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ABSTRACT

This paper presents an overview of three recently developed scene-based nonuniformity correction techniques,
namely, the algebraic scene-based algorithm (ASBA), the extended radiometrically accurate scene-based algo-
rithm (RASBA) and the generalized algebraic scene-based algorithm (GASBA). The ASBA uses pairs of image
frames that exhibit one-dimension sub-pixel motion to algebraically extract estimates of bias nonuniformity.
The RASBA incorporates arbitrary sub- and super-pixel two-dimensional motion in conjunction with limited
perimeter-only absolute calibration to obtain radiometrically accurate estimates of the bias nonuniformity. The
RASBA provides the advantage of being able to maintain radiometry in the interior photodetectors without
interrupting their operation. The GASBA is a generalized non-radiometric form of the algorithm that uses
image pairs with arbitrary two-dimensional motion and encompasses both the ASBA and RASBA algorithms.
This generalization is accomplished by initially guaranteeing bias uniformity in the perimeter detectors. This
uniformity can be achieved by first applying the ASBA estimates. The generalized algorithm is then able to au-
tomatically maintain perimeter uniformity without the need for re-application of the ASBA. Thus, the GASBA
is able to operate completely in a non-radiometric mode, alleviating the need for the perimeter calibration system
if desired. The generalized algorithm is applied to real infrared imagery obtained from both cooled and uncooled
infrared cameras. A hardware implementation of the proposed algorithm will also be discussed along with several
ongoing commercial applications of the technology.

Keywords: focal plane array, nonuniformity correction, scene-based NUC, fixed pattern noise, infrared sensors,
calibration

1. INTRODUCTION

Focal-plane array (FPA) sensors have become the most prominent detector used in infrared (IR) and visible-light
imaging systems in recent years. The wide usage of FPAs is primarily attributable to advances in solid-state
detector technology that has lead to compactness, cost-effective production and high performance.1 One of
the primary applications of long-wave infrared (LWIR) and mid-wave infrared (MWIR) sensor arrays is broad-
band thermal imaging, where maximizing broadband spatial resolution and intensity signal-to-noise ratio is of
paramount importance. A few applications include night-vision systems, airborne and space-based reconnais-
sance and surveillance systems, astronomical imaging, and forest-fire early detection systems.

IR FPA sensors all suffer from a common problem known as fixed pattern noise (FPN), or spatial nonuni-
formity.1 In fact, FPN remains a serious problem despite recent advances in IR FPA technology.2 The source
of this FPN is attributed to the fact that each photodetector in the FPA has a differing photoresponse due to
detector-to-detector variability in the FPA fabrication process.3 Simply stated, each detector in the array will
respond differently to the same amount of impinging radiation. FPN is so termed because it manifests as a
spatially-random, temporally-constant pattern that is present across all frames of motion.

At first glance, it would appear that the FPN problem could be remedied through a one-time factory calibra-
tion. But, the problem is complicated by the fact that the response of each FPA photodetector changes in time,
causing the FPN to slowly drift throughout sensor operation, e.g., due to factors such as the sensor operating
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temperature, the temperature of the observed scene, the FPA fabrication material, electronic readout noise,
etc. Thus, a one-time calibration is ineffective and instead a solution is required that continuously estimates
and compensates for the FPN throughout camera operation. Though the true response of each FPA detector
is nonlinear, the response is typically modelled linearly, having both a gain and bias component. Thus, under
this linear assumption, the gain and bias are different for each detector and hence give rise to the nonuniformity.
Techniques that seek to estimate these gain and bias parameters, and subsequently employ the estimates to
remove the nonuniformity, are known as nonuniformity correction (NUC) techniques.

NUC techniques fall into two main categories, namely, calibration-based and scene-based techniques. Calibration-
based methods employ some form of absolute temperature reference, such as a blackbody radiation source or
a uniform-temperature shutter, to estimate the FPN. The calibration is performed by heating the source to a
uniform, known temperature and placing it within the full camera field of view (FOV). The resulting “flat”
images can then be used to linearly extract the nonuniformity. A standard form of calibration is the two-point
calibration (TPC), and is so called because the source is imaged at two distinct temperatures. From these
two spatially-uniform image sequences the gain and bias parameters can be directly extracted. When only the
bias parameters are desired a single uniform-temperature sequence (called a one-point calibration) may be em-
ployed. Similarly, to more accurately characterize the nonlinear behavior of the detector response, a multi-point
calibration can be used to obtain a higher-order estimate of each detector response curve.4

Calibration-based techniques have the desirable property that they provide reasonably good estimates of the
nonuniformity, and, after correction, the resulting imagery is radiometrically accurate. The main disadvantage
of these techniques is that, due to drift in the FPN, the FPA must be recalibrated on the order of minutes
throughout camera operation. Thus, the camera is “blind” during these periods. Furthermore, because the
calibration procedure itself can take a reasonable amount of time, e.g., several minutes in the TPC, most real-
time imaging systems are forced to use the less accurate one-point calibration procedure. In addition, it may be
undesirable to endure the expense of the blackbody source, particularly for applications where radiometry is of
no concern.

