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ABSTRACT 

 
In this paper, the vibration behavior and control of a 

clamped-free rotating flexible cantilever arm with fully covered 
Active Constrained Layer Damping (ACLD) treatment is 
investigated. The arm is rotating in a horizontal plane in which 
the gravitational effect and rotary inertia are neglected. The 
stress-strain relationship for the viscoelastic material (VEM) is 
described by a complex shear modulus while the shear 
deformations in the two piezoelectric layers are neglected. 
Hamilton’s principle in conjunction with finite element method 
(FEM) is used to derive the nonlinear coupled differential 
equations of motion and the associated boundary conditions that 
describe the rigid hub angle rotation, the arm transverse 
displacement and the axial deformations of the three-layer 
composite. This refined model takes into account the effects of 
centrifugal stiffening due to the rotation of the beam and the 
potential energies of the VEM due to extension and bending. 
Active controllers are designed with PD for the piezo-sensor 
and actuator. The vibration frequencies and damping factors of 
the closed-loop beam/ACLD system are obtained after solving 
the characteristic complex eigenvalue problem numerically. The 
effects of different rotating speed, thickness ratio and loss factor 
of the VEM as well as different controller gain on the damped 
frequency and damping ratio are presented. The results of this 
study will be useful in the design of adaptive and smart 
structures for vibration suppression and control in rotating 
structures such as rotorcraft blades or robotic arms.  
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INTRODUCTION 
 
      The application of Active Constrained Layer Damping 
(ACLD) for vibration suppression in structures has been 
extensively investigated by numerous researchers [1-7]. The 
ACLD treatment is usually a three-layer composite consisting of 
a viscoelastic damping layer sandwiched between a 
piezoelectric actuator layer (constraining layer) and a 
piezoelectric sensor layer. The treatment is bonded to the beam 
structure and acts as an effective smart treatment for vibration 
suppression and control. The shear modulus of the viscoelastic 
material (VEM) is usually modeled using either the Golla-
Hughes-McTavish (GHM) model [8] or the complex shear 
modulus model [9-11]. For the vibration analysis and control of 
beams with ACLD treatment some researchers used complex 
shear modulus [1-3] while others used GHM model [4-6].  

The beams under investigation in [2-7] are all considered to 
be nonrotating. The vibration of rotating beams or structures 
without ACLD treatment was studied extensively in [14-19]. 
When ACLD is applied in rotating beams or structures, the 
centrifugal stiffening effect due to the rotation [19] is 
significant. Also, the equations of motion governing the axial 
deformation and the chordwise bending are coupled through the 
gyroscopic coupling terms while the equation of motion for the 
flapwise bending is not coupled [15]. Modal analysis for 
gyroscopic systems is complex but the complex eigenvalue 
problem can be transformed into real one by using the method 
in [17]. Furthermore, if damping is included the system 
becomes a damped gyroscopic system with non-self-adjoint 
eigenvalue problem [13,18]. 
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      The vibration control of the axial deformation and the 
flapwise bending of rotating beam with ACLD was studied in 
[1]. The present paper investigated the vibration behavior and 
control of the axial deformation and chordwise bending of a 
clamped-free rotating flexible cantilever arm with fully covered 
Active Constrained Layer Damping (ACLD) treatment. The arm 
is rotating in a horizontal plane in which the gravitational effect 
and rotary inertia are neglected. The stress-strain  relationship  
for  the  viscoelastic   material   (VEM)   is   described   by  a  
complex  shear modulus. Hamilton’s principle in conjunction 
with finite element method (FEM) is used to derive the 
governing equations of motion which takes into account the 
effects of centrifugal stiffening due to the rotation of the beam. 
PD controllers are designed  for  the  piezo-sensor and actuator.  
The  closed-loop  equation  of  motion  for  the  system  is  
derived  and  the characteristic complex eigenvalue problem is 
solved numerically. The effects of different rotating speed, 
thickness ratio and loss factor of the VEM as well as different 
controller gain on the damped frequency and damping ratio are 
presented. The results of this study will be useful in the design 
of adaptive and smart structures for vibration suppression and 
control in rotating structures such as rotorcraft blades or robotic 
arms.  

