1155

ON THE CARDINALITY OF HOMOGENEOUS COMPACTA OF COUNTABLE TIGHTNESS

Ahmed O.Elnubi

Received March 3, 2006

ABSTRACT. We prove that every homogeneous compacta of countable tightness and $d(X) \leq 2^{\aleph_o}$, is first countable. A relevant conjecture is raised by Arhangel'skii, conjecture 1.17 in [1], see also van Mill [11], which says: every homogeneous compacta of countable tightness is first countable.

1 INTRODUCTION

For all undefined notions, see Engelking[6], Kunnen[10],and Juhasz[9]. Recall that $\pi\chi(X)$, $\pi\chi(A)$, $\pi\omega(X)$, $\omega(X)$, d(X) and t(X) denote the π – character, π – character of A, π – weight, weight, density and tightness of X. A space X is homogeneous iff for every x,y \in X there is a homeomorphism f of X onto X with f(x) = y. A space is hereditarily separable (HS) iff every subspace is separable. A space is power homogeneous if X^k is homogeneous for some k. All spaces under discussion are Tychonoff.

In this paper, we prove that if a space X is homogeneous compactum of countable tightness and $d(X) \leq 2^{\aleph_o}$, then it is first countable. Results of the same flavour were obtained by Bell [4],and Arhangel'skii [2]. Bell proved that if X is a continuous image of a compact ordered space and X is power homogeneous, then X is first countable. Arhangel'skii proved that if X is Corson compact and power homogeneous then X is first countable, and a compact scattered power homogeneous space is countable. A recently interesting result was obtained by van Mill [12]. He constructed a compactum of countable $\pi - weight$ and character \aleph_1 with the property that it is homogeneous under MA+-HCH whereas CH implies that it is not.

2 Homogeneous compacta of countable tightness.

Lemma 1 : (Šapirovskii[13]) If X is a compactum and $t(X) = \aleph_o$, then we have $\pi \chi(A) \leq \aleph_o$ for every $A \subseteq X$.

Lemma 2 : If X has $\pi_X(A) \leq \aleph_o$ for all $A \subseteq X$, then every dense subspace of X is separable.

 $Proof\,$: Let Y be dense in X . We can take Y = A, then for every open neighbourhood N of Y there exists $V\in\upsilon$ =

 $\{V_i : i = 1, 2, 3, \dots\}$

a countable local base for Y. Using the fact that if Y is dense and V is open, then $cl(Y \cap V) = cl(V)$. Choose a point x(V) in the intersection, i.e. $x(V) \in Y \cap V_i$, then $\{x(V) : V \in v\}$ is the desired countable dense set in Y.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54A25, 54A35, 54D05; secondary 54D30, 54G20. Key words and phrases. Homogeneous compacta, countable tightness.

AHMED O.ELNUBI

Lemma 3 : If $d(X) \leq \aleph_o$ and $\pi \chi(A) \leq \aleph_o$ for every $A \subseteq X$, then $|X| \leq 2^{\aleph_o}$.

Proof: Assume that D is dense in X and $|D| \leq \aleph_o$. Associate with each subset A of X a countable sequence of neighbourhoods $g(x) = \{U_i x : i = 1, 2, 3, ...\}$ for every x∈ X such that $\{x\} = \cap\{U_i x : i = 1, 2, 3, ...\}$ and $cl(U_{i+1}x) \subset U_i x$ (here we have made use of the condition $\pi\chi(A) = \aleph_o$ for each A⊆ X and the regularity of X, also by regularity of X and density of D we have by theorem (3.9)(c) in Hodel [7], $\pi\chi(p, D) = \pi\chi(p, X)$). Let $D_i x = U_i x \cap D$. Clearly, $D_i x \subset D$, $|D_i x| \leq \aleph_o$, $x \in cl(D_i x)$. Now associate x with the sequence $\gamma(x) = \{D_i x : i = 1, 2, 3, ...\}$ of countable sets $D_i x$. Denote by $\Im(X)$ the family $\{\gamma(x) : x \in X\}$ of all sequences $\gamma(x)$ constructed for each x∈ X and A⊂X. Since $|D| \leq \aleph_o$, $|D^{\aleph_o}| \leq c$ and $|D^{\aleph_o \aleph_o}| < c$; thus we have

 $|\Im(X)| < |D^{\aleph_o}{}^{\aleph_o}| < c.$

We need to show that the correspondence $\gamma : X \to \Im(X)$ is one-to-one. Let $x_1, x_2 \in X, x_1 \neq x_2$. Let i_1 be such that $x_2 \notin \operatorname{cl}(U_{i_1}x_1)$, where $U_{i_1}x_1 \in \operatorname{g}(x_1)$. Take i_2 such that $x_1 \notin \operatorname{cl}(U_{i_2}x_2)$, where $U_{i_2}x_2 \in \operatorname{g}(x_2)$.

