data. TASX searches

the XML data on the fly as user’s type in query keywords,

even in the presence of minor errors of their keywords.

TASX provides a friendly interface for users to explore

XML data, and can significantly save users typing effort.

The main challenge is search efficiency. Each query with

multiple keywords needs to be answered efficiently. To

make search really interactive, for each keystroke on the

client browser, from the time the user presses the key to

the time the results computed from the server are

displayed on the browser, the delay should be as small as

possible. Interactive speed requires this delay to be within

milliseconds. In proposed system, users explore data as

they type, even in the presence of minor errors of their

input keywords. Type-ahead search can provide users

instant feedback as users type in keywords, and it does not

require users to type in complete keywords. Type-ahead

search can help users browse the data, save users typing

effort, and efficiently find the information. Existing

methods cannot search XML data in a type-ahead search

manner.

Proposed method has following features:

� Search as you type: It extends Autocomplete by

supporting queries with multiple keywords in

XML data.

� Fuzzy: It can find high quality answers that have

keywords matching query approximately.

� Effective MCT (Minimal Cost Tree) method is

implemented for retrieving answers from the

XML document.

3.3 Proposed System Architecture

Fig. 3 shows the proposed architecture of the system.

TASX works for multiple keyword queries in XML data,

by allowing small errors of query keywords and

inconsistencies in the data itself. Suppose there is an

original XML document that resides on a server. A user

accesses and searches the data through a web browser.

Each keystroke that the user types invoke a query consists

existing string. The browser sends the query to the server,

which computes query answer. The underlying data

residing is XML data. The client has a browser, using

which a user can send query requests to the server to

retrieve results. The client side contains HTML contents

with JavaScript code executed in the browser. When the

user types in a query, the JavaScript code issues an AJAX

query to the server. Each keystroke of the user could

invoke a query, which includes the current string the user

has typed in. The browser sends the query to the server.

Fig. 3 Fuzzy Search System Architecture

The server tokenizes the query string, computes and

returns to the user the best query answers. For each query,

the server treats the last keyword as a partial keyword the

user is completing, and other earlier keywords as

complete keywords. For a keyword query, find the records

that contain every complete keyword in the query and a

keyword with the partial keyword as a prefix.Trie

structure is used to index the words in the underlying

XML data. Each word ‘w’ corresponds to a unique path

from the root of the trie to a leaf node. Each node on the

path has a label of a character in ‘w’. For each leaf node,

store an inverted list of IDs of XML elements that contain

the word of the leaf node. Supporting fuzzy search is very

IJCAT International Journal of Computing and Technology, Volume 1, Issue 6, July 2014
ISSN : 2348 - 6090
www.IJCAT.org

304

important especially when users do not remember the

exact spelling of the right keywords. To support this

feature, for each complete keyword in a query, identify the

keywords in the data that are similar to the keyword. For

the partial keyword, identify its similar keywords with a

prefix similar to the partial keyword. Edit distance is used

to quantify the similarity between keywords.

Two keywords are similar if their edit distance is within a

given threshold τ. Next, server identifies the related

subtrees in XML data for every input keyword that

contain the predicted words. By using ELCA (Exclusive

Lowest Common Ancestor) / MCT (Minimum Cost Tree)

semantics, users recognize the answer based on the

predicted words. These related subtrees are the predicted

answers for the query.

4. Implementation

The implementation involves mainly 3 modules and they

are:

1. User Interface.

2. Document Upload.

3. Fuzzy Search.

4.1 User Interface

User page is created using GUI (Graphical User

Interface), which will be the media to connect user with

the server and through which client is able to request the

server and server can respond to the client. Through this

module, communication is established between client and

server. Before client creation, user credential is verified by

login page through user name and password entered by

user. An interface is provided for new user creation

through user registration page by taking all the important

details like username, password, email id, location from

the user. JSP (Java Server Pages) is used to create the GUI

in the form of webpages.

4.2 Document Upload

Document uploading is the second module of the project.