The alternative to these obstructive calibration-based procedures are scene-based NUC techniques. These
techniques are algorithmic by nature and provide the advantage of being non-obstructive at the cost of compro-
mising radiometric accuracy. Scene-based algorithms are generally identified by two main approaches, namely,
statistical and image registration-based. Statistical techniques generally make some spacio-temporal assumptions
on the irradiance observed by each detector in the array and exploit these assumptions to extract quantities used
to compensate for the FPN. Registration-based techniques, on the other hand, require the precise estimation
of frame-to-frame translational motion that is then used to “line up,” or register, all image frames within the
sequence. Then, after image alignment, specific assumptions are introduced and the nonuniformity compensators
are estimated.

Statistical algorithms have been reported by Narendra and Foss,5, 6 Harris and Chiang,7, 8 and Chiang
and Harris.9 These algorithms rely on the constant-statistic assumption, which states that the statistics of
the observed scene become constant over time. Thus, this assumption requires that each detector in the array
spend a reasonable amount of time observing a wide range of irradiance values. Under this assumption and by
employing a linear model for the detector response, the mean and standard deviation of each detector’s readout
signal can be regarded as its bias and gain, respectively. A statistical algorithm developed by Hayat et al.10

relaxes the constant-statistic assumption to one that relies on the key assumption that, in time, all detectors
in the array are exposed to the same range of irradiance. A Kalman-filtering approach was recently presented
by Torres and Hayat11, 12 that adopts the constant-range assumption and is able to capture stochastic drift in
the nonuniformity parameters. Scribner et al.13 proposed a least mean square error technique that resembles
adaptive temporal high-pass filtering. By adjusting the time constant of the filter, their algorithm was used to
reduce the spatial noise caused by bias nonuniformity. A neural-network implementation of the adaptive least
mean square error algorithm was also developed by Scribner et al.14, 15

Typically, statistical algorithms perform poorly when the imposed assumptions are violated. Moreover, many
of these techniques typically require thousands of image frames in order to obtain reasonable NUC, depending
on the spatial distribution of the scene and the level of motion.



Registration-based techniques include those developed by O’Neil,16, 17 Hardie, et al.18 and Hepfer et al.19

These techniques all use the idea that each detector should have an identical response when observing the same
scene point over time. For example, O’Neil uses image frames produced by dithering the detector FOV between
consecutive frames in a known pattern. In contrast, the technique developed by Hardie et al. uses a motion-
estimation algorithm to trace each point in the scene across all image frames. In general, registration-based
algorithms offer a faster nonuniformity-estimate convergence rate, e.g., on the order of hundreds of frames, than
statistical NUC algorithms at the cost of an increase in computational complexity due to their need for motion
estimation or induced motion.

We now focus on a class of registration-based algorithms recently developed by Ratliff et al.20–24 The
algebraic scene-based algorithm (ASBA)20, 21 uses image pairs that exhibit subpixel one-dimensional (1D) trans-
lational motion, or shift, to unify the detector biases across the entire array to that of a single common bias
value. The technique was later extended by the authors to a radiometrically accurate form (RASBA) that accom-
modates arbitrary, sub- or super-pixel two-dimensional (2D) global motion.23, 25 This extension was achieved
by employing a limited perimeter-only blackbody calibration system that absolutely calibrates detectors along
the perimeter of the FPA while leaving interior detectors unobstructed. The corrected imagery resulting from
this technique is radiometrically accurate in a sense that all of the pixels – not just the calibrated perimeter
pixels – have zero bias. The RASBA technique enjoys the non-obstructive advantage of scene-based algorithms
while yielding the radiometric benefit of calibration techniques. Later, it was observed that the algorithm could
further be generalized to a form capable of utilizing arbitrary two-dimensional image pairs without the need
for the perimeter calibration system. This extension was achieved by (1) unifying the bias values of detectors
along the perimeter to a single unknown bias value through application of the ASBA; and (2) once perimeter
uniformity has been accomplished, a new version of the RASBA algorithm is applied which does not require
calibration of the perimeter detectors. Thus, in applications where absolute radiometric accuracy is not nec-
essary, this generalized algebraic scene-based algorithm (GASBA)24 allows for removal of the nonuniformity in
practically all cases where a video sequence is available with global translational motion. Consequently and more
importantly, the performance of the GASBA is significantly better than that of the ASBA technique, removing
image artifacts such as horizontal or vertical striping that were observed in the original ASBA corrections.