 

NOMENCLATURE 
 
A         sensor surface area 
Ak        cross-sectional area of the kth layer (= bhk ) 
b          beam width 
C         capacitance of sensor 
d31       piezo-electric strain constant 
Dd       distance from beam neutral axis to sensor surface  
E1I1     flexural rigidity of piezo-actuator 
E2I2     flexural rigidity of viscoelastic core 
E3I3     flexural rigidity of beam/sensor layer                                     
f(x)     distribution shape function of sensor    
G2       complex shear modulus of viscoelastic core   
           (= ′ +G2 1( ))iη  

′G2      storage shear modulus of viscoelastic core 
g31       piezo-electric voltage constant 
h1        thickness of piezo-actuator                                                    
h2        thickness of viscoelastic core 
h3        thickness of piezo-sensor/beam  

i          − 1  
J         moment of inertia of the hub 
Kd, p    derivative and proportional control gains                        
k31       electro-mechanical coupling factor 
k3t       dielectric constant             
L         length of beam 
Li        length of beam element 
m       mass per unit width and unit length of the sandwiched     
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          beam (= ρ1h1 + ρ2h2 +ρ3h3)                
q        external transverse loads per unit width and unit length    
          of the sandwiched beam 
t         time 
T        kinetic energy 
U       potential (strain) energy 
u1       longitudinal deflection of neutral axes of piezo-actuator       
u2      longitudinal deflection of neutral axes of viscoelastic core 
u3       longitudinal deflection of neutral axes of  
          piezo-sensor/beam layer  
v(t)     piezo-actuator voltage                                         
Vs       piezo-sensor voltage                     
W       work done 
w        transverse deflection of the beam system                     
x         position along beam 
ρk       density of the kth layer 
γ         shear strain of viscoelastic core                               
Cθ        angular velocity of flexible beam 

λj        jth closed-loop eigenvalue 
σj        real part of  jth eigenvalue                                  
τ         applied hub torque 
η         loss factor of viscoelastic core 
ωj        jth mode damped frequency 

 
 
 THEORY AND FORMULATION 
 

A finite element of a clamped-free flexible arm with fully 
covered ACLD treatment is shown in Figure 1.  The arm is of 
length L and is rotating in a horizontal plane at an angular 
velocity Cθ  about the clamped axis. The axial deformation and 
the transverse displacement (chordwise bending) of all three 
layers are in the plane of rotation. It is assumed that the 
gravitational effect and the rotary inertia are negligible. The 
shear deformations in the piezo-electric sensor/actuator layers 
and the base beam are negligible. The transverse displacement 
w is the same for all three layers. Linear theories of elasticity, 
viscoelasticity, and piezoelectricity are applicable in all three 
layers. Also, the piezo-electric sensor and the base beam are 
perfectly bonded together and is considered to be reduced to a 
single equivalent layer. The layers are perfectly continuous and 
there is no slip in the interfaces. It is also assumed that 
thickness and density are uniform over the beam.   

From the kinematic relationships between the piezoelectric 
(PZT) layer and the base beam the following relationship is 
derived. 
                                   

                          u2 = 
u u1 3

2
+

 + 
h h

wx
1 3

4
−

                        (1)    

          

                           γ  =  
u u

h
h
h

wx
1 3

2 2

−
+                                 (2)    
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Figure 1.  A finite element of a rotating flexible arm with 
fully covered ACLD treatment. 
 
 
 
where                      h = h2 + h1/2 + h3/2                                       
 
and the subscript x denotes differentiation with respect to x. 
 
 
Potential Energies 
 
The potential energies associated with the extension, bending 
and shearing of the different layers of the beam/ACLD system 
are    
  
Constraining layer 
 

extension                      U1 = 1
2 10 1 1

2E bh u x
L

x∫ d                       (3)     

 

 bending                       U2 = 1
2 10 1

2E I w x
L

xx∫ d                       (4)     

 
    
Viscoelastic layer 
 

extension                      U3 = 1
2 20 2 2

2E bh u x
L

x∫ d                      (5)     
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bending                        U4 = 1
2 20 2

2E I w x
L

xx∫ d                     (6)      

 

shearing                       U5 = 1
2 2 20

2G bh x
L

∫ γ d                      (7)      

 
where G2 = ′ +G2 1( iη ) is the complex shear modulus of the 
visco-elastic material and η is the loss factor.                              
 