Suppose $i_2 \ge i_1$. Then it is clear that $x_1 \notin \operatorname{cl}(U_{i_2}x_2)$ and $x_2 \notin \operatorname{cl}(U_{i_2}x_1)$. Consider $(D_{i_2}x_2) = (U_{i_2}x_2) \cap \mathcal{D}, (D_{i_2}x_1) = (U_{i_2}x_1) \cap \mathcal{D}$. Since $x_1 \in \operatorname{cl}(D_{i_2}x_1)$,

 $x_2 \in \operatorname{cl}(D_{i_2}x_2)$ and $x_1 \notin \operatorname{cl}(U_{i_2}x_2), x_2 \notin \operatorname{cl}(U_{i_2}x_1)$, then we have $x_1 \notin \operatorname{cl}(D_{i_2}x_2), x_2 \notin \operatorname{cl}(D_{i_2}x_1)$; thus we have $(D_{i_2}x_1) \neq (D_{i_2}x_2)$, that is $\gamma(x_1)$ and $\gamma(x_2)$ are distinct sequences. Thus the correspondence $\gamma: X \to \Im(X)$ is one-to-one. Hence $|X| \leq |\Im(X)| \leq c$. \Box

Lemma 4 : If X has $\pi\chi(A) \leq \aleph_o$ for every $A \subseteq X$, $t(X) = \aleph_o$ and $d(X) \leq 2^{\aleph_o}$, then $|X| \leq 2^{\aleph_o}$.

Proof: Let D⊂ X be such that cl(D) = X and $|D| \le c$. Since $t(X) = \aleph_0$) then for for every point $x \in X$ there exists $D_x \subset D$ such that $|D_x| \le \aleph_0$ and $x \in clD_x$. Since $\pi\chi(A) \le \aleph_o$ for every A⊆ X and $d(clD_x) \le \aleph_0$, then $|clD_x| \le c$, by Lemma 3. Denote by $\Xi(D)$ the collection of all finite or countable sets belonging to D. Since $|D| \le c$ and $c^{\aleph_0} = c$, we have $|\Xi(D)| \le c$. Also, since for each $x \in X$ there exists a countable set $D_x \in \Xi(D)$ for which $x \in clD_x$, we have $X = \cup (cl(B):B \in \Xi(D))$. But $|\Xi(D)| \le c$. and $|cl(B)| \le c$ for every $B \in \Xi(D)$. Hence $|X| \le c$. □

Theorem 5 $(2^{\aleph_o} \prec 2^{\aleph_1})$: If X is a homogeneous compactum, $t(X) = \aleph_o$ and $d(X) \le 2^{\aleph_o}$, then it is first countable.

Proof: From Ismail[8], and using Lemma 1 and 4. □ Van Douwen [3] proved that if X has a countable π - base, then $|X| \leq 2^{\aleph_o}$.

Corollary 6 $(2^{\aleph_o} \prec 2^{\aleph_1})$: A homogeneous compactum space of countable π – base is first countable.

Proof: From Van Douwen [5] $|X| \le 2^{\aleph_o}$ and from Ismail[8] we have $|X| = 2^{\chi}$ and the proof follows.

Corollary 7 $(2^{\aleph_o} \prec 2^{\aleph_1})$: A compact homogeneous sequential space is first countable.

Proof: From Arhangel'skiĩ [3], pp.134, problem 152, $|X|=2^{\aleph_o}$ and from Ismail[8], we have $|X|=2^{\chi}$.

By Šapirovskii [14], any compact HS, must have countable π – weight, so if it is also homogeneous, it must have size at most 2^{\aleph_o} by Van Douwen [5]. By using the inequality in Ismail [8], under CH the space must be first countable.

Corollary 8: If there is a dense subset of X which is separable and $\pi\chi(X) \leq \aleph_o$, then $|X| \leq 2^{\aleph_o}$.

Proof: Using Theorem (3.8)(b) of Hodel [7], and van Douwen [5].

