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This paper proposes a new method for solving fuzzy system of linear equations with crisp coefficients matrix and fuzzy or interval
right hand side. Some conditions for the existence of a fuzzy or interval solution of 𝑚 × 𝑛 linear system are derived and also a
practical algorithm is introduced in detail. The method is based on linear programming problem. Finally the applicability of the
proposed method is illustrated by some numerical examples.

1. Introduction

Systems of simulations linear equations play a major role
in various areas such as mathematics, physics, statistics,
engineering, and social sciences. Since in many applications
at least some of the system’s parameters and measurements
are represented by fuzzy rather than crisp numbers, it is
important to develop mathematical models and numerical
procedures that would appropriately treat general fuzzy linear
systems and solve them [1]. A general model for solving
an 𝑚 × 𝑛 fuzzy system of linear equation (FSLE) whose
coefficients’ matrix is crisp and right hand side column is
an arbitrary fuzzy number vector was first proposed by
Friedman et al. [1]. Different authors [2–5] have investigated
numerical methods for solving such FSLE. Most of men-
tioned methods in different articles are based on numeri-
cal methods such as matrices decomposition and iterative
solutions. Previously mentioned papers do not discuss a lot
the possibility of solutions. In addition they cannot find
alternative solutions. But the proposed method does not
include these defects. Allahviranloo et al. [6] have presented
that the above-mentioned method is not applicable and
does not have solution generally. This paper sets out to
investigate the solution of the fuzzy linear system using a
linear programming method. Also we are going to explain
the necessary and sufficient conditions for existence of

the solutions. The idea of this method can join some uses of
linear programming to solve the problems of interval data in
[7–9]. The structure of this paper is organized as follows.

In Section 2, we provide some basic definitions and results
which will be used later.

In Section 3, we prove some theorems which are used
for proposed method and present a practical procedure. The
introducedmethod is illustrated by solving some examples in
Section 4 and conclusions are drawn in Section 5.

2. Preliminaries

In this section some basic definitions and concepts are
brought.

Definition 1 (by [10]). The triangular fuzzy numbers (TFN)
are very popular and are denoted by �̃� = (𝛼, 𝑐, 𝛽) and defined
by

�̃� =

{
{
{
{
{
{

{
{
{
{
{
{

{

𝑥 − 𝛼

𝑐 − 𝛼

, 𝛼 ≤ 𝑥 ≤ 𝑐,

𝛽 − 𝑥

𝛽 − 𝑐

, 𝑐 ≤ 𝑥 ≤ 𝛽,

0, otherwise.

(1)
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Note. If 𝛼 = 𝑐, then TFN is defined:

�̃� =

{
{

{
{

{

𝛽 − 𝑥

𝛽 − 𝛼

, 𝛼 ≤ 𝑥 ≤ 𝛽,

0, otherwise,
(2)

if 𝛽 = 𝑐, then TFN is defined:

�̃� =

{
{

{
{

{

𝑥 − 𝛼

𝛽 − 𝛼

, 𝛼 ≤ 𝑥 ≤ 𝛽,

0, otherwise,
(3)

and finally if 𝛼 = 𝑐 = 𝛽, then TFN is defined:

�̃� =

{

{

{

1, 𝑥 = 𝛽,

0, otherwise.
(4)

Definition 2 (by [10]). Let �̃� = (𝛼, 𝑐, 𝛽) be a triangular fuzzy
number; then one defines

supp (�̃�) = [𝛼, 𝛽] , core (�̃�) = 𝑐. (5)

Lemma 3 (by [10]). For arbitrary interval [𝑥, 𝑥], [𝑦, 𝑦] the
following properties hold:

(i) [𝑥, 𝑥] + [𝑦, 𝑦] = [𝑥 + 𝑦, 𝑥 + 𝑦],
(ii) [𝑥, 𝑥] − [𝑦, 𝑦] = [𝑥 − 𝑦, 𝑥 − 𝑦],
(iii) for each 𝑘 ∈ 𝑅,

𝑘 [𝑥, 𝑥] =

{

{

{

[𝑘𝑥, 𝑘𝑥] , 𝑖𝑓 𝑘 ≥ 0,

[𝑘𝑥, 𝑘𝑥] , 𝑖𝑓 𝑘 < 0.

