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Abstract
Recurrent neural networks, especially in their
linear version, have provided many qualitative
insights on their performance under different
configurations. This article provides, through a
novel random matrix framework, the quantitative
counterpart of these performance results, specifi-
cally in the case of echo-state networks. Beyond
mere insights, our approach conveys a deeper un-
derstanding on the core mechanism under play
for both training and testing.

1. Introduction
Echo-state networks (ESN’s) are part of the broader fam-
ily of recurrent neural networks, specifically dedicated
to handling time-series related tasks (such as prediction,
non-linear interpolation, etc.) (Jaeger, 2001a;b). Their
main feature, as opposed to more conventional neural net-
works, is to rely on a fixed (but generally randomly cho-
sen) connectivity matrix, the so-called reservoir, and only
to enforce network-to-sink edges during the training phase.
This reduces overfitting but in turn only allows for short-
term memorization capabilities, unlike backward propa-
gated neural networks that instead target long-term mem-
ory.

The fact that the reservoir is chosen once and for all, instead
of constantly being updated, eases the theoretical analysis
of these networks. As such, by means of a succession of
works (e.g., (Jaeger, 2001a; Ganguli et al., 2008; Ganguli
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Figure 1. Echo-state neural network.

& Sompolinsky, 2010; Strauss et al., 2012; Charles et al.,
2014)), many qualitative aspects of ESN’s have been fairly
well understood. In particular, it has been made clear that
both the operator norm and the spectral radius of the con-
nectivity matrix play a central role in the ESN performance,
that normal versus non-normal connectivity matrices con-
vey strikingly different behavior (White et al., 2004), etc.
However, to the best of the authors’ knowledge, there has
never been an attempt to turn these qualitative consider-
ations into concrete quantitative figures of the end-to-end
neural network performance (such as here the reconstruc-
tion mean square error).

The objective of the present article is to provide a first the-
oretical analysis of the (mean-square error) performance of
linear ESN’s with internal noise for both the training and
the testing tasks (an illustration of such a network is de-
picted in Figure 1). To this end, we shall leverage recent
tools from the field of random matrix theory (the appli-
cations of which are so far almost not existent in neural
networks) and shall conveniently work under the assump-
tion that both the reservoir size n and the training (or test-
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ing) duration T (or T̂ ) are large and commensurable. The
large dimensional framework will induce concentration of
measure properties that bring asymptotic determinism in
the performance of the random outputs. These results take
closed-form expressions which, if not completely explicit,
are easily interpreted. Turning the connectivity matrices
into (large) random realizations of simple random matrix
models, we then further simplify these expressions that turn
into elementary formulas.

Among the noteworthy outcomes of these theoretical re-
sults, we shall structurally isolate the impact of each system
component (normal or non-normal connectivity matrix, in-
dependent or not input layer, internal noise level, etc.) on
both the ESN training and testing performance. We shall
also bridge the qualitative notion of Fisher-memory curve
to our quantitative findings in specific scenarios. As an af-
termath of our theoretical analysis, we shall finally pro-
pose a new practical connectivity matrix design, coined
multi-memory matrix that helps handling time series with
multiple-scale memory properties.

Note in passing that, beyond their machine learning at-
tractiveness for obvious network stability reasons (although
ridge regularized networks without internal noise are often
preferred), ESN’s with internal noise appropriately model
biological short-term memory in the brain. Our results may
then also embrace both the neurophysiology and neuro-
computation fields.

In the remainder of the article, we shall first introduce the
necessary random matrix toolbox used throughout the ar-
ticle (so far not conventional in machine learning), before
addressing the performance estimation of network training
and testing tasks. Applications of our results will be dis-
cussed next, before closing on a reflective discussion. The
technical results found throughout the paper are proved in
the extended version of the present article (Couillet et al.,
2016).

2. The Random Matrix Framework
Before delving into the concrete ESN performance, we
shall first consider the elementary objects under study from
a random matrix perspective.

We assume here an n-node ESN with connectivity ma-
trix W ∈ Rn×n, source-to-reservoir vector m ∈ Rn,
states xt ∈ Rn, t = −∞, . . . ,∞, and internal noise
ηεt ∼ N (0, η2In), fed by a scalar input ut ∈ R. The
state evolution equation follows:

xt+1 = Wxt +mut+1 + ηεt+1. (1)

The ESN will be trained for a period T and tested for a pe-
riod T̂ , using a least-square regression approach. Denoting

X = [x0, . . . , xT−1] ∈ Rn×T , it shall appear in Section 3
that the mean-square error performance in training relies
fundamentally on the matrices

Qγ ≡
(

1

T
XXT + γIn

)−1
Q̃γ ≡

(
1

T
XTX + γIT

)−1
(2)

for γ > 0. These matrices, respectively called resolvent
and co-resolvent of the Gram matrix 1

TXX
T in the oper-

ator theory jargon, have been extensively used in random
matrix theory for various models of X (Bai & Silverstein,
2009; Pastur & Ŝerbina, 2011) with multiple applications
to engineering notably (Couillet & Debbah, 2011). The
model of X defined through (1) is not part of those models
studied in classical random matrix works, but the techni-
cal tools exist to handle it. Precisely, we shall use here the
Gaussian framework devised by Pastur (Pastur & Ŝerbina,
2011), based on an integration-by-parts formula for Gaus-
sian random variables and the so-called Nash–Poincaré in-
equality.

To this end, we first need elementary growth assumptions
on the size n and the periods T and T̂ (these, in themselves,
are a first result of a “stable” growth regime of ESN’s).

Assumption 1 Define the matrix A = MU with M =
[m,Wm, . . . ,WT−1m] and U = T−

1
2 {uj−i}T−1i,j=0. Then,

as n→∞,

1. n/T → c ∈ (0,∞) and n/T̂ → ĉ ∈ [0,∞)

2. lim supn ‖W‖ < 1

3. lim supn ‖AAT‖ <∞

with ‖ · ‖ the operator norm.

For notational convenience, we define the relation Xn ↔
Yn to mean that the (random or deterministic) matricesXn,
Yn satisfy aTn(Xn − Yn)bn → 0, almost surely, for all de-
terministic unit norm vectors an, bn. Under Assumption 1,
applying the aforementioned Gaussian framework, we have
the following result.

Theorem 1 (Deterministic Equivalent) Let Assump-
tion 1 hold. For γ > 0, and with Qγ and Q̃γ defined in (2),
as n→∞,

Qγ ↔ Q̄γ ≡
1

γ

(
In + η2R̃γ +

1

γ
A
(
IT + η2Rγ

)−1
AT

)−1
Q̃γ ↔ ¯̃Qγ ≡

1

γ

(
IT + η2Rγ +

1

γ
AT
(
In + η2R̃γ

)−1
A

)−1
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where Rγ ∈ RT×T and R̃γ ∈ Rn×n are solutions to

Rγ =

{
1

T
tr
(
Si−jQ̄γ

)}T
i,j=1

R̃γ =

∞∑
q=−∞

1

T
tr
(
Jq ¯̃Qγ

)
Sq

with [Jq]ij ≡ δi+q,j , Sq ≡
∑
k≥0W

k+(−q)+(W k+q+)T

(and (x)+ = max(x, 0)).

Theorem 1 precisely states that any random bilinear form
of the type aTnQγbn for deterministic an, bn, can be well
approximated, for all large n, T , by the deterministic quan-
tity aTnQ̄γbn. As shall be seen in Section 3, this will pro-
vide us with a deterministic approximation of the training
performance of ESN’s. Note in passing that Theorem 1 is
strongly reminiscent of the earlier results (Hachem et al.,
2006) in a close but different context, and are thus not sur-
prising.

The testing phase performance is more involved and does
not solely rely on a single Qγ-type matrix. This is because
this phase involves both the trained datasetX and the newly
observed states X̂ = [x̂0, . . . , x̂T̂−1], where x̂t = xt+L
for some L � T (we assume here a post-training wash-
out step for simplicity). Surprisingly enough, we shall not
need the advanced statistics of X̂ explicitly (as opposed to
X as seen previously) but shall rather exploit its indepen-
dence from X . As such, the quantities at stake here are the
matrices

1√
T
QγX,

1

T
XTQγBQγX

for B any symmetric matrix independent of X such that
lim supn ‖B‖ < ∞. Precisely, we have the following sec-
ond deterministic equivalents.

Theorem 2 (Second deterministic equivalent) Let As-
sumption 1 hold and let B ∈ Rn×n be a symmetric matrix
of bounded spectral norm, independent of X . Then,
recalling the notations of Theorem 1, for every γ > 0,

Qγ
1√
T
X ↔ Q̄γA(In + η2Rγ)−1

1

T
XTQγBQγX ↔ η2γ2 ¯̃QγG

[B]
γ

¯̃Qγ

+ PTQ̄γ

[
B + G̃[B]

γ

]
Q̄γP

with P = A(In + η2Rγ)−1 and where G[B]
γ , G̃

[B]
γ are so-

lutions to

G[B]
γ =

{
1

T
tr
(
Si−jQ̄γ

[
B + G̃[B]

γ

]
Q̄γ

)}T
i,j=1

G̃[B]
γ =

∞∑
q=−∞

η4γ2
1

T
tr
(
Jq ¯̃QγG

[B]
γ

¯̃Qγ

)
Sq.

Equipped with these technical results, we are now in po-
sition to provide our main contribution to the asymptotic
performance of ESN as n, T, T̂ →∞.

3. Asymptotic Performance
Recall that the ESN under study is defined by the state
equation (1). We shall successively discuss the perfor-
mance of the training and testing steps of this linear ESN.

3.1. Training Performance

In the training phase, one wishes to map an input sequence
u = [u0, . . . , uT−1]T to a corresponding known output se-
quence r = [r0, . . . , rT−1]T. To this end, we shall enforce
the reservoir-to-sink connections of the network, gathered
into a vector ω ∈ Rn and depicted in color in Figure 1, so
to minimize the quadratic reconstruction error

Eη(u, r) ≡ 1

T

∥∥XTω − r
∥∥2 .

The solution to this classical problem is to take ω to be the
least-square regressor

ω ≡
{

(XXT)−1Xr , T > n
X(XTX)−1r , T ≤ n. (3)

To such an ω are associated an Eη(u; r) which it is conve-
nient to see here as

Eη(u, r) =

{
limγ↓0 γ

1
T r

TQ̃γr , T > n
0 , T ≤ n (4)

where Q̃γ was defined in (2).

Applying Theorem 1 in the limit where γ → 0, we have
the following first limiting performance result.

Proposition 1 (Training MSE) Let Assumption 1 hold
and let r ∈ RT be a vector of Euclidean norm O(

√
T ).

Then, with Eη(u, r) defined in (4), as n→∞,

Eη(u, r)↔
{

1
T r

TQ̃r , c < 1
0 , c > 1.

where, for c < 1,

Q̃ ≡
(
IT +R+

1

η2
ATR̃−1A

)−1
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andR, R̃ are solutions to1

R = c

{
1

n
tr
(
Si−jR̃−1

)}T
i,j=1

R̃ =

∞∑
q=−∞

1

T
tr
(
Jq(IT +R)−1

)
Sq.

Although seemingly not simple, note that, by writing

ATR̃−1A = UT
{
mT(W i−1)TR̃−1W j−1m

}T
i,j=1

U

the matrix Q̃ involved in the asymptotic expression for
Eη(u, r) clearly features independently:

• the input data matrix U composed in columns
of the successive delayed versions of the vector
T−

1
2 [u−(T−1), . . . , uT−1]T;

• the network structuring matrices R and
(W i−1)TR̃−1W j−1;

• the factor η−2, not present in R, R̃, which trades off
the need for regularizing the ill-conditioned matrix
ATR̃−1A (through the matrix M in A) and the need
to increase the weight of the information-carrying ma-
trix ATR̃−1A (through the matrix U in A).

Note in particular that, since ‖W‖ < 1, the matrix
{mT(W i−1)TR̃−1W j−1m}Ti,j=1 has an exponentially de-
caying profile down the rows and columns (essentially de-
caying with i + j). As such, all but the first few columns
of R̃− 1

2MU vanish as n, T grow large, providing us with
a first testimony of the ESN short term memory specificity,
since only the first columns of U (i.e., the first delays of
{ut}) are accounted for. The matrix R̃− 1

2M then plays the
important role of tuning the memory decay.

A particularly interesting scenario is when c = 0 (i.e.,
n/T → 0). In this case, it is immediate that R = 0 and
R̃ = S0 =

∑
k≥0W

k(W k)T, so that

Eη(u, r) ≡ η2

T
rT
(
η2IT + UTMTS−10 MU

)−1
r

where [MTS−10 M ]kk = mT(W k−1)TS−10 W k−1m is rec-
ognized to be J(k − 1) with J the Fisher memory curve
introduced in (Ganguli et al., 2008). The latter was shown
to provide a qualitative measure of the capacity of the ESN
to store a k-step delayed information. In Proposition 1,
the notion is generalized to account for the finiteness of
T with respect to n (i.e., c > 0) and, even when c = 0,
conveys a non trivial importance to the off-diagonal terms
mT(W i−1)TR̃−1W j−1m, i 6= j.

1R and R̃ are rigorously the limits of Rγ and γR̃γ from The-
orem 1, respectively, as γ ↓ 0.

3.2. Testing Performance

Having considered the training performance in Section 3.1,
we now assume ω given through its definition (3). To avoid
unnecessary complications, we shall stick here to the case
where c < 1 and leave the case c > 1 to the extended
version of the article (Couillet et al., 2016). We wish to
evaluate the performance in testing new data inputs û =
[û0, . . . , ûT̂−1]T which ought to be mapped by the ESN
to the desired output r̂ = [r̂0, . . . , r̂T̂−1]T. Thus our next
quantity of interest is the mean square error

Êη(u, r; û, r̂) =
1

T̂

∥∥∥r̂ − X̂Tω
∥∥∥2

where X̂ = [x̂0, . . . , x̂T̂−1] with x̂t = xt+L for some L
sufficiently large (larger than 2T , say) to ensure approxi-
mate independence between {x̂t} and {xt}. That is, we
assume a sufficiently long wash-out period between train-
ing and testing (as conventionally done). Alternatively,
one may merely reinitialize the network after training and
generate a sufficiently long dry-run period prior to testing.
Similarly, we shall denote next Â = M̂Û with Ûij = ûj−i

and M̂ = [m, . . . ,W T̂−1m].

Developing the expression of Êη(u, r; û, r̂), it is conve-
nient to observe that

Êη(u, r; û, r̂) =
1

T̂
‖r̂‖2 + lim

γ↓0

1

T 2T̂
rTXTQγX̂X̂

TQγXr

− lim
γ↓0

2

T T̂
r̂TX̂TQγXr.

We may then straightforwardly apply Theorem 2 in the
limit of vanishing γ to retrieve the testing counterpart of
Proposition 1 as follows.

Proposition 2 (Testing MSE) Let Assumption 1 hold with
c < 1 and let r̂ ∈ RT̂ be a vector of Euclidean norm
O(
√
T̂ ). Then, as n → ∞, with the notations of Propo-

sition 1,

Êη(u, r; û, r̂)↔

∥∥∥∥∥ 1

η2
ÂTQP r√

T
− r̂√

T̂

∥∥∥∥∥
2

+
1

T
rTQ̃GQ̃r

+
1

η2T
rTPTQ

[
S0 + G̃

]
QPr

with P = A(IT +R)−1 and (G, G̃) solution to

G = c

{
1

n
tr
(
Si−jR̃−1

[
S0 + G̃

]
R̃−1

)}T
i,j=1

G̃ =

∞∑
q=−∞

1

T
tr
(
Jq(IT +R)−1G(IT +R)−1

)
Sq.
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Note that the deterministic approximation for Êη(u, r; û, r̂)
in Proposition 2 may be divided into a first term involving
û, r̂ and the next two terms only involving u, r. As such,
once training is performed, only the former term may alter
the asymptotic performance. Again, the case c = 0 leads
to simpler expressions, as G = 0 and G̃ = 0 in this case, so
that

Êη(u, r; û, r̂)↔

∥∥∥∥∥ÂT
(
η2S0 +AAT

)−1
A

r√
T
− r̂√

T̂

∥∥∥∥∥
2

+
1

T
rTAT

(
η2S0 +AAT

)−2
Ar.

In order to validate the results of Section 3.1 and Sec-
tion 3.2, we provide in Figure 2 an example of simu-
lated versus asymptotic performance for a prediction task
over the popular Mackey–Glass model (Glass & Mackey,
1979). Disregarding for the moment the difference between
the two displayed theoretical curves, note importantly that
the accuracy of the approximation, while increasing as it
should for larger values of n, T, T̂ , may strongly decrease
as η2 → 0. This is an expected outcome (from deeper
mathematical analysis of the proofs of our propositions)
which is reminiscent of the ESN instability observed and
documented in (Jaeger, 2001b) as the internal noise van-
ishes. As a matter of fact, it can be shown that one needs
η2 � n−

1
2 for a theoretical guarantee that the approxima-

tion is accurate. This places our analysis within a regime
where overfitting does not occur.

4. Applications
Let us now move to particular scenarios where Proposi-
tions 1–2 either greatly simplify or convey new insights.

4.1. Random W matrices

We consider here the scenario where, instead of being con-
sidered deterministic, we take W to be a single realization
of an elementary (large dimensional) random matrix.

4.1.1. REAL HAAR W .

First consider the scenario where W = σZ with Z random
orthogonal with statistical invariance by left- and right-
multiplication by orthogonal matrices, i.e., Z is a random
real Haar matrix. Then one can determine an explicit ex-
pression for the matricesR, R̃, G, and G̃ involved in Propo-
sitions 1–2. In particular, we have the following result (also
depicted in Figure 2).

Corollary 1 (Haar W , c < 1) Let W = σZ with Z ran-
dom real Haar and m be independent of W with ‖m‖ = 1.

10−4 10−3 10−2 10−1 100 101
10−6

10−5

10−4

10−3

10−2

10−1

100

101

Test

Train

η2

N
M

SE

n = 200, T = T̂ = 400

Monte Carlo
Th. (fixedW )
Th. (limit)

10−4 10−3 10−2 10−1 100 101
10−6

10−5

10−4

10−3

10−2

10−1

100

101

Test

Train

η2

N
M

SE

n = 400, T = T̂ = 800

Monte Carlo
Th. (fixedW )
Th. (limit)

Figure 2. Training and testing (normalized) MSE for the Mackey
Glass one-step prediction, W defined as in Figure 3, n = 200,
T = T̂ = 400 (top) and n = 400, T = T̂ = 800 (bottom).
Comparison between Monte Carlo simulations (Monte Carlo) and
theory from Propositions 1–2 (Th. (fixed W )) or Corollary 2 (Th.
(limit)).

Then, under Assumption 1 with c < 1,

Eη(u, r)↔ (1− c) 1

T
rTQr

Êη(u, r; û, r̂)↔

∥∥∥∥∥ 1

η2
ÛTD̂UQ

r√
T
− r̂√

T̂

∥∥∥∥∥
2

+
1

1− c
1

T
rTQr − 1

T
rTQ2r

where Q = (IT + 1
η2U

TDU)−1, while D ∈ RT×T and
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D̂ ∈ RT̂×T̂ are diagonal with

Dii = D̂ii = (1− σ2)σ2(i−1).

We clearly see through Corollary 1 the impact of σ which
weighs through Dii the successive delay vectors U·,i start-
ing from i = 1 for zero delay. This is again reminiscent
of the works (Ganguli et al., 2008) where the diagonal el-
ements of D were understood qualitatively as a memory
curve, with the property that

∑
i≥1Dii = 1, so that the

ESN allocates a total unit amount of memorization capa-
bilities across the successively delayed versions of u.

This observation inspires the generalization of Corollary 1
to a less obvious, although desirable, structure for W . In-
deed, note that, with W = σZ and Z real Haar, memory
is allocated according to the exponential decay function
k 7→ σk, thus only allowing for a “single mode” mem-
ory, i.e., rt should be an exponentially decaying function
of ut−k. If instead, as is more common, rt is a more elabo-
rate function of both close past ut−k but also of further past
ut−k′ values, then it might be appropriate for the ESN not
to get restricted to a single k 7→ σk decay profile.

As such, we propose to consider the matrix W =
diag(σ1Z1, . . . , σ`Z`) (with diag the block-diagonal op-
erator), where the matrices Zi ∈ Rni×ni are independent
real Haar matrices of given sizes and σi > 0 assume dif-
ferent values across i. In this case, we have the following
natural extension of Corollary 1.

Corollary 2 (Multi-memory W ) Let the assumptions of
Corollary 1 hold but for W = diag(σ1Z1, . . . , σ`Z`) with
Zi ∈ Rni×ni independent real Haar matrices,

∑
i ni = n,

and σi > 0. Then the conclusions of Corollary 1 remain
valid but for

Dii = D̂ii =

∑`
j=1 njσ

2(i−1)
j∑`

j=1 nj(1− σ2
j )−1

.

Figure 3 depicts the function k 7→ Dkk (which again may
be thought of as a memory curve) for the “multimemory”
matrix W of Corollary 2 versus elementary random Haar
matrices with single σ values. Note the evolution of the
function slope which successively embraces the memory
curves of each individual Haar matrix composing W .

Following the same example, we now compare in Fig-
ure 4 the testing performance for the Mackey–Glass one-
step prediction task under the multi-memory W versus the
composing Haar W+

i . It is interesting to see here that the
multi-memory matrix is almost uniformly more powerful
than the composing matrices and that it matches the per-
formance of the best among the latter. This suggests the
possibility to use such a matrix structure in scenarios where

the experimenter has little knowledge about the particularly
adequate choice of σ in a mere Haar model for W .

5 10 15 20 25 30
10−4

10−3

10−2

10−1

100

τ

W

W+
1

W+
2

W+
3

Figure 3. Memory curve τ 7→ Dτ,τ for W =
diag(W1,W2,W3), Wj = σjZj , Zj ∈ Rnj×nj Haar dis-
tributed, σ1 = .99, n1/n = .01, σ2 = .9, n2/n = .1, and
σ3 = .5, n3/n = .89. The matrices W+

i are defined by
W+
i = σiZ

+
i , with Z+

i ∈ Rn×n Haar distributed.

10−4 10−3 10−2 10−1 100 101
10−6

10−5

10−4

10−3

10−2

10−1

100

101

η2

N
M

SE

HaarW , σ = .99

HaarW , σ = .9

HaarW , σ = .5

MultimemoryW

Figure 4. Testing (normalized) MSE for the Mackey Glass one-
step ahead task,W (multimemory) versusW+

1 = .99Z+
1 ,W+

2 =
.9Z+

2 , W+
3 = .5Z+

3 (with Z+
i Haar distributed) all defined as in

Figure 3, n = 400, T = T̂ = 800.

4.1.2. NORMAL AND NON NORMAL I.I.D. W .

We subsequently move to the next natural model for W ,
that isW composed of i.i.d. zero mean entries with or with-
out Hermitian symmetry. In the latter case, the study is sim-
ilar to that of the real Haar case and shall lead to the same
result as Corollary 1 but for a different profile of the diago-
nal entries of the matrix D. As for the former symmetrical
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1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9

R [i.i.d.]
1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

R [Wigner]

Figure 5. Upper 9 × 9 part of R for c = 1/2 and σ = 0.9 for
W with i.i.d. zero mean Gaussian entries (left) and W Gaussian
Wigner (right). Linear grayscale representation with black being
1 and white being 0.

case (referred to in random matrix theory as the Wigner
case), it leads to a more involved (non explicit) expression
for R, which assumes a strikingly different structure than
when W is non-symmetric (whereR is proportional to the
identity matrix). Visually, we find in the large n limit the
structure depicted in Figure 5.

When placed in the context of Proposition 1, the observed
checkerboard structure for the Wigner case suggests an in-
appropriate spread of the reservoir energy when it comes
to fulfilling pure delay tasks. This is indeed observed nu-
merically with strong performance losses already induced
by elementary memorization tasks. A particular example
is depicted in Figure 6 where, again for the Mackey–Glass
input dataset but for a memorization task (consisting in re-
calling τ past outputs rather than predicting future outputs).
This study and the observed performance results suggest
an outstanding performance advantage of non-normal ver-
sus normal matrix structures, which might deserve deeper
future investigation.

4.2. Internal noise and robustness

We complete this section by investigating a scenario in
which we assume input data corrupted by extra noise in
the testing dataset. This models the fact that one may often
possess a large bank of “clean” data to train an ESN but
that the reality of test data can sometimes be somewhat, if
not strongly, different. Our toy model here consists in con-
sidering that an extra Gaussian noise is added to the data û
with probability p on each sample ût, while the output r̂ is
still expected to be consistent with the noiseless version of
û.

From a proper theoretical analysis of the result of Proposi-
tion 2, conducted precisely in the extended version of the
article, we claim that, letting s2 be the aforementioned ad-
ditive noise variance and assuming that Êη → 0 as η → 0
and s = 0 (a scenario that can be enforced by letting e.g.,
r be a linear combination of finitely many past inputs of
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Figure 6. Training (top) and testing (bottom) performance of a
τ -delay task for τ ∈ {1, . . . , 4} compared for i.i.d. W versus
Wigner W , σ = .9 and n = 200, T = T̂ = 400 in both cases
(here on the Mackey-Glass dataset).

u), then there exists a trade-off by which too small values
of η2 induce an increase in the mean square error (all the
more that s2 is large) while large values of η2 induce too
much internal noise. There thus exists an optimal value for
η2 which minimizes the testing MSE.

This phenomenon is depicted in a concrete scenario in Fig-
ure 7, still for the same Mackey–Glass one-step ahead pre-
diction task. A particular realization of a random Mackey–
Glass time series is also presented in Figure 8, which
clearly highlights the robustness strength of internal noise.

5. Concluding Remarks
The random matrix framework introduced in this article
brings new light to the actual performance of linear echo-
state networks with internal noise (and more generally re-
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Figure 7. Testing (normalized) MSE for the Mackey-Glass one-
step ahead task with 1% or 10% impulsive N (0, .01) noise pol-
lution in test data inputs, W Haar with σ = .9, n = 400,
T = T̂ = 1000. Circles indicate the NMSE theoretical minima.
Error bars indicate one standard deviation of the Monte Carlo sim-
ulations.
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Figure 8. Realization of a 1% N (0, .01)-noisy Mackey-Glass se-
quence versus network output, W Haar with σ = .9, n = 400,
T = T̂ = 1000. In magnifying lenses, points of added impulsive
noise.

current networks), where existing works so far only pro-
vide insights based on partial considerations of the net-
work processing (such as information theoretic metrics of
the reservoir information). Our results make it clear what
levers should be tuned and optimized upon when designing
these networks. Although not presently discussed, an out-
come of this study (documented in (Couillet et al., 2016))
contradicts some beliefs, such as that suggesting that it is
appropriate to take m as one of the leading eigenvectors
of W ; we can prove that this choice necessarily leads to
poor mean square error performance. But aside from purely

theoretical considerations, our results also allow for a fast
evaluation of the ESN performance without requiring ex-
tensive Monte Carlo simulations which we believe experi-
menters should find convenient.

We stressed above the words linear and internal noise, as
they constitute debatable choices. Regarding internal noise,
while being an appropriate model assumption in biological
networks, it is often regarded as artificial in machine learn-
ing (where a regularized least square ω is chosen to stabi-
lize the network). Since large networks induce concentra-
tion of measure phenomena that stabilize the MSE perfor-
mance of the network, we believe that internal noise (lead-
ing to random but equally performing outputs) are some-
times more desirable than deterministic (and thus statically
biased) outputs. In the full version of this article, compar-
isons are performed between both cases. But the utmost
limiting aspect of the present work rather lies in the linear
character of the state equation (1). It is known, more from
experiments and insights than theory, that breaking the lin-
ear frontier brings vastly more interesting properties to neu-
ral networks, with in particular the possibility for ‖W‖ to
exceed one. A necessary next step of our study line is the
extension of the random matrix framework to handle the
behavior of non linear versions of echo-state networks.
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