Sensor/beam layer 
 

extension                       U6 = 1
2 30 3 3

2E bh u x
L

x∫ d                    (8)      

 

bending                         U7 = 1
2 30 3

2E I w x
L

xx∫ d                    (9)      

 
 
Centrifugal stiffening effect 
 

                                  U8 =  1
2

2

0
P x t w xx

L
( , )∫ d                    (10)      

 

where          P(x, t) =  mb x x
x

L
�θ 2

∫ d = 1
2

2 2 2mb L x� ( )θ −      (11)     

                                                                  
 
 
Kinetic Energies 
 
The position vector rk of a spatial point in the kth layer at a 
distance x from the origin of the beam is given by 
 
                            rk = (x + uk)i + wj ,                                   (12) 
 
                 &rk = ( & &)u wk − θ i + ( & & & )x u wkθ θ+ + j                     (13)      
 
where the dot denotes differentiation with respect to time t. 
 
The total kinetic energy T of the system is 
 

       T  = 
1
2 1

3

0
ρk

k

L

kh b
=
∑∫ Drk

T
Drk dx + 

1
2

2J Dθ                                       

           = 1
2 1

3

0

2 2 2 2 2 2ρ θ θk k
k

L

k kh b u w x u w
=
∑∫ + + + +[ 4 4 ( ) 4 4    

              + + −2 2( ) 4 4 4 4]x u w u wk kθ θ dx +
1
2

2J 4θ                      (14) 

                                                                                                         
 
Work Done 
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The work done W1 by the external transverse loads q acting on 
the beam/ACLD system is given by                                                    
 

                                W1 =  qbw
L

0∫ dx                                   (15) 

 
The work done W2 by the piezo-electric control forces and 
moments are given by 
 

      W2 =
1
2 1 310 1E d bv t u

L

x∫ ( ) dx + 1
2 1 310

hE d bv t w
L

xx∫ ( ) dx     (16)      

 
 
where d31  is the piezo-electric strain constant and  v(t) is the 
piezo-actuator voltage. 
 
The work done W3 by the applied hub torque τ is given by 
 

                                          W3 = τθ                                     (17)      
 
 
 
Equations of Motion 
 
The governing equations of motion and the boundary conditions 
of the beam/ACLD system are obtained by applying Hamilton’s 
principle  
 

      δ( )T U tj
jt

t
−

=
∑∫

1

8

1

2
d + δ( )W tj

jt

t

=
∑∫

1

3

1

2
d = 0                (18) 

 
 

FINITE ELEMENT MODEL 
 
Let the spatial distributions of u1, u3 and w over any element i of 
the treated beam be given by           
 

                          
u a x a
u a x a
w a x a x a x a

1 1 2

3 3 4

5
3

6
2

7 8

= +
= +

= + + +









                       (19)      

 
 
where x is the elemental coordinate. The constants {a1 , a2 ,…, 
a8} are determined in terms of the nodal deflection vector qi of 
the ith element which is bounded between nodes j and k. The 
nodal deflection vector qi is given by  
  
                    qi = { }u u w w u u w wj j j jx k k k kx1 3 1 3

T            (20)      
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where the subscript x denotes differentiation with respect to the 
elemental coordinate x. 
 
The deflection vector {u1  u2  u3  w  wx  γ } is expressed in terms 
of the nodal deflection vector qi by   
 
      {u1  u2  u3  w  wx  γ }T = {N1  N2  N3  N4  N5  N6}Tqi        (21)    
 
 
where N1,N2,N3,N4,N5 and N6 are the finite element shape 
functions corresponding to u1, u2, u3, w, wx and γ  respectively 
and are given by                          
      
 N1 = [ 1−ξ     0     0    0    ξ    0    0    0 ],                
  

 N2 =
1
2

( N1 + N3 +
h h1 3

2
− N4x ) 

 
 N3 = [ 0    1−ξ    0    0    0    ξ    0    0 ] 
 
 N4 = [ 0     0    1 3 22 3− +ξ ξ    ( )ξ ξ ξ− +2 2 3 Li     0     0      
           3 22 3ξ ξ−    ( )− +ξ ξ2 3 Li ] 
 
 N5 = N4x ,                                 
      

 N6 =
1

2h
( N1 − N3 + hN4x )                                               (22a-f)     

and      ξ = x
Li

. 