This module performs uploading the user data in the

document format. Here authenticated user wants to upload

his/her document he can upload that document. This

particular document is saved in the form of XML data.

For uploading user selects one document and browse the

document in the webpage of user. Then start uploading

selected document using uploading option in the webpage.

Uploaded document is saved in user directory.

4.3 Fuzzy Search

TASX – Fuzzy type-ahead search in XML data works for

queries with multiple keywords in XML data, by allowing

minor errors of query keywords and inconsistencies in the

data itself. A user accesses XML data and searches the

data through a web browser. Each keystroke that the user

types invokes a query, which includes the current string

the user has typed in. The browser sends the query to the

server, which computes and returns to the user the best

answers ranked by their relevancy to the query.

Fuzzy search consists of four steps:

1. Parsing the XML document.

2. Indexing the XML document using trie data

structure.

3. Finding predicted word using edit distance

method. (Fuzzy).

4. Computing answers based on predicted words

using MCT (Minimal Cost Tree) based method.

Parsing XML Document

Parsing the XML document means “reading” the XML

file and getting its content according to the structure.

DOM (Document Object Model) is used to parse XML

document. It provides a structured representation of the

document (a tree) and it defines a way that the structure

can be accessed from programs so that they can change

the document structure, style and content.

Trie Index

Trie index structure is used to index the words in the

underlying XML data. Trie is an ordered multi-way tree

data structure that is used to store strings over an

alphabet. Each node in a tree contains an array of

pointers, one pointer for each character in the alphabet

and all the descendants of a node have a common prefix

of the string associated with that node. The root is

associated with the empty string. The term trie comes

from "retrieval”. Due to this etymology it is pronounced

[tri] ("tree").

For instance, consider the XML document in Fig. 2. The

tries structure for the tokenized words is shown in Fig. 4.

The word “mich” has a node ID of 10. Its inverted list

includes XML elements 18 and 26.

IJCAT International Journal of Computing and Technology, Volume 1, Issue 6, July 2014
ISSN : 2348 - 6090
www.IJCAT.org

305

Fig. 4 The trie on top of words in Fig 2 (a part of words)

Edit distance method

The Levenshtein distance is a string metric for measuring

the difference between two sequences. Informally, the

Levenshtein distance between two words is the minimum

number of single-character edits (i.e. insertions, deletions

or substitutions) required to change one word into the

other. Mathematically, the Levenshtein distance between

two strings a, b is given by

Where 1(ai ≠ bj) is the indicator function equal to 0 when

ai = bj and equal to 1 otherwise.

Computing answers for multiple keywords

LCA based method:

The lowest common ancestor (LCA) is a concept in graph

theory and computer science. Let T be a rooted tree with n

nodes. The lowest common ancestor between two nodes v

and w is defined as the lowest node in T that has both v

and w as descendants. The LCA of v and w in T is the

shared ancestor of v and w that is located farthest from the

root. There are different ways to answer the query on an

xml document; one commonly used method is LCA based

method. Many algorithms that use query over xml uses

this method. Content nodes are the parent node of the

keyword. For example consider keyword db in Fig.2 then

content node of db is node 13 and node16. Procedure:

� For keyword query the LCA based method

retrieves content nodes in xml that are in

inverted lists.

� Identify the LCAs of content nodes in inverted

list.

� Takes the sub tree rooted at LCAs as answer to

the query.

For example suppose the user typed the query “DB Tom”

on XML document in Fig.2. The content nodes of “DB”

are {13,16} and for “Tom” are {14,17}. The LCAs of

these content nodes are nodes 2, 12 and 15. Here the node

2 is less relevant to query than nodes 12 and 15 as nodes

13 and 17 corresponds to a values of different papers.

Limitation

� It gives irrelevant answers.

� The results are not of high quality.

ELCA based method:

To address the limitation of LCA based method exclusive

LCA (ELCA) is proposed. It states that an LCA is ELCA

if it is still an LCA after excluding its LCA descendants.