(6)

Proof. See [10].

Definition 4 (by [5]). Let 𝐹(𝑅) be a set of all fuzzy numbers
on 𝑟 and 𝐼(𝑅) a set of intervals on 𝑅. The 𝑚 × 𝑛 linear system
of equations is as follows:

𝑎
11

𝑥
1
+ 𝑎
12

𝑥
2
+ ⋅ ⋅ ⋅ + 𝑎

1𝑛
𝑥
𝑛

= 𝑦
1
,

𝑎
21

𝑥
1
+ 𝑎
22

𝑥
2
+ ⋅ ⋅ ⋅ + 𝑎

2𝑛
𝑥
𝑛

= 𝑦
2
,

...

𝑎
𝑚1

𝑥
1
+ 𝑎
𝑚2

𝑥
2
+ ⋅ ⋅ ⋅ + 𝑎

𝑚𝑛
𝑥
𝑛

= 𝑦
𝑚
,

(7)

where the coefficient matrix 𝐴 = (𝑎
𝑖𝑗
), 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛,

is a crisp 𝑚 × 𝑛 matrix and 𝑦
𝑖
∈ 𝐹(𝑅)⋃ 𝐼(𝑅), 1 ≤ 𝑖 ≤ 𝑚, is

called a FSLE.

Theorem 5. If �̃� and Ṽ are triangular fuzzy numbers and if
𝑡 ∈ 𝑅, then

(i) �̃� = Ṽ if and only if supp (�̃�) = supp (Ṽ) and core (�̃�) =

core (Ṽ),
(ii)

supp (𝑡�̃� + Ṽ) = 𝑡 supp (�̃�) + supp (Ṽ) , (8)

(iii)

core (𝑡�̃� + Ṽ) = 𝑡 core (�̃�) + core (Ṽ) . (9)

Proof. See [10].

Theorem 6. Let 𝐴 be 𝑚 × 𝑛 matrix and 𝑏 an m-vector. The
system 𝐴𝑥 = 𝑏 with condition 𝑚 ≤ 𝑥 ≤ 𝑀 has a solution if
and only if the optimal solution of the below system is zero:

Min 𝑧 = 1𝑥
𝑎

s.t. 𝐴𝑥 + 𝑥
𝑎

= 𝑏,

𝑚 ≤ 𝑥 ≤ 𝑀,

𝑥
𝑎

≥ 0.

(10)

Proof. See [11].

3. Proposed Method

First of all the following definitions and theorems are intro-
duced.

Definition 7. Let 𝐼 = [𝑥, 𝑥]; it can bewritten as 𝐼 = [−𝐿
𝐼
, 𝐿
𝐼
]+

[𝑀
𝐼
,𝑀
𝐼
] such that

𝐿
𝐼
=

𝑥 − 𝑥

2

, 𝑀
𝐼
=

𝑥 + 𝑥

2

. (11)

Now one can have the following theorems.

Theorem 8. Let 𝐼 = [𝑥, 𝑥] and 𝐽 = [𝑦, 𝑦] be intervals and
𝑘 ∈ 𝑅; then

(i) 𝐼 = 𝐽 if and only if 𝐿
𝐼
= 𝐿
𝐽
and 𝑀

𝐼
= 𝑀
𝐽
,

(ii) if 𝐼 + 𝐽 = [𝑥, 𝑥] + [𝑦, 𝑦], then 𝐿
𝐼+𝐽

= 𝐿
𝐼
+ 𝐿
𝐽
and

𝑀
𝐼+𝐽

= 𝑀
𝐼
+ 𝑀
𝐽
,

(iii) let 𝑆 = 𝑘𝐼 such that 𝑘 ∈ R; then 𝐿
𝑆

= |𝑘|𝐿
𝐼
and 𝑀

𝑆
=

𝑘𝑀
𝐼
.

Proof. Proofs of parts (i) and (ii) are obvious so we prove part
(iii). Let 𝑘 < 0 such that

𝑆 = 𝑘 [𝑥, 𝑥] = [𝑘𝑥, 𝑘𝑥] = ([−𝐿
𝑆
, 𝐿
𝑆
] + [𝑀

𝑆
,𝑀
𝑆
]) , (12)

where

𝐿
𝑆
=

𝑘𝑥 − 𝑘𝑥

2

= −𝑘

𝑥 − 𝑥

2

= |𝑘| 𝐿𝐼
,

𝑀
𝑆
=

𝑘𝑥 + 𝑘𝑥

2

= 𝑘

𝑥 + 𝑥

2

= 𝑘𝑀
𝐼

(13)

for 𝑘 ≥ 0 the proof is the same.

Theorem 9. If𝐴 is a𝑚×𝑛matrix and𝑋 is an interval vector,
then

𝐴𝑋 = [−𝐴
+
𝐿
𝑋
, 𝐴
+
𝐿
𝑋
] + [𝐴𝑀

𝑋
, 𝐴𝑀
𝑋
] , (14)

where 𝐴
+

𝑖𝑗
= |𝐴
𝑖𝑗
| and 𝐿

𝑋𝑗
= (𝑋
𝑗
− 𝑋
𝑗
)/2 and 𝑀

𝑋𝑗
= (𝑋
𝑗
+

𝑋
𝑗
)/2.



The Scientific World Journal 3

Proof. According toTheorem 8, for 𝑖 = 1, 2, . . . , 𝑚, we have

𝐴
𝑖
𝑋 =

𝑗=𝑛

∑

𝑗=1

𝐴
𝑖𝑗
[𝑋
𝑗
, 𝑋
𝑗
]

=

𝑗=𝑛

∑

𝑗=1

𝐴
𝑖𝑗
([−𝐿
𝑋𝑗

, 𝐿
𝑋𝑗

] + [𝑀
𝑋𝑗

,𝑀
𝑋𝑗

])

=

𝑗=𝑛

∑

𝑗=1






𝐴
𝑖𝑗






[−𝐿
𝑋𝑗

, 𝐿
𝑋𝑗

] + 𝐴
𝑖𝑗
[𝑀
𝑋𝑗

,𝑀
𝑋𝑗

]

=

𝑗=𝑛

∑

𝑗=1






𝐴
𝑖𝑗






[−𝐿
𝑋𝑗

, 𝐿
𝑋𝑗

] +

𝑗=𝑛

∑

𝑗=1

𝐴
𝑖𝑗
[𝑀
𝑋𝑗

,𝑀
𝑋𝑗

]

= [−𝐴
+
𝑖

𝐿
𝑋
, 𝐴
+
𝑖

𝐿
𝑋
] + [𝐴

𝑖
𝑀
𝑋
, 𝐴
𝑖
𝑀
𝑋
] .

(15)

Theorem 10. If 𝐴 is a 𝑚 × 𝑛 matrix and 𝑋, 𝑏 are two interval
vectors, then the system 𝐴𝑋 = 𝑏 has solution(s) if and only if
the following systems have solution:

𝐴
+
𝐿
𝑋

= 𝐿
𝑏
, 𝐿
𝑋

≥ 0,

𝐴𝑀
𝑋

= 𝑀
𝑏
.

(16)

Proof. Let 𝑋 be an interval solution of 𝐴𝑋 = 𝑏; then
according to Definition 7 𝑋 = [−𝐿

𝑋
, 𝐿
𝑋
] + [𝑀

𝑋
,𝑀
𝑋
] with

𝐿
𝑋

≥ 0 and according toTheorem 9, we have

𝐴𝑋 = [−𝐴
+
𝐿
𝑋
, 𝐴
+
𝐿
𝑋
] + [𝐴𝑀

𝑋
, 𝐴𝑀
𝑋
] (17)

but 𝐴𝑋 = 𝑏 and by using part (i) of Theorem 8 this means

𝐴
+
𝐿
𝑋

= 𝐿
𝑏
, 𝐿
𝑋

≥ 0,

𝐴𝑀
𝑋

= 𝑀
𝑏
;

(18)

the converse holds obviously.

Theorem 11. The system 𝐴
+
𝐿
𝑋

= 𝐿
𝑏
with condition 𝐿

𝑋
≥ 0

has a solution if and only if optimized value of the below linear
programing is zero:

Min 𝑧 = 1x
𝑎

s.t. 𝐴
+
𝐿
𝑋

+ x
𝑎

= 𝐿
𝑏
,

Ł
𝑋
, x
𝑎

≥ 0.

(19)

Proof. This is proved by usingTheorem 6.

Nowwe are going to apply the samemethod for solving𝐴𝑋 =

𝐵, where 𝐵
𝑖
is TFN.

Theorem 12. If 𝐴 is a 𝑚 × 𝑛 matrix with crisp coefficients and
𝐵 is a TFN vector the same as 𝐵

𝑖
= (𝛼
𝑖
, 𝑐
𝑖
, 𝛽
𝑖
), then the system

𝐴𝑋 = 𝐵 has TFN solution(s), 𝑋, the same as 𝑋
𝑖
= (𝑥
𝑖
, 𝑥
𝑖
, 𝑥
𝑖
)

if and only if the systems (20) have solution:

𝐴 (𝑆
�̃�
) = 𝑆
𝐵
,

𝐴 (𝐶
�̃�
) = 𝐶
𝐵
,

𝐶
𝑋𝑗

∈ supp (𝑋
𝑗
) 𝑗 = 1, 2, . . . , 𝑛,

(20)

where

𝑆
𝐵𝑖

= supp (𝐵
𝑖
) = [𝛼

𝑖
, 𝛽
𝑖
] , 𝑖 = 1, . . . , 𝑚,

𝑆
𝑋𝑗

= supp (𝑋
𝑗
) = [𝑥

𝑗
, 𝑥
𝑗
] , 𝑗 = 1, . . . , 𝑛,

𝐶
𝐵𝑖

= core (𝐵
𝑖
) = 𝑐
𝑖
, 𝑖 = 1, . . . , 𝑚,

𝐶
𝑋𝑗

= core (𝑋
𝑗
) = 𝑥
𝑗
, 𝑗 = 1, . . . , 𝑛.

(21)

Proof. From part (i) of Theorem 5 𝑋 is a TFN solution of
system 𝐴𝑋 = 𝐵 if and only if

supp (𝐴
𝑖
𝑋) = supp (𝐵

𝑖
) , 𝑖 = 1, 2, . . . , 𝑚,

core (𝐴
𝑖
𝑋) = core (𝐵

𝑖
) , 𝑖 = 1, 2, . . . , 𝑚.

(22)

So according to part (ii) of Theorem 5 for 𝑖 = 1, 2, . . . , 𝑚 we
have

𝑆
𝐵𝑖

= supp (𝐵
𝑖
)

= supp (𝐴
𝑖
𝑋)

= supp(

𝑗=𝑛

∑

𝑗=1

𝐴
𝑖𝑗
𝑋
𝑗
)

=

𝑗=𝑛

∑

𝑗=1

𝐴
𝑖𝑗
supp (𝑋

𝑗
)

= 𝐴
𝑖
𝑆
�̃�
.

(23)

Also according to part (iii) of Theorem 5 for 𝑖 = 1, 2, . . . , 𝑚

we have

𝐶
𝐵𝑖

= 𝐶 (𝐵
𝑖
) = 𝐶 (𝐴

𝑖
𝑋) = 𝐶(

𝑗=𝑛

∑

𝑗=1

𝐴
𝑖𝑗
𝑋
𝑗
)

=

𝑗=𝑛

∑

𝑗=1

𝐴
𝑖𝑗
𝐶 (𝑋
𝑗
) = 𝐴

𝑖
𝐶
�̃�

(24)

but 𝐶
𝑋𝑗

∈ supp(𝑋
𝑗
), 𝑗 = 1, 2, . . . , 𝑛.

Theorem 13. The system 𝐴𝐶
�̃�

= 𝐶
𝐵
with condition 𝐶

𝑋𝑖
∈

supp (𝑋
𝑖
) has a solution if and only if optimal solution of the

following linear programing is zero:

Min 1𝑥
𝑎

s.t. 𝐴𝐶
�̃�

+ 𝑥
𝑎

= 𝐶
𝐵
,

𝐶
𝑋𝑖

∈ supp (𝑋
𝑖
) ,

𝑥
𝑎

≥ 0.

(25)

Proof. This is proved by usingTheorem 6.

4. Numerical Example

Here we describe the proposed method completely and step
by step by two examples. In the first example, system is
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introduced in which matrix 𝐴 is a definite (crisp) matrix and
𝐵 is a vector of triangular fuzzy numbers and a solution is then
calculated for it. In the second example, an interval system
without solution is outlined.

Example 1. Consider the following 4 × 6 fuzzy system in
which 𝑋 is a triangular fuzzy vector:

−2𝑋
1

+4𝑋
2

−3𝑋
3

−5𝑋
4

−2𝑋
6

= (−1, 0, 1)

+4𝑋
2

−6𝑋
3

−2𝑋
4

+6𝑋
5

−4𝑋
6

= (4, 5, 8)

5𝑋
1

−2𝑋
3

−3𝑋
4

+8𝑋
5

+3𝑋
6

= (−5, −3, −1)

−9𝑋
1

+1𝑋
2

+8𝑋
3

−8𝑋
4

+4𝑋
5

+7𝑋
6

= (0, 2, 5) .

(26)

To solve this system, we proceed in two successive stages
according toTheorem 12.

Stage 1. Find Supp (𝑋), where Supp (𝑋
𝑗
) is the interval

[𝑥
𝑗
, 𝑥
𝑗
]. Therefore, the following system must be solved:

[

[

[

[

[

[

−2 4 −3 −5 0 −2

0 4 −6 −2 6 −4

5 0 −2 −3 8 3

−9 1 8 −8 4 7

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[

[

[

[

[

[𝑥
1
, 𝑥
1
]

[𝑥
1
, 𝑥
1
]

[𝑥
1
, 𝑥
1
]

[𝑥
1
, 𝑥
1
]

[𝑥
1
, 𝑥
1
]

[𝑥
1
, 𝑥
1
]

]

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[−1, 1]

[4, 8]

[−5, −1]

[0, 5]

]

]

]

]

]

]

.

(27)

Stage 2. After calculating the intervals [𝑥
𝑗
, 𝑥
𝑗
] in the first

stage, search for Core(𝑋
𝑗
) = 𝑥

𝑗
that satisfies 𝑥

𝑗
≤ 𝑥
𝑗

≤ 𝑥
𝑗
.

Therefore, the following system must be solved:

[

[

[

[

[

[

−2 4 −3 −5 0 −2

0 4 −6 −2 6 −4

5 0 −2 −3 8 3

−9 1 8 −8 4 7

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[

[

[

[

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑥
6

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

0

5

−3

2

]

]

]

]

]

]

,

𝑥
𝑗
≤ 𝑥
𝑗
≤ 𝑥
𝑗
, 𝑗 = 1, 2, . . . , 6.

(28)

Here, the system of the first stage (i.e., system (27)) is solved.
It is an interval system, so it must be solved in two sub-
stages according to Theorem 10. The first substage is finding

the interval length, that is, 𝐿
𝑋
. Thus, the following system is

solved:

[

[

[

[

[

[

2 4 3 5 0 2

0 4 6 2 6 4

5 0 2 3 8 3

9 1 8 8 4 7

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[

[

[

[

𝐿
𝑋1

𝐿
𝑋2

𝐿
𝑋3

𝐿
𝑋4

𝐿
𝑋5

𝐿
𝑋6

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

1

6

2

2.5

]

]

]

]

]

]

0 ≤ 𝐿
𝑋𝑗

𝑗 = 1, 2, . . . , 6.

(29)

Here right hand side is 𝐿Supp(𝐵) and 𝐿
𝑋𝑗

= ((𝑥
𝑗

− 𝑥
𝑗
)/2).

But according to Theorem 11, the presence of solution (29)
is equivalent to the following LP problem:

𝑍
∗

= min 𝑥
𝑎1

+ 𝑥
𝑎2

+ 𝑥
𝑎3

+ 𝑥
𝑎4

s.t.
[

[

[

[

[

[

2 4 3 5 0 2

0 4 6 2 6 4

5 0 2 3 8 3

9 1 8 8 4 7

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[

[

[

[

𝐿
𝑋1

𝐿
𝑋2

𝐿
𝑋3

𝐿
𝑋4

𝐿
𝑋5

𝐿
𝑋6

]

]

]

]

]

]

]

]

]

]

]

]

+

[

[

[

[

[

[

𝑥
𝑎1

𝑥
𝑎2

𝑥
𝑎3

𝑥
𝑎4

]

]

]

]

]

]

=

[

[

[

[

[

[

1

6

2

2.5

]

]

]

]

]

]

,

0 ≤ 𝐿
𝑋𝑗

𝑗 = 1, 2, . . . , 6,

0 ≤ 𝑥
𝑎𝑖

𝑖 = 1, 2, . . . , 4.

(30)

We solve it with the Simplex method [11]. Since the optimal
value (𝑍∗) is zero, system (29) has the following solution:

𝐿
�̃�

= [0.03315, 0.06970, 0.05475, 0.0714, 0.16375, 0.0668]
𝑡
.

(31)

The second substage is to find the center of [𝑥
𝑗
, 𝑥
𝑗
]. So, the

solution of the following system is calculated by common
methods in linear algebra:

[

[

[

[

[

[

−2 4 −3 −5 0 −2

0 4 −6 −2 6 −4

5 0 −2 −3 8 3

−9 1 8 −8 4 7

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[

[

[

[

𝑀
𝑋1

𝑀
𝑋2

𝑀
𝑋3

𝑀
𝑋4

𝑀
𝑋5

𝑀
𝑋6

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

0

6

−3

2.5

]

]

]

]

]

]

. (32)
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Here right hand side is 𝑀Supp(𝐵) and 𝑀
𝑋𝑗

= (𝑥
𝑗

+ 𝑥
𝑗
)/2.

Therefore, the solution of the center of [𝑥
𝑗
, 𝑥
𝑗
] is as follows:

𝑀
𝑋

= [−1.37315, 0, −0.63725, 0.9316, 0.67325, 0]

𝑡

.

(33)

Finally, a solution for Supp (𝑋) is as follows according to
Theorem 10 and solutions (32) and (33):

Supp (𝑋) =

[

[

[

[

[

[

[

[

[

[

[

[

𝑆
𝑋1

𝑆
𝑋2

𝑆
𝑋3

𝑆
𝑋4

𝑆
𝑋5

𝑆
𝑋6

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[𝑥
1
, 𝑥
1
]

[𝑥
2
, 𝑥
2
]

[𝑥
3
, 𝑥
3
]

[𝑥
4
, 𝑥
4
]

[𝑥
5
, 𝑥
5
]

[𝑥
6
, 𝑥
6
]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[−1.4063, −1.3400]

[−0.0697, 0.0697]

[−0.6920, −0.5825]

[0.8602, 1.0030]

[0.5095, 0.8370]

[−0.0668, 0.0668]

]

]

]

]

]

]

]

]

]

]

]

]

.

(34)

Now we come back to the second stage. According to
Theorem 13, solving system (28) is equivalent to the presence
of a solution for the following system:

𝑍
∗

= min 𝑥
𝑎1

+ 𝑥
𝑎2

+ 𝑥
𝑎3

+ 𝑥
𝑎4

s.t.
[

[

[

[

[

[

−2 4 −3 −5 0 −2

0 4 −6 −2 6 −4

5 0 −2 −3 8 3

−9 1 8 −8 4 7

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[

[

[

[

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑥
6

]

]

]

]

]

]

]

]

]

]

]

]

+

[

[

[

[

[

[

𝑥
𝑎1

𝑥
𝑎2

𝑥
𝑎3

𝑥
𝑎4

]

]

]

]

]

]

=

[

[

[

[

[

[

0

5

−3

2

]

]

]

]

]

]

,

𝑥
𝑗
≤ 𝑥
𝑗
≤ 𝑥
𝑗

𝑗 = 1, 2, . . . , 6,

0 ≤ 𝑥
𝑎𝑖

𝑖 = 1, . . . , 4.

(35)

Again, we solve this problem with the Simplexmethod. Since
the optimal value is zero, system (28) has the following
solution:

Core (𝑋) =

[

[

[

[

[

[

[

[

[

[

[

[

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑥
6

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

−1.3400

−0.0697

−0.6920

0.8707

0.5193

0.0620

]

]

]

]

]

]

]

]

]

]

]

]

. (36)

According to Theorem 12 and solutions (34) and (38) a final
solution for system (26) is as follows:

𝑋 =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

(𝑥
1
, 𝑥
1
, 𝑥
1
)

(𝑥
2
, 𝑥
2
, 𝑥
2
)

(𝑥
3
, 𝑥
3
, 𝑥
3
)

(𝑥
4
, 𝑥
4
, 𝑥
4
)

(𝑥
5
, 𝑥
5
, 𝑥
5
)

(𝑥
6
, 𝑥
6
, 𝑥
6
)

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

(−1.4063, −1.3400, −1.3400)

(−0.0697, −0.0697, 0.0697)

(−0.6920, −0.6920, −0.5825)

(0.8602, 0.8707, 1.0030)

(0.5095, 0.5193, 0.8370)

(−0.0668, 0.0620, 0.0668)

]

]

]

]

]

]

]

]

]

]

]

]

.

(37)

In this example, since different solutions can be obtained
in the first or second stage (e.g., in the second substage),
other solutions can also be achieved. This is not possible in
numerical methods [2–5] or the embedding method [1].

Example 2. Consider the 4 × 6 interval system:

6𝑥
1

−6𝑥
2

−2𝑥
3

8𝑥
4

−2𝑥
5

= [−2, 0]

−5𝑥
1

−4𝑥
2

+6𝑥
3

−4𝑥
4

+𝑥
5

5𝑥
6

= [3, 6]

8𝑥
1

+2𝑥
2

+𝑥
3

+5𝑥
4

−8𝑥
5

8𝑥
6

= [2, 3]

−3𝑥
1

+5𝑥
4

−8𝑥
5

−7𝑥
6

= [0, 5] .

(38)

Here system (39) is solved. It is an interval system, so it is
solved in two stages according to Theorem 10. The first stage
is to find the interval length, that is, 𝐿

𝑋
. Thus, the following

system is solved:

𝐴
+
𝐿
𝑋

= 𝐿
𝑏
, (39)

such that

A+ =

[

[

[

[

[

[

6 6 2 8 2 0

5 4 6 4 1 5

8 2 1 5 8 8

3 0 0 5 8 4

]

]

]

]

]

]

, Lb =

[

[

[

[

[

[

2

3

1

5

]

]

]

]

]

]

. (40)

However, according to Theorem 11, the presence of solution
(39) is equivalent to the following LP problem:

𝑍
∗

= Min 1x
𝑎

s.t. 𝐴
+
𝐿
𝑋

+ x
𝑎

= 𝐿
𝑏

Ł
𝑋
, x
𝑎

≥ 0.

(41)
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We solve it with the Simplexmethod. Since the optimal value
is not zero, in fact 𝑍

∗
= 2.794, system (39) has no solution.

As a result, system (38) has no solution.

5. Conclusion

In this paper, we presented a method which is novel for
transformed fuzzy system of linear equations. The proposed
method is applicable rather than other existing methods.
Because the base of this method is linear programming,
it can explicitly express the presence or the absence of a
solution. In addition, if a solution exists, it expresses the
possibility of other solutions.This is not possible in numerical
methods based on the embedding method. With a slight
change, this method can be used for systems whose right
hand side is trapezoidal fuzzy numbers; in previousmethods,
they did not have this ability. Finding the optimal solutions
of fuzzy LP problems is one important application of solving
fuzzy linear systems. With this new method, these problems
can easily be solved. The presented method can introduce
fundamental change in operation research with interval data.
It also amends some application of linear programming with
fuzzy data as some method in [12–15]. In the numerical
solution of fuzzy differential equations, this method provides
an explicit method so it is extremely efficient. For example,
in three-diagonal matrices, parallel processing techniques
can be applied on this method if the number of equations
is too high. This method can analytically present the alge-
braic structure of fuzzy polyhedrons in the same way the
representation theorem provides the algebraic structure for
crisp polyhedrons. The previous methods are lacking this
capability.
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