Corollary 9 $(2^{\aleph_o} \prec 2^{\aleph_1})$: If X is a homogeneous compactum and $h\pi\chi(X) \leq \aleph_o$, and $d(X) \leq \aleph_o$, then it is first countable.

Proof: Using Theorem (3.8)(d) of Hodel [7], and theorem 5 above.

3 Examples and Conclusions

[1] The space βN is characterized by $d(\beta N) \leq 2^{\aleph_o}$.

[2] The space R^X , where the space X is Tychonoff compact, with the toplogy of uniform convergence or of pointwise convregence contains a dense subset of cardinality at most 2^{\aleph_o} if and only if $|X| \leq 2^{\aleph_o}$, see Engelking [6].

[3]From Hodel [7] theorem (3.8)(b) $\pi\omega(X) = d(X).\pi\chi(X)$ and using Van Douwen result in[5],this means if $d(X).\pi\chi(X) \leq 2^{\aleph_o}$ then $|X| \leq 2^{\aleph_o}$. Lemma 3 above is a better estimate than this combined result .

[4]By the Hewitt-Marczewski-Pondiczery theorem: If $d(X_s) \leq 2^{\aleph_o}$, for every $s \in S$ and $|S| \leq 2^{2^{\aleph_o}}$, then $d(\pi_{s \in S} X_s) \leq 2^{\aleph_o}$. Assuming the productivity of homogeneous compactum conclude the productivity of first countability within the class of homogeneous compactum spaces satisfying the conditions of theorem 5.

[5] Applications of Theorem 1.1 in van Mill [11] are that the cardinality of a homogeneous compactum which has countable spread or is hereditarily normal and satisfies the countable chain condition does not exceed c. Using Theorem 5 to this class of spaces in addition to countable tightness and $d(X) \leq 2^{\aleph_o}$, then easily we deduce the first countability of these spaces.

ACKNOWLEDGEMENTS

I would like to thank the referee.

References

- A.V.Arhangel'skii, Topological homogeneity, Topological groups and their continuous images, Uspekhi.Math.Nauk 42(2)(1987)69-105(in Russian), English Translation: Russian Math.Surveys
- [2] A.V.Arhangel'skii, On power homogeneous spaces, Topology Appl. 122 (2002) 15-33.
- [3] A.V.Arhangel'skii, and V.I.Ponomarev, Foundations of General Topology through Problems and Exercises, Nauka, Moscow 1974. #MR56.3781.
- [4] M.G.Bell, Nonhomogeneity of powers of cor images, Rocky Mountain J.Math.22(1992)805-812.
- [5] E.K. van Douwen, Nonhomogeneity of products of preimages and $\pi weight$, Proc.Amer.Math.Soc.69(1978)183-192.
- [6] R. Engelking, General Topology, Heldermann, Berlin, 1989.

AHMED O.ELNUBI

- [7] Hodel, Cardinal functions.I, in Handbook of Set-Theoretic Topology (K.Kunnen and J.E.Vaughan,eds.) North-Holland, Holland, Amsterdam, 1984, pp. 1-61.
- [8] M.Ismail, Cardinal functions of homogeneous and topological groups, Math.Japon.26(1981)635-646.
- [9] I.Juhasz, Cardinal functions in Topology-Ten Years Later, Math. Centre Tract, vol.123, Mathematical Centre, Amsterdam, 1980.
- [10] K.Kunnen, Set Theory. An introduction to Independence Proofs, Stud. Logic Found. Math., vol. 102, North-Holland, Amsterdam, 1980.
- [11] J.van Mill, On the cardinality of power Homogeneous compacta ,Topology Appl.146-146 (2005)421-428.
- [12] J.van Mill, On the character and $\pi weight$ of homogeneous compacta, Israe J. Math.133 (2003)321-338.
- [13] B.Šapirovskii, Canonical sets and character. Density and weight in compact spaces, Soviet Math.Dokl., 15, 1282-1287.
- [14] B.Šapirovskii, $\pi character$ and $\pi weight$ in bicompacta, Dokl.Akad.Nauk SSSR 223 (1975) 799-802 (in Russian), English translation: Soviet Math.Dokl.16(1975)999-1004

Ahmed Osman Elnubi Teacher's College,Dept. of Math., P.O.Box 2313, Code 31982 Al Ahsa, Saudi Arabia. e-mail:nubi1234@hotmail.com or P.O.Box 12795, Khartoum, Sudan