For example suppose the user typed the query “DB Tom”

on the XML document in Fig.2, then the content nodes of

“DB” are {13, 16} and for “Tom” are {14,17}, the LCAs

of these content nodes are nodes 2, 12, 15, 1. Here the

ELCAs are 12, 15. The subtree rooted with these nodes is

displayed which are relevant answers Node 2 is not an

ELCA as it is not an LCA after excluding nodes 12 and

15.

Limitation

Use of “AND” semantics between input keywords of

query and ignore answers that contain some of query

keywords. For example, suppose a user types in a keyword

query “DB IR Tom” on the XML document in Fig. 2. The

ELCAs to the query are nodes 15 and 5. Although node

12 does not have leaf nodes corresponding to all the three

keywords, it might still be more relevant than node 5 that

contains many irrelevant papers.

MCT (Minimal Cost Tree) method:

MCT method is used to find relevant answers to a

keyword query over an XML document. In the MCT

framework, each node on the XML tree is potentially

relevant to the query. For each node corresponding

answer to a query is defined as its subtree with the paths

to the nodes that include the query keywords. This subtree

is called the “minimal cost tree” for this node. For each

leaf node in the trie, indexing is done both for content and

quasi-content nodes whose descendants contain the

keyword. For instance, consider the XML document in

Fig. 2. For the keyword “DB,” index nodes are 13, 16, 12,

15, 9, 2, 8, 1, and 5 as shown in Fig. 5 which shows the

extended trie structure. For the keyword “IR,” index

nodes are 6, 16, 24, 5, 15, 23, 2, 20, and 1. For the

keyword “Tom,” index nodes are 14, 17, 12, 15, 9, 2, 8, 1,

and 5.

IJCAT International Journal of Computing and Technology, Volume 1, Issue 6, July 2014
ISSN : 2348 - 6090
www.IJCAT.org

306

Fig. 5 The Extended trie on top of words in Fig. 2(a part of words)

The main advantage of MCT is that, even if a node does

not have descendant nodes that include all the keywords

in the query, this node could still be considered as a

potential answer.

Consider the XML document in Fig.2 and given a

keyword query Q = {DB, Tom, WWW}. Nodes 3, 13, 14,

16, and 17 are content nodes of the three keywords. Nodes

1, 2, 5, 8, 9, 12, and 15 are their quasi-content nodes.

Node 3 is the pivotal node for node 2 and “WWW”. Node

16 is the pivotal node for node 2 and “DB”. Node 17 is

the pivotal node for node 2 and “Tom”. The MCT of node

2 is the subtree rooted at node 2, which contains the

paths:

n2 → n3, n2 → n15 → n16, and n2 → n15 → n17.

5. Results

We have implemented our method using propose

techniques on sample data set. We set up a server using

Apache Tomcat server. The server was running program

implemented in Java programming language. We used

Ajax and JavaScript to allow client browser to interact

with the server and display the result. We conducted an

evaluation on a PC running Windows 7 operating system.

Table 1, Table 2, Table 3 shows the exact query and its

typed query with Edit Distance 1, 2, 3 respectively.

Table 1 Selected Queries on Books.xml file with Edit distance = 1

Exact Query Typed Query

Randall Carla ranall crla

Khnorr Crawlies Korr crawhies

Kress Peter Kiss pete

Microsoft Programming Microsof programing

Comprehensive interfaces Comprehensive

interhaces

Table 2 Selected Queries on Books.xml file with Edit distance = 2

Exact Query Typed Query

Randall Carla raiall crl

Khnorr Crawlies Kor crakhies

Kress Peter Kss pehe

Microsoft Programming Microof prograzing

Comprehensive interfaces Comrehensive inerhaces

Table 3 Selected Queries on Books.xml file with Edit distance = 3

Exact Query Typed Query

Randall Carla riall crl

Khnorr Crawlies Khn crakhie

Kress Peter Krhhs pehes

Microsoft Programming Micros prograzing

Comprehensive interfaces Comrehensiv inerhacek

Fig.6 shows the comparison graph for ELCA and MCT

method. The comparison is made based on the number of

results found for a given query keywords with the edit

distance = 3. The graph predicts that MCT method result

count is comparatively more than ELCA method.

Fig. 6 Comparision of result count with Edit distance = 3

IJCAT International Journal of Computing and Technology, Volume 1, Issue 6, July 2014
ISSN : 2348 - 6090
www.IJCAT.org

307

Fig. 7 Search Time (ELCA versus MCT)

Fig.7 shows the comparison graph for ELCA and MCT

method. The comparison is made based on the search

time. We used the queries on Books.xml file. The graph

predicts that the MCT method takes less time compared to

ELCA method for fuzzy search.

6. Conclusion and Future Enhancement

The problem of fuzzy type-ahead search in XML data, a

new information-access paradigm in which system

searches XML data on the fly as the user types in query

keywords is implemented. This method provides

approximate keyword search for users. In fuzzy type-

ahead search method the predicted keywords are

calculated using edit distance method and relevant

answers among predicted keywords are retrieved using

MCT (Minimal Cost Tree) method. MCT-based search

method effectively and progressively identifies the most

relevant answers.

The fuzzy type ahead search method provides a friendly

interface for users to explore XML data and saves users

typing effort. The comparison is done between the ELCA

and MCT based method on search efficiency and result
count of a query answer. The comparison based on search

time predicts that MCT based search method is better

than ELCA based method and achieves higher

performance in terms of fuzzy search. The comparison

based on result count shows that MCT based method is

more effective than ELCA based method.

Following are some of the enhancements that can be made

for improving our work:

� Progressively finding Top-k results.

� Improvement using Forward Index.

References

[1] Y. Xu and Y. Papakonstantinou, “Efficient Keyword

Search for Smallest Lcas in XML

Databases,” Proc. ACM SIGMOD Int’l

Conf.Management of Data, pp. 537-538, 2005.

[2] C. Sun, C.Y. Chan, and A.K. Goenka, “Multiway Slca-

Based Keyword Search in Xml Data,” Proc. Int’l

Conf. World Wide Web (WWW), pp. 1043-1052, 2007.

[3] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv, “Xsearch”

A Semantic Search Engine for Xml,” Proc. Int’l Conf.

Very Large Data Bases (VLDB), pp. 45-56, 2003.

[4] G. Li, S. Ji, C. Li, and J. Feng, “Efficient Type-Ahead

Search on Relational Data: A Tastier Approach,” Proc.

ACM SIGMOD Int’l Conf. Management of Data, pp.

695-706, 2009.

[5] S. Ji, G. Li, C. Li, and J. Feng, “Efficient Interactive

Fuzzy Keyword Search,” Proc. Int’l Conf. World Wide

Web (WWW), pp. 371-380, 2009.

[6] G. Koutrika, Z.M. Zadeh, and H. Garcia-Molina, “Data

Clouds: Summarizing Keyword Search Results over

Structured Data,” Proc. Int’l Conf. Extending Database

Technology: Advances in Database Technology

(EDBT), pp. 391-402, 2009.

[7] Y. Chen, W. Wang, Z. Liu, and X. Lin, “Keyword

Search on Structured and Semi-Structured Data,” Proc.

ACM SIGMOD Int’l Conf. Management of Data, pp.

1005-1010, 2009.

Sushma. J. Basanagoudar completed B.E in Computer Science &
Engineering from S.J.C.I.T college in the year 2011, M. Tech
(pursuing) Computer Science & Engineering in B.N.M Institute of
Technology in the year 2014.

Dr. B. G. Prasad currently working as Professor & Head of
Department in CSE at B.N.M Institute of Technology. He has over 25
years of academic experience in Computer Science. Has published
24 journal/conference papers. His areas of interest encompass
Computer Networks, Image Processing, CBIR, Operating System
and Computer Vision.