This paper is structured as follows. Section 2 presents the linear relationships used to model each photode-
tector response within the FPA along with a bilinear model used to estimate each shifted irradiance value. In
Section 3, brief reviews of the ASBA, RASBA and GASBA NUC techniques are presented. The NUC algo-
rithms are applied to real infrared data obtained from both cryogenically-cooled and uncooled infrared FPAs in
Section 4. Finally, conclusions are stated in Section 5.

2. DETECTOR MODELS

Consider an image sequence yk generated by an M × N FPA, where k = 1, 2, 3, . . . represents the image frame
number. A commonly used linear model for the ijth FPA-sensor output at time k is given by

yk(i, j) = zk(i, j) + b(i, j), (1)

where zk(i, j), here termed the irradiance, is proportional to the number of photons collected by the ijth detector
during the camera integration time, b(i, j) is the detector bias, i = 1, 2, . . . ,M and j = 1, 2, . . . , N .

We assume throughout that the temperature of objects does not change significantly during the time be-
tween image frames. Thus, when two image frames exhibit an arbitrary translational motion between them, we
approximate the irradiance at a given pixel in the (k + 1)th frame as a bilinear interpolation of the irradiance
corresponding to the appropriate four pixels from the kth frame. This is done as follows: Let αk and βk be
the vertical and horizontal components of the shift between the kth and the (k + 1)th images, respectively.
Further, let us write these shifts as the sum of their whole-integer and fractional parts, i.e., αk = �αk�+∆αk and
βk = �βk�+∆βk, where �·� indicates the integer part of the shift. For convenience, we define the fractional areas
γ1,k = |∆αk∆βk|, γ2,k = (1 − |∆αk|)|∆βk|, γ3,k = |∆αk|(1 − |∆βk|), and γ4,k = (1 − |∆αk|)(1 − |∆βk|). Note
that γ1,k + γ2,k + γ3,k + γ4,k = 1. For simplicity, we assume that the shift is in the down-rightward direction and
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Figure 1. Graphical depiction of the bilinear irradiance interpolation model for the case of subpixel 2D motion. The
pixels shaded in blue represent the interpolated IR-signal value at time k + 1.

thus by convention αk > 0 and βk > 0. With this simplifying notation, the bilinear-interpolation approximation
ẑk+1(i, j) for the irradiance zk+1(i, j) becomes

ẑk+1(i, j) = γ1,kzk(i − �αk� − 1, j − �βk� − 1) + γ2,kzk(i − �αk�, j − �βk� − 1)
+ γ3,kzk(i − �αk� − 1, j − �βk�) + γ4,kzk(i − �αk�, j − �βk�). (2)

This irradiance interpolation model is depicted graphically in Fig. 1. By substituting the above interpolation
model into Eq. 1, we obtain a bilinearly-interpolated approximation for the (k + 1)th detector output in terms
of the irradiance’s spatial distribution in the previous frame. More precisely, for i = 2 + �αk�, 3 + �αk�, . . . ,M
and j = 2 + �βk�, 3 + �βk�, . . . , N ,

yk+1(i, j) = γ1,kzk(i − �αk� − 1, j − �βk� − 1) + γ2,kzk(i − �αk�, j − �βk� − 1)
+ γ3,kzk(i − �αk� − 1, j − �βk�) + γ4,kzk(i − �αk�, j − �βk�) + b(i, j). (3)

Having established the above detector response models, we next review the key aspects behind the three NUC
techniques.

3. ALGORITHM DESCRIPTIONS

We next present a brief review of all relevant mathematics behind the ASBA, RASBA and GASBA NUC
techniques.

3.1. Review of the ASBA NUC Technique

We begin by reviewing the key ideas behind the original ASBA NUC technique.21 This review illustrates the
fundamental concepts behind the bias unification ability of the various algorithms. The ASBA technique exploits
shift information between two consecutive image frames, exhibiting a purely vertical shift, say, to convert the
bias value in a given detector element to the bias value of its vertical neighbor. This mechanism, in turn, allows
for the conversion of all detector biases in an entire column to a common bias value. The procedure is repeated
for every column in the image pair, resulting in an image that suffers from nonuniformity across rows only, i.e.,
each column has a different, yet uniform, bias value. Now, with an analogous procedure and by using a pair of
horizontally-shifted images, the bias values are unified across all rows, ultimately allowing for the unification of
all biases in the array to a common value.