 
Defining the element coefficients and matrices as follows: 
 

                           Ji  =  mb x x xi

Li
( )+∫ 2

0
d                            (23)    

               Mi = ρk
k

L

k
i

h b
=
∑∫

1

3

0
( Nk

TNk + N4
TN4 )dx                 (24)    

        Ki = (E h bk
k

L

k
i

=
∑∫

1

3

0
Nkx

TNkx + Ek Ik N4xx
TN4xx )dx         (25)    

                  U1i = ρk k
k

L

ih b x x
i

=
∑∫ +

1

3

0
( ) Nkdx                          (26) 

                   U2i = mb x x
L

i
i

0∫ +( ) N4dx                                   (27) 

                  U3i = 
1
2

2 2

0
mb L x xi

Li
[ ( ) ]− +∫ N4x

TN4xdx          (28) 

                   U4i = G bh
Li

20 2∫ N6
TN6dx                                    (29) 

        Ri = ρk k
k

L
h b

i

=
∑∫

1

3

0
Nk

TN4dx,       Gi = Ri
T  − Ri       (30,31)    
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    Fci =
1
2 10 31E d bv t

Li

∫ ( ) N1x
Tdx + 1

2 1 310 4hE d bv t
L

xx
i

∫ ( )N T dx    (32)    

                         Fdi = qb
Li

0∫ N4
Tdx                                       (33) 

 
where xi is the distance from the global origin (the clamped end) 
to the left node of the ith element. Ji is the moment of inertia of 
the ith element about the clamped end. Mi and Ki are the mass 
and stiffness matrices respectively. U3i and U4i are the matrices 
due to the centrifugal force  and   shear  deformation  of  the  
VEM   respectively.   The  matrices  Ri  and  Gi  are  due  to  the 
gyroscopic effects. The matrices Fci and Fdi represent the 
control force and the external load respectively. 

Substituting equation (21) into equations (3)−(17) and 
Hamilton’s principle (18), the equations of motion at the 
element level can be written in compact form as         
 

  
M M
M M

θθ θ

θ

i qi

q i qqi













��

��

θ
qi









 + 2
0 0
0

�θ
G i











�

�

θ
qi









 +
0 0
0 K qqi











θ
qi









  

                                   = 
Q
Q

θi

qi









  + 

F
F

θi

qi









                               (34)    

 
where 
                            
             Mθθi  = J + Ji + qi

TMiqi + 2U1iqi − qi
TU3iqi            (35)    

 
             Mθqi  = M q iθ

T = U2i + qi
TGi                                    (36)    

 
             M qqi  = Mi                                                              (37)    

 
            K qqi  =  Ki − &θ 2 Mi + &θ 2 U3i + U4i                            (38)    

 
            Qθi  = − 2 &θ [ qi

TMi �qi  + U1i �qi  − qi
TU3i �qi ]             (39)    

 
             Qqi  = aθ 2 U1i

T                                                         (40)    
 

             Fθi  = τ                                                                    (41)    
 

             Fqi  = Fci + Fdi                                                         (42)    
 
in which Mθθi is the rotational inertia of the system, Mqqi is the 
generalized mass matrix, Mθqi is the nonlinear inertia coupling 
between the rigid body and the elastic deformations, Kqqi  is the 
generalized stiffness matrix and Gi is the gyroscopic matrix. Qθi 
and Qqi represent the nonlinear pseudoloads. Fθi represents the 
applied hub torque and Fqi represents the control force and 
external load.  
      Equation (34) represents a nonlinear hybrid gyroscopic 
dynamic system which is inertia coupled between rigid body 
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motion and elastic deformations. Modal techniques employing 
superposition  becomes  inapplicable  to  nonlinear  problems  
[12].  For  simplicity,  the  angular velocity Dθ  of the beam is 
assumed to be constant in this paper and also there is no 
external load (Fdi = 0). The global equation is obtained using the 
standard finite element assembling  procedure of the elemental 
coefficient matrices. Linearization and assembling the elemental 
coefficients matrices of equation (34) lead to the following 
global equation of motion of the system.  
 
 
                        M q G q K qqq qqDD D D+ +2θ  = Fc                       (43)      
 
       
where Mqq is real symmetric positive definite, G is real skew 
symmetric and Kqq is  symmetric. Kqq is complex due to the 
complex shear modulus G2 of the VEM. The matrices in 
equation (43) without the subscript i denote the global forms of 
the corresponding elemental coefficient matrices. The boundary 
conditions for equation (43) at the global origin (the clamped 
end) are  zero for both u1, u3, w and wx.                                         

 
 

PIEZO-ELECTRIC CONTROL FORCES AND 
MOMENTS 
 
The control force Fci can be expressed by the piezo-electric 
control forces Fpi and piezo-electric moments Fmi as 
 
                                  Fci = Fpi  + Fmi                                    (44)       
where                   

           Fpi =
1
2 10 31E d bv t x

Li

∫ ( ) N1
T dx   

                = 1
2 1 31E d bv t( ) [ −1   0   0   0   1   0   0   0 ]T        (45)      

 

            Fmi =
1
2 10 31hE d bv t x

Li

∫ ( ) N4
T dxx  

                  = 1
2 1 31hE d bv t( ) [ 0   0   0   −1   0   0   0   1 ]T     (46)      

 
 
With PD controller applied to the piezo-sensor voltage Vs, the 
voltage v(t) across the piezo-actuator layer is expressed as 
 

                           v(t) = − −K V K V
tp s d
sd

d
                            (47)      

 
 
where Kp and Kd are the proportional and derivative control 
gains respectively. Vs is obtained from the following formula [5] 
 

5 Copyright © 2002 by ASME 
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                      Vs =  
−

∫∑
=

k D b
g C f x w xd

xx

L

i i

i
i

s

f
31
2

31 0
( ) d                   (48)       

 
where k31 is the electromechanical coupling factor, Dd is the 
distance from the neutral axis to the sensor surface, g31 is the 
piezo-electric voltage constant and C is the capacitance of the 
sensor. f(x) is the distribution shape function of the sensor 
which is extended between element is and if. For uniform sensor 
f(x) =1. The capacitance C of the sensor is given by 
 

                           C =  8.854 × 10−12 
Ak
h

t3

3

                          (49)        

 
 
where A is the sensor surface area and k3t is the dielectric 
constant. Substituting equations (47) to (49) into equations (45) 
and (46) gives                   
 
          Fpi = ( )K K pp d+ [ −1   0   0   0   1   0   0   0 ]T  

                   [ 0   0   0  − g
2

  0   0   0  
g
2

 ] qi                      (50)        

 
          Fmi = ( )K K pp d+ [ 0   0   0   −1   0   0   0   1 ]T  

                    [ 0   0   0  − gh
2

   0   0   0  
gh
2

] qi                  (51)       

 
 
where p is the d/dt operator and g is defined by 
 

                               g  =  
E b d k D

g C
d1

2
31 31

2

31

                             (52)        

 
Substituting equations (50) and (51) into (44) and expressing 
Fci in terms of the velocity feedback gain matrix Gvi and 
displacement feedback gain matrix Gpi  yields 
 
                              Fci = − Gvi �qi − Gpi qi                             (53)        
 
 
where                    G C Cvi d dK K= − −1 2  
                                     
 
                             G C Cpi p pK K= − −1 2  
 

C1 = [ −1   0   0   0   1   0   0   0 ]T [ 0   0   0 − g
2

  0   0   0 
g
2

]        

 

C2 = [ 0   0   0   −1   0   0   0   1 ]T [ 0   0   0 − gh
2

 0   0   0
gh
2

]       

(54a-d) 
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Substituting the global form of equation (53) into equation (43), 
the closed-loop equation of motion for the system is  
                                         
 
              M q G + G q K + G ) qqq qq�� ( � ) � (+ +2θ v p  = 0         (55)    
 
 
The eigenvalue problem associated with equation (55) is second 
order so that it does not permit a ready solution. This difficulty 
can be overcome by recasting it in the state space form as  
 
                                      A >z  + Bz = 0                                   (56)     
 
 
where    z = [ 4qT   qT ]T    and 
 
 

     A = 
M 0
0 I

qq







  ,     B = 

2 &θ G + G K G
I 0

v qq p+

−













     (57)     

 
 
The eigenvalue problem associated with equation (56) is 
 
                                ( )λ j jA B Z 0+ =                                 (58)     
 
 
where λj and Zj are the jth closed-loop complex eