
Graph Query by Example?

Gábor Bergmann, Ábel Hegedüs, György Gerencsér, and Dániel Varró

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

1117 Budapest, Magyar tudósok krt. 2.
{bergmann,hegedusa}@mit.bme.hu, gyorgy.gerencser@gmail.com,

varro@mit.bme.hu

Abstract. Model-driven tools use model queries for many purposes, in-
cluding validation of well-formedness rules, speci�cation of derived fea-
tures, and directing rule-based model transformation. Query languages
such as graph patterns may facilitate capturing complex structural rela-
tionships between model elements. Specifying such queries, however, may
prove di�cult for engineers familiar with the concrete syntax only, not
with the underlying abstract representation of the modeling language.
The current paper presents an extension to the EMF-IncQuery model
query tool that lets users point out, using familiar concrete syntax, an
example of what the query results should look like, and automatically
derive a graph query that �nds other similar results.
Keywords: by example, model query, graph pattern, EMF-IncQuery

1 Introduction

Model-driven Engineering (MDE) approaches treat models as primary artifacts
of the engineering process, relying on automated model processing steps. Models
are usually thought of as typed, attributed graphs. This underlying structure is
de�ned by the metamodel of the modeling language and is called the abstract
syntax. On the other hand, the preferred way the model is presented to (and
edited by) humans is in the form of visual diagrams, textual notations, tree
structures, etc., called the concrete syntax. The two representations can have
substantial di�erences, e.g., an edge in concrete syntax may correspond to a
node in abstract syntax, or to a structure of several elements (see Fig. 1).

Model queries are important components in model-driven tool chains: they
are widely used for specifying derived features, well-formedness constraints, re-
ports, and guard conditions for behavioural models, design space rules or model
transformations. Although model queries can be implemented using a general-
purpose programming language (Java), specialized query languages may be more

? This work was partially supported by the European Union and the State of Hungary,
co-�nanced by the European Social Fund in the framework of TÁMOP 4.2.4. A/-
11-1-2012-0001 `National Excellence Program', and by the CERTIMOT (ERC_HU-
09-01-2010-0003) and EU FP7 MONDO (ICT-2013.1.2), CECRIS (FP7-PEOPLE-
2012-IAPP 324334) projects partly during the fourth author's sabbatical.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357556148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Bergmann et al.

(a) Concrete syntax (b) Excerpt of abstract syntax

Fig. 1: An UML2 Sequence Model (MOS = MessageOccurrenceSpeci�cation)

concise and easier to learn, among other advantages. Query approaches that can
express complex graph structures within the model graph can be called graph
queries; they are often very useful for de�ning complex well-formedness con-
straints. Modeling platforms (e.g., the Eclipse Modeling Framework (EMF) [1])
support various graph query languages; some of the more declarative ones (such
as EMF-IncQuery [2]) are inspired by graph patterns [3].

Queries formulated in a query language refer to metamodel concepts. How-
ever, as argued in [4], modelers are typically more familiar with the concrete
syntax than with the abstract syntax. Thus, they may have substantial di�cul-
ties in formulating a query. Following the idea of query by example (QBE [5]),
we present a technique that lets users point out, using familiar concrete syntax,
an example of what the query results should look like, in order to automatically
derive a graph query that �nds other similar results. The proposed extension of
EMF-IncQuery addresses the following important challenges:

Concrete syntax. The user should be able to specify a query using the
concrete syntax (though the metamodel has to be at least comprehensible).

Selection. The proposed solution should allow the user to point out the
example as a selected part of an existing, larger instance model. It should not
be necessary to create a new instance model from scratch just for the sake of
providing the example. It may not even be possible, if the example does not
constitute a complete instance model on its own that the editor allows to create.

Discovery. The elements of the instance model that are selected to form
the example do not directly determine a graph query that would retrieve them
from the entire model. The proposed solution should �gure out how the group of
selected elements is connected in the graph structure of the model (it is possible
that there are no direct connections, only through elements that may not even
be directly visible in the concrete syntax), and construct a query that instructs
the query engine to retrieve groups of elements that are similar to the selected
ones and are connected with each other in a similar fashion.

The query formalism is introduced in Sec. 2. An overview of the proposed
solution is given in Sec. 3, and an application case study is elaborated in Sec. 4.



Graph Query by Example 3

Related �by example" techniques are reviewed in Sec. 5. The merits and weak-
nesses of the approach are discussed in Sec. 6.

2 Graph Patterns and EMF-IncQuery

The EMF-IncQuery framework [2] aims at the e�cient de�nition and evalua-
tion of model queries over EMF-based models. The query language [6] supports
conjunction, disjunction, negation, quanti�cation, even advanced features such
as attribute expressions, transitive closures and aggregation. Here we focus only
on the most basic idea that the language is built on.

A graph pattern is a graph-like structure, labeled by node and edge types from
the metamodel, that represents a condition (or constraint) matched against a
large instance model graph. A match of a graph pattern is a homomorphism
from the pattern to the graph model, representable as a tuple (one image for
each pattern node). The result of an (unbound) model query is the match set, a
relation (in the mathematical sense) formed by the set of all matches.

For instance, assume that our goal is to enforce company-speci�c design con-
ventions in UML2 models. One such rule places restrictions on messages passed
between lifelines in Sequence Diagrams. In order to validate models, we need
to specify a model query that �nds all messages that violate the rule. A graph
pattern isomorphic to the graph structure excerpt shown in Fig. 1b will match
all messages passed between lifelines. Further attribute or graph constraints (see
Sec. 4) would check whether the rule is actually violated.

For purposes of this paper, we assume that meaningful graph patterns are
connected graphs (avoiding Cartesian products). As the paper focuses on the
graph nature of queries, we have omitted the treatment of attributes for brevity.

3 Overview of the Approach

The proposed QBE mechanism is realized as a plugin of the Eclipse [7] environ-
ment, where it aids in specifying EMF-IncQuery-based graph queries against
EMF models. The steps of the QBE work�ow are illustrated by Fig. 2, and are
explained in the following paragraphs.

Fig. 2: Proposed QBE Work�ow



4 Bergmann et al.

3.1 Obtaining the Anchors

The �rst step is obtaining a set of selected model elements (the anchors) that
serve as an example for query results.

The models can be loaded and then displayed in concrete syntax by arbi-
trary Eclipse-based domain-speci�c or generic editors (or views). The user can
select one or more model elements using the selection functionality of the edi-
tor, and then invoke the QBE plugin from the user interface. Using the general
Eclipse-wide selection mechanism, the QBE plugin can retrieve the set of selected
elements upon invocation.

In some editors or views, these selected elements are the EMF model ele-
ments themselves. In other cases, such as in many diagram editors, the selection
will actually contain notation objects of the concrete syntax that may in turn
wrap model elements. Therefore, compatibility with such editors requires a cor-
responding Eclipse plug-in that unwraps the editor-speci�c selection to obtain
the anchor model elements. Note that the source code of the editor does not have
to be modi�ed to achieve this. Furthermore, many editors are developed using
editing frameworks such as GMF or Graphiti, where a single generic plug-in can
perform this unwrapping, so there is no need for creating a separate plug-in for
each modeling language.

3.2 Graph Discovery

The overall goal is to construct a graph query that �nds instance model elements
that are related to each other in the model graph similarly to the relationship
between anchors. Therefore the QBE plug-in must analyze how the anchors are
related to each other. They may directly reference each other, or there may be
longer paths connecting them. The task of the discovery phase is to explore the
model graph in the neighborhood of the anchors to �nd these paths.

A connecting path is a graph path in the model that starts and ends at anchor
nodes, and traverses zero or more other nodes along graph edges (navigated in
either direction). Not all connecting paths are interesting : it may be possible to
�nd a very long �detour" path between two elements that are actually adjacent.
Our approach therefore focuses on paths no longer than k hops. The key discov-
ery routine Discoverk starts a k-depth-limited search from each anchor node to
�nd all interesting paths. The union of these paths will form the candidate graph
query; note that each node and edge (irrespective of the direction of traversal)
is included at most once, even if incorporated in multiple interesting paths.

If the user so wishes, a value for k can be provided manually. However, a min-
imal candidate for k can be determined automatically based on the observation
that the graph pattern must form a connected graph. The automatic discovery
routineDiscover∗ starts by invokingDiscover0,Discover1,Discover2, . . . , until
either the resulting candidate graph pattern becomes connected, or the traversal
proves (by not hitting the depth limit) that the anchors reside in separate com-
ponents of the model graph (in which case there is no connected graph pattern



Graph Query by Example 5

that would match them). Thus Discover∗ forms the graph pattern from inter-
esting paths according to the smallest valid k; the user may manually increase
the value of k if needed.

Note that if not all elements of the abstract syntax are directly selectable in
an editor, there may be dead end elements that do not lie on any path connecting
selectable elements, thus they are not discoverable by the proposed approach.

3.3 Query Testing and Feedback

Trivially, any graph query constructed by the discovery routines will always
yield the tuple of selected anchors as one of its matches on the example model.
Which other tuples the query results will contain, depends on the actual graph
pattern; from the point of view of the user, there may be some false positives
(if the query is not restrictive enough) and false negatives (if the query is too
restrictive). Therefore after the discovery phase, the user is presented with the
constructed graph pattern, and the complete query results in the example model.
If the results deviate from intentions, the user can interactively change the query
and test the new version in an iterative �ne-tuning phase.

The tool o�ers �ne-tuning options including (1) the already mentioned ad-
justment of depth limit k, (2) purging some of the discovered paths, (3) binding
the concrete attribute values found on the retrieved nodes as query constraints
(analogously to [5]), (4) substituting supertypes instead of the actual types of
the example, or (5) manually adding arbitrary constraints.

4 Case Study

The purpose of this case study is to demonstrate which elements of graph queries
the QBE approach can derive, and which ones it can't produce automatically.

Following Sec. 2, the goal is to formulate a query over UML2 Sequence Mod-
els, in order to enforce a company-speci�c design convention on test scenarios.
The design rule says that in the Sequence Model, the GUI Package must call
operations from the core Engine Package asynchronously (to avoid user interface
freezes). The query should �nd violations of this rule, i.e., synchronous messages.

4.1 Deriving the Graph Pattern of Fig. 1b

The �rst step is capturing the relationship between the Lifelines and the Message.
Assume that we open the UML2 Sequence Diagram of Fig. 1a in an editor,

select the two Lifelines as anchors, and then invoke the QBE plug-in. There is
no direct connection between the two anchors; Discover∗ stops at k = 2, as the
two selected Lifelines belong to the same UML2 Interaction. However, �lifelines
in the same Interaction� is not the query we are interested in, so we need to
continue the �ne-tuning feedback loop. By manually raising k to 4, the path
depicted in Fig. 1b is discovered as well.



6 Bergmann et al.

There may be other paths not longer than 4 hops that connect the anchors;
e.g., at k = 3, the QBE tool discovers that the MessageOccurrenceSpeci�cations
on the Lifelines also belong to the same Interaction. If such paths over-restrict
the match set, they lead to false negatives, and should be removed from the
resulting query. Note that two Lifelines exchanging a Message implies that they
reside in the same Interaction, so the presence of the �rst discovered 2-hop path
through the containing Interaction does not actually restrict the match set, thus
its removal is optional. The same is true for the aforementioned 3-hop paths.

Alternatively, if the Message had been originally selected as an anchor in
addition to the two Lifelines, Discover∗ would have come up with the right
path at k = 2. The Interaction containing all three anchor elements would be
discovered as well; once again, this latter part of the query can be removed.

4.2 Adding Attribute Restrictions

The query constructed above is incomplete: it ensures neither that the message
is Synchronous, nor that the source and target Lifelines correspond to Classes in
Packages describing the GUI and Engine, respectively. If we perform an evalua-
tion of the query for testing purposes, we might �nd false positive matches (e.g.,
if the model contains some synchronous messages as well).

As described in Sec. 3, the actual attribute values found in the example are
o�ered automatically in the �ne-tuning phase as potentially useful constraints.
In particular, since the Message is one of the nodes found in the discover phase,
the QBE tool lists its attribute slots and values (e.g., the value of the �name�
attribute is the character string �1:Operation2_Message�) upon request. In our
case, the value �Synchronous Call� of the attribute �Message Sort� shall be se-
lected; it will then be added as an attribute restriction.

Not all attribute restrictions can be added automatically like this. Assuming
that we have already further developed the query to include the Packages of the
Classes of the two Lifelines (this will be discussed in the next Section), we merely
need to identify the GUI and Engine Packages. There may be multiple GUI and
multiple Engine packages within a single project, and we want the query to
be compatible with models of di�erent company projects. Unfortunately, UML2
Packages have no simple attribute indicators for their designation as belonging to
either group, so that there is no �xed attribute value that all GUI Packages have
in common, which the QBE tool could o�er automatically based on the example.
We have to assume that according to company conventions, GUI Packages can be
recognized by their package URI containing a path segment �gui�, while Engine
Packages have the �engine� segment in their URI. It is possible to manually add
the appropriate attribute restrictions to the query, but the proposed approach
cannot automatically generate such regular expression checks based on examples.

4.3 Connecting Lifelines and Packages

Finally, the connection between a Lifeline and the corresponding Package is the
same in case of both Lifelines. Thus it can be captured as a separate helper query,



Graph Query by Example 7

which is called (reused) twice in the main query, using the compositionality
of the EMF-IncQuery language. The QBE tool does not compose patterns
automatically, but such calls are easy to add in the �ne-tune phase.

Unfortunately, UML2 diagrams do not commonly feature Lifelines and Pack-
ages in the same view; so with a given editor implementation, it might not be
possible to select these two elements from the concrete syntax at the same time.
However, one can select a Lifeline, the associated Class and the Package in the
tree outline of the model. Then one can successfully apply QBE: at k = 2, the
tool discovers that the Lifeline represents a Property, whose type is the Class,
which is a packaged element of the Package. Thus here we lose the advantage
of using the concrete syntax only, but the tool is still a great help in navigating
through parts of the metamodel that are likely unfamiliar to typical UML2 users.

5 Related Work

QBE is an idea that originally came up for database systems [5], where the user
could specify concrete values for attributes and thus constrain which entities
are to be retrieved. We aim to extend the original idea in such a way to meet
challenges we see in the context of MDE: the graph nature of models and model
queries, as well as the di�erence between concrete and abstract syntax.

A survey [4] has found that MDE has signi�cant ongoing research into specify-
ing Model Transformations by Example (MTBE), where various machine learn-
ing techniques are applied to derive model transformations from inputs and
outputs of example executions. Rule-based model transformations use model
queries as rule guards; in fact, model queries can be considered a degenerate
case of exogenous model transformations (creating query results as the target
model). Thus, in theory, existing approaches could be applied to queries as well;
however, this would be impractical. First, most approaches would rely on a com-
putationally expensive machine learning phase. Second, the user would have to
build query results as example target models. Third, some approaches cannot
derive arbitrary graph queries as transformation rule preconditions, just a sin-
gle source model element; while other approaches can produce more complex
queries but require the user to provide explicit source-target correspondence for
each element, with signi�cant overhead in e�ort.

The most directly related work [8] focuses on well-formedness rules, which are
one kind of model query. Taking positive examples (conformant models) and neg-
ative ones (violating models) as input, the proposed technique applies machine
learning (genetic programming) to come up with the model query that best
discriminates the two sets. Our approach avoids applying a resource-intensive
machine learning search, but focuses on a query sublanguage with narrower ex-
pressiveness. Furthermore, our approach is simpler as selecting a single example
within a larger model is su�cient; but since no counterexamples and additional
examples can be given, �ne-tuning of the results is only possible manually.



8 Bergmann et al.

6 Discussion and Conclusions

The presented approach extends [5] by discovering the underlying graph struc-
ture of an example highlighted within a model displayed in concrete syntax. The
QBE tool can be used even when it is di�cult to intuitively construct queries
using the abstract syntax. Resulting queries can be tested by interactive evalua-
tion, but �ne-tuning still requires that the metamodel is at least comprehensible.

There is an option to consider concrete attribute values as virtual nodes and
value slots as edges. This may be useful to discover that two elements have the
same name. In most cases, however, this option is not useful (e.g., we should not
consider two Associations connected if they have the same multiplicity).

Future work shall include the automatic suggestion of negative conditions
based on the example. For example, if the metamodel would allow a certain
edge to point between two anchors (or intermediate nodes discovered along in-
teresting paths), but that edge is not present in the provided example, then an
automatically o�ered �ne-tuning option could be to add the non-existence of the
edge as a negative constraint to the pattern. A further direction to explore would
be to optionally generate queries from multiple examples (preferably still with-
out expensive soft computing techniques), o�ering gradual transition towards
complex by-example approaches.

References

1. The Eclipse Foundation: Eclipse Modeling Framework. http://www.eclipse.org/
emf/.

2. Ujhelyi, Z., Bergmann, G., Ábel Hegedüs, Ákos Horváth, Izsó, B., Ráth, I., Szatmári,
Z., Varró, D.: EMF-IncQuery: An integrated development environment for live
model queries. Science of Computer Programming (0) (2014) �

3. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook on Graph
Grammars and Computing by Graph Transformation. Volume 2: Applications, Lan-
guages and Tools. World Scienti�c (1999)

4. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model
transformation by-example: A survey of the �rst wave. In: Conceptual Modelling and
Its Theoretical Foundations. Volume 7260 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2012) 197�215

5. Zloof, M.M.: Query-by-example: The invocation and de�nition of tables and forms.
In: Proceedings of the 1st International Conference on Very Large Data Bases.
VLDB '75, New York, NY, USA, ACM (1975) 1�24

6. Bergmann, G., Ujhelyi, Z., Ráth, I., Varró, D.: A graph query language for EMF
models. In: Theory and Practice of Model Transformations, Fourth International
Conference, ICMT 2011, Zurich, Switzerland, June 27-28, 2011. Proceedings. Vol-
ume 6707 of Lecture Notes in Computer Science., Springer, Springer (2011) 167�182

7. The Eclipse Foundation: The Eclipse Project. http://www.eclipse.org.
8. Faunes, M., Cadavid, J., Baudry, B., Sahraoui, H., Combemale, B.: Automatically

searching for metamodel well-formedness rules in examples and counter-examples.
In: Model-Driven Engineering Languages and Systems. Volume 8107 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (2013) 187�202

http://www.eclipse.org/emf/
http://www.eclipse.org/emf/
http://www.eclipse.org

	Graph Query by Example
	Introduction
	Graph Patterns and EMF-IncQuery
	Overview of the Approach
	Obtaining the Anchors
	Graph Discovery
	Query Testing and Feedback

	Case Study
	Deriving the Graph Pattern of Fig. 1b
	Adding Attribute Restrictions
	Connecting Lifelines and Packages

	Related Work
	Discussion and Conclusions