To precisely describe the ASBA procedure, we first define V as the set containing P image pairs exhibiting
1D subpixel vertical motion. Similarly, H denotes the set of Q 1D subpixel horizontally-shifted image pairs. We
then define an intermediate vertical correction matrix ∆V,p for a pair of vertically-shifted frames at times p and
p + 1. For j = 1, 2, . . . , N , put ∆V,p(1, j) = 0, and for i = 2, 3, . . . ,M , define

∆V,p(i, j) =
1

|∆αp|
[|∆αp|yp(i − 1, j) + (1 − |∆αp|)yp(i, j) − yp+1(i, j)

]

= b(i − 1, j) − b(i, j). (4)



Hence

∆V,p =




0 0 · · · 0
b(1, 1) − b(2, 1) b(1, 2) − b(2, 2) · · · b(1, N) − b(2, N)
b(2, 1) − b(3, 1) b(2, 2) − b(3, 2) · · · b(2, N) − b(3, N)

...
...

. . .
...

b(M − 1, 1) − b(M, 1) b(M − 1, 2) − b(M, 2) · · · b(M − 1, N) − b(M,N)




. (5)

Now, the vertical correction matrix CV,p is calculated by performing a partial cumulative sum down each column
of ∆V,p. So, for i = 2, 3, . . . ,M and j = 1, 2, . . . , N , we define

CV,p(i, j) =
i∑

m=2

∆V,p(m, j) = b(1, j) − b(i, j), (6)

so that

CV,p =




0 0 · · · 0
b(1, 1) − b(2, 1) b(1, 2) − b(2, 2) · · · b(1, N) − b(2, N)
b(1, 1) − b(3, 1) b(1, 2) − b(3, 2) · · · b(1, N) − b(3, N)

...
...

. . .
...

b(1, 1) − b(M, 1) b(1, 2) − b(M, 2) · · · b(1, N) − b(M,N)




. (7)

Thus, the top-most bias value for each column has been propagated into all correction values within its respective
column. Now, because vertical correction matrices are computed for all image pairs in V, each CV,p may be
averaged in time to reduce the effects of estimation error (the sources of this error are studied extensively in
Ref. 24). Thus, each element of the averaged vertical correction matrix CV is given by

CV (i, j) =
1
P

∑
p∈V

CV,p(i, j) = b̄(1, j) − b̄(i, j), (8)

Next, we apply CV to each image pair in H, resulting in the vertically corrected set of horizontally-shifted image
pairs HV . Then, a similar bias unification procedure is performed for an image pair from HV , at times q and
q + 1, to obtain the horizontal matrix ∆H,q, i.e., for i = 1, 2, . . . ,M and j = 2, 3, . . . , N , put ∆H,q(i, 1) = 0 and

∆H,q(i, j) =
1

|∆βq|
[|∆βq|yV

q (i, j − 1) + (1 − |∆βq|)yV
q (i, j) − yV

q+1(i, j)
]
, (9)

where yV
q denotes a vertically-corrected image frame from HV . Performing a partial cumulative sum across each

row of ∆H,q, the horizonal correction matrix is

CH,q =




0 b̄(1, 1) − b̄(1, 2) b̄(1, 1) − b̄(1, 3) · · · b̄(1, 1) − b̄(1, N)
0 b̄(1, 1) − b̄(1, 2) b̄(1, 1) − b̄(1, 3) · · · b̄(1, 1) − b̄(1, N)
...

...
...

. . .
...

0 b̄(1, 1) − b̄(1, 2) b̄(1, 1) − b̄(1, 3) · · · b̄(1, 1) − b̄(1, N)


 . (10)

Notice that because the horizontal correction matrix was computed for each vertically-corrected image pair in
HV , each row of the above horizontal correction matrix is identical. Similar to the vertical case, the horizontal
correction matrices are computed for all image pairs in HV , and hence are averaged in time. Thus, each element
of the averaged horizontal correction matrix CH is given by

CH(i, j) =
1
Q

∑
q∈HV

CH,q(i, j). (11)
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Figure 2. Diagram illustrating the steps involved in the ASBA technique to compute the final correction matrix C.

Having obtained both vertical and horizontal correction matrices, we form the total correction matrix C simply
by summing CV and CH , i.e.,

C = CV + CH =




0 ¯̄b(1, 1) − ¯̄b(1, 2) · · · ¯̄b(1, 1) − ¯̄b(1, N)
¯̄b(1, 1) − ¯̄b(2, 1) ¯̄b(1, 1) − ¯̄b(2, 2) · · · ¯̄b(1, 1) − ¯̄b(2, N)

...
...

. . .
...

¯̄b(1, 1) − ¯̄b(M, 1) ¯̄b(1, 1) − ¯̄b(M, 2) · · · ¯̄b(1, 1) − ¯̄b(M,N)


 . (12)

Observe that the bias term ¯̄b(1, 1) is common to each element of C. Furthermore, notice that if C is added to
an arbitrary raw image frame, each respective bias term will be removed and replaced by ¯̄b(1, 1). Thus, after
correction, every detector bias in the array is unified to the same, although unknown, bias value. A block diagram
summarizing the key steps of the ASBA technique is shown in Fig. 2.

It is important to note that, in addition to its restrictive 1D subpixel nature, the ASBA technique produces
nonuniformity correction estimates that tend to leave behind artifacts in the corrected imagery. These artifacts
manifest as nonuniformity-like patterns that are present across rows and columns. Though subtle, these striping
patterns are undesirable and motivate the need for an improvement to the existing ASBA technique. Two
such improved algorithms are next presented that yield performance far superior to that of the original ASBA
technique.

3.2. Review of the RASBA NUC Technique

The ASBA NUC technique cannot be directly extended to incorporate shifts outside the sub-pixel 1D domain.
Instead, for this generalization to be accomplished, we discovered that a set of initial conditions are required.
These boundary conditions were found to be knowledge of the nonuniformity along the perimeter of the FPA.
To obtain these perimeter nonuniformity values, we employ a form of limited calibration only to detectors along
the perimeter of the FPA.23 Once these perimeter nonuniformity values are known, the algorithm can indeed
be extended to the desired form with the ability to accommodate arbitrary translational motion. In addition
to being able to accommodate more image pairs from the sequence, this form of the algorithm also provides
the added benefit that the resulting corrected imagery within the non-perimeter detectors is radiometrically
accurate. Thus, the algorithm provides a means for calibrating the interior of the FPA without ever obstructing
the photodetectors with a calibration source. We next review the relevant aspects of the RASBA NUC technique.
For a more thorough discussion we refer the reader to our earlier work.23



The maximum translational shift between consecutive image frames that can be used by the RASBA algorithm
is set to the width of the calibrated perimeter, which is determined by the calibration system. This upper bound
on the shift is denoted by L (pixels). We will assume henceforth that all image pairs satisfy the L-shift upper
bound condition.

The key step in the RASBA technique is to compute the so-called bias differential ∆k(i, j) for each non-
perimeter detector. This bias differential is calculated from the image sequence as follows:23

∆k(i, j) = γ1,kyk(i − �αk� − 1, j − �βk� − 1) + γ2,kyk(i − �αk�, j − �βk� − 1)
+ γ3,kyk(i − �αk� − 1, j − �βk�) + γ4,kyk(i − �αk�, j − �βk�) − yk+1(i, j). (13)

When we substitute Eqs. 1 and 3 into 13, we find that

∆k(i, j) = γ1,kb(i − �αk� − 1, j − �βk� − 1) + γ2,kb(i − �αk�, j − �βk� − 1)
+ γ3,kb(i − �αk� − 1, j − �βk�) + γ4,kb(i − �αk�, j − �βk�) − b(i, j). (14)

The bias-correction capability of the RASBA can now be described as follows. Suppose that we calibrate
the top-most L rows and left-most L columns of detectors such that we force each perimeter detector to have a
unity gain and zero bias. We then observe that for the top-leftmost uncalibrated detector, i.e., for i = L + 1 and
j = L + 1, the differential bias ∆k(L + 1, L + 1) is precisely equal to −b(i, j) since all of the γ-scaled bias terms
are equal to zero due to calibration. Hence, we define the first bias compensator corresponding to the kth frame
pair as ck(L + 1, L + 1) = −∆k(L + 1, L + 1). To compute the bias compensators in general, we must transform
each ∆k(i, j) term in Eq. 14 into the desired −b(i, j) form. Thus, the (i, j)th bias compensator is obtained by
progressively updating ∆k(i, j) according to

ck(i, j) = ∆k(i, j) + γ1,kck(i − �αk� − 1, j − �βk� − 1) + γ2,kck(i − �αk�, j − �βk� − 1)
+ γ3,kck(i − �αk� − 1, j − �βk�) + γ4,kck(i − �αk�, j − �βk�). (15)

Clearly, the algorithm has a spatially-recursive structure. The recursion starts with the top-leftmost uncalibrated
detector and proceeds in a down-rightward manner, updating one row or column of the bias differentials at a
time. Each bias compensator is progressively estimated in this way until all array indexes have been exhausted.
Notice that the calibrated detectors of the perimeter provide the necessary boundary conditions required to begin
this recursive process. Finally, because the bias compensators are estimated for k image pairs, we average these
k estimates for each (i, j)th detector to reduce the effects of estimation error.

We next review the generalized form of the algorithm that is capable of operating in a fully non-radiometric
mode.

3.3. Review of the GASBA NUC Technique
Instead of using the perimeter calibration system to unify the L perimeter rows and columns, the ASBA technique
is instead employed to perform an initial bias unification of the perimeter detectors. Thus, there is no longer
a restriction to a fixed perimeter size, but instead the upper bound L is limited only by the accuracy of the
shift estimator (for the shift estimation algorithm26 we employed, L = 30 pixels). The perimeter size can now
be dynamically selected for each image pair; therefore, for each image pair, we unify the biases of the topmost
�αk� + 1 rows and left-most �βk� + 1 columns. Next, given a 2D-shifted pair of perimeter-unified images, the
RASBA algorithm is applied as described in Section 3.2.

To demonstrate that application of the RASBA will indeed unify all detectors in the FPA to a single bias
value, we first compute the bias compensator for detector (2 + �αk�, 2 + �βk�). Notice that in this case the
computation of the bias differential involves direct use of the perimeter detectors. Thus, the bias differential is

∆k(2 + �αk�, 2 + �βk�) = γ1,kb + γ2,kb + γ3,kb + γ4,kb − b(2 + �αk�, 2 + �βk�). (16)

Since the γ terms sum to 1, Eq. 16 becomes

∆k(2 + �αk�, 2 + �βk�) = b − b(2 + �αk�, 2 + �βk�). (17)
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Figure 3. Graphical representation of the recursive operation of the algorithm. The unshaded pixel partitions correspond
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Clearly, when this bias differential is added to the top-leftmost nonunified detector output y(2 + �αk�, 2 + �βk�),
its bias is subtracted and replaced with a value of b, thus unifying this detector’s bias to that of the perimeter.
In this case, the bias differential is automatically of the desired form. In general, the bias differentials are of
the form given in Eq. 14. To transform these bias differentials to the desired form of Eq. 17, a recursive update
procedure similar to the RASBA is applied.

The GASBA technique is summarized below. A more thorough derivation of the technique is presented in
Ref. 24. It is convenient to first partition the non-perimeter pixels as follows. For min(2 + �αk�, 2 + �βk�) ≤ � ≤
min(M,N), define G� to represent the group of pixels consisting of {(�, �), . . . , (M, �), (�, � + 1), . . . , (�,N)}, as
depicted in Fig. 3. Next, we organize all images in the sequence into pairs of adjacent image frames and denote
each pair by Ik. Further, we define the image-pair set S1 as the collection of all image pairs exhibiting subpixel
1D shifts, and the set S2 as the collection of all image pairs exhibiting 2D sub- and superpixel shifts with the
proviso that the maximum shift has an integral part no greater than L. Given these definitions, the GASBA is
then summarized as follows:

1. Estimate the motion vector (αk, βk) for each Ik. Then, place each Ik in the appropriate group, namely, S1

or S2, according to its motion estimate.

2. Initialization stage: Extract the initial bias nonuniformity compensators by employing the ASBA technique
in conjunction with the sequence S1.

3. For each Ik ∈ S2, unify the perimeter bias values, i.e., for i = 1, . . . ,M, j = 1, . . . , �βk� + 1 and i =
1, . . . , �αk� + 1, j = �βk� + 2, . . . , N , using the ASBA bias compensators calculated in the previous step.
The perimeter thickness does not exceed L pixels.

4. Lock-in stage: For each k for which Ik ∈ S2, compute the bias differentials ∆k(i, j) in G� for all � according
to Eq. 13.

5. Update the bias differentials, resulting in the bias compensators ck(i, j) for each k using the following
recursive procedure:

(a) Start the recursion: Put � = min(2 + �αk�, 2 + �βk�) and estimate the bias compensators in G�

according to Eq. 15.

(b) For each k for which Ik ∈ S2, calculate the bias compensators ck(i, j) in G�+1 according to Eq. 15 for
(i, j) ∈ G�+1.

(c) Repeat the previous step and terminate the recursion when � = 1 + min(M,N).
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Figure 4. Diagram illustrating the steps involved in the GASBA technique.

6. Obtain the final bias compensators by computing the temporal average c(i, j) of the bias compensator
ck(i, j) over all image pairs Ik in S2.

A block diagram illustrating the steps of the GASBA technique is shown in Fig. 4.

3.4. GASBA Real-time Hardware Implementation

The GASBA’s high computational efficiency lends naturally to real-time applications. Currently, we are in
process of implementing the GASBA algorithm into a real-time hardware environment. This task has required
a redesign of the presented post-processing form of the algorithm. This new real-time processing structure has
been fully simulated and validated in MATLAB. An initial implementation has been completed for simulation
on a Texas Instruments Cx6000-based DSP board. The results of this simulation yielded more precise metrics
on the algorithm’s ability to operate in a real-time sense. It was found, using the current sub-optimum code,
that a single iteration of the algorithm can be performed in approximately 68.4ms, corresponding to a frame
rate of 14.6 frames/second. These metrics were assuming algorithm operation on a Texas Instruments Cx6711
DSP. It was also found that the algorithm code requires 27262 bytes of memory space, while the algorithm’s
data requirements are only 2MB of SDRAM (this is based upon an image size of 128x128). The overall MIPS
requirement of the algorithm in its current un-optimized form is found to 68.25. We are confident that a full
optimization of the code for the hardware platform will yield a dramatic improvement in the operating speed
of the algorithm. Thus, it seems highly feasible that the algorithm will be able to achieve an entirely real-time
capability as we continue this work.

4. ALGORITHM PERFORMANCE

In this section we employ real IR data to demonstrate the algorithms’ ability to accurately remove the nonuni-
formity and study the number of estimates required to achieve good estimates of the bias compensators.
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Figure 5. Image frame 325 from Data Set 1: (a) Raw image; (b) After correction by the ASBA; (c) After correction by
the RASBA; (d) After correction by the GASBA. All images are statistically scaled to the same dynamic range.

4.1. Application to IR Data

The three algorithms were applied to real infrared data. Data Set 1 was collected using a cryogenically-cooled
Amber 128x128 12-bit MWIR InSb camera. Figure 5.a shows the raw camera-outputted image frame 325 from
this 512-frame image sequence. Notice the high degree of spatial nonuniformity present. The data sequence was
then corrected using the ASBA, RASBA and GASBA techniques. The resulting images from these corrections
are displayed in Figs. 5.b, 5.c and 5.d, respectively. Notice the residual vertical striping remaining in the ASBA
image. This phenomena is typical of the ASBA and essentially results from all shifts being one dimensional, i.e.,
all corrections are performed strictly down rows and across columns. In the RASBA-corrected image, however,
we notice that these artifacts are not present. In this case, the perimeter (L = 5) was unified through a two-
point-calibration process, using flat images at 18◦ C and 30◦ C, to set all biases to zero and gains to unity.
Consequently, the resulting imagery is radiometrically accurate.23

The GASBA-corrected image is also free of the striping artifacts. In the initialization stage of the GASBA,
the bias nonuniformity estimates from the ASBA technique were first applied to the perimeter detectors. Then,
the modified RASBA was applied to interior detectors. It is important to note that, due to its tolerance of the
striping artifacts in the perimeter, the performance of the GASBA is significantly better than that of the ASBA
alone. This is attributable to its utilization of 2D-shifted frames.24

The GASBA was also applied to two sets of 3000-frame data sequences (referred to as Data Sets 2 and
3), obtained from an uncooled 320x240 LWIR amorphous-silicon microbolometer FPA. The raw uncorrected
image frame 320 from Data Set 2 is displayed in Fig. 6.a. The resulting GASBA-corrected image is displayed in
Fig. 6.b. Notice that before correction most of the image is obscured by the nonuniformity. After correction, the
nonuniformity has been removed, yielding a significant increase in image clarity. The image sequence depicts an
indoor scene containing a water cooler. In a similar correction for Data Set 3, Figs. 6.c and 6.d show the raw
and GASBA-corrected image frame 585, which depicts a hallway scene. The quality of the NUC provided by
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Figure 6. Imagery from Data Set 2: (a) Raw image frame 1750; (b) Image frame 1750 after correction by the GASBA.
Imagery from Data Set 3: (c) Raw image frame 480; (d) Image frame 480 after correction by the GASBA. All images are
statistically scaled to the same dynamic range.

the algorithm is again apparent. It is important to note that the camera used for this experiment was equipped
with a mechanical shutter-based calibration system (which performs a one-point calibration). Moreover, the
raw images of Fig. 6 have already been calibrated by this shutter-based system. Despite the significant level of
nonuniformity present, the GASBA was capable of further improving the image quality.

A final data set was obtained from an uncooled 320x240 LWIR vanadium-oxide microbolometer FPA. Data
Set 4 contains 1250 image frames, of which the raw frame 820 is depicted in Fig. 7.a. The same image frame is
shown after correction by the GASBA algorithm in Fig. 7.b. This scene depicts a concrete floor with electrical
test equipment at right. This camera also contained a shutter-based one-point calibration system. Notice that
while most of the nonuniformity has been removed by the factory calibration system, some nonuniformity does
remain and manifests as the dark, horizontal pattern in the center of the imagery. As seen in the corrected
imagery, the GASBA was able to successfully remove the remaining nonuniformity, again demonstrating its
high-quality correction ability.

It should be noted that the above corrections are representative of the algorithm in all cases where a video
sequence is available with sufficiently diverse motion. Furthermore, it was known that the above image sequences
contained a significant amount of gain nonuniformity. Despite this fact, the algorithm was able to perform well,
a subject we will thoroughly investigate in future work.

4.2. Bias Compensator Convergence Study

In this subsection we perform an experiment to study how many bias compensators must be averaged to obtained
reliable nonuniformity estimates. Recall that this averaging is performed in Step 6 of the algorithm description
in Subsection 3.3. To perform this study, we first apply the GASBA to remove the nonuniformity in Data Set
1. Image frame 500 from this correction is displayed in Fig. 8.a. We next re-apply the GASBA to this clean
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Figure 7. Imagery from Data Set 4: (a) Raw image frame 820; (b) Image frame 820 after correction by the GASBA.
Both images are statistically scaled to the same dynamic range.

image sequence. Since the nonuniformity has been removed, the bias compensators produced from this second
GASBA application should all be zero. Thus, any nonzero bias compensators can be attributed to error. The
bias compensators produced from the image pair for frames 500 and 501 are shown in Fig. 8.b, which is linearly
scaled to the full dynamic range. The shift between these image frames was (−1.532, 0.517) pixels.

Of the 512 frames in the image sequence, a total of 116 image pairs exhibiting 2D motion were found. These
image pairs were then used to estimate the bias compensators, each resulting in compensator estimates similar
to those of Fig. 8.b. The resulting compensator estimates were then averaged for each pixel (note that due to the
dynamic perimeter sizes, some detectors have less than 116 estimates). The resulting averaged bias compensator
estimates are displayed in Fig. 8.c, scaled to a dynamic range of [−0.5, 0.5]. The range of these averaged bias
compensator estimates is [−3.12 × 10−14, 4.27 × 10−14], or effectively zero as expected.

Finally, to study the rate at which the compensator errors converge to zero for this data set, Fig. 8.d displays
the mean absolute error and variance of the averaged bias compensator estimates as a function of the number of
estimates in the average. As can be seen, the variance of the error is nearly zero after averaging just 20 estimates.
After 100 estimates have been averaged, the mean absolute error and the variance are both essentially zero.

5. CONCLUSION

We have presented an overview of three recently developed algebraic scene-based nonuniformity correction algo-
rithms. The original ASBA21 technique is able to estimate the bias nonuniformity by using image pairs exhibiting
sub-pixel one-dimensional motion. The RASBA23 technique is able to make use of image pairs containing arbi-
trary two-dimensional translational motion to produce radiometrically accurate estimates of the nonuniformity.
Thus, this technique is able to effectively calibrate the interior array detectors without them ever being ob-
structed with a calibration target. Finally, the GASBA24 technique is able to estimate quantities that are used
to compensate for bias nonuniformity by using pairs of image frames exhibiting arbitrary one- or two-dimensional
global translational motion without the need for hard calibration. The key step of the algorithm is to guarantee
bias uniformity in the perimeter of each image pair using the ASBA technique.

The algorithms’ ability to provide high-quality NUC on real infrared data, obtained from both cryogenically
cooled and uncooled FPAs, was demonstrated despite the presence of gain nonuniformity. Moreover, the ASBA
and GASBA algorithms are able to perform these corrections in a shutterless manner, i.e., without the need
for a blackbody calibration target. We showed that the RASBA and GASBA techniques do not suffer from the
typical striping artifacts present in ASBA corrections. It was also demonstrated that the sources of error that
degrade algorithm performance can be overcome when a sufficient number of compensator estimates are averaged
in time. For example, for the 512-frame data set considered, these errors converged to zero after approximately
100 compensator estimates were averaged.
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Figure 8. (a) Image frame 500 from Data Set 1 after correction by the GASBA; (b) Bias compensator estimates produced
from the correction of frames 500 and 501 (linearly scaled to the full dynamic range); (c) Bias compensator estimates
after averaging 116 estimate matrices; (d) Plot showing the mean and variance of the bias compensator estimates as a
function of the number of estimates in the average.

One of the strengths of the algorithms is their computational efficiency, lending themselves to real-time
hardware-based application. Future work will continue on the optimization of the real-time hardware implemen-
tation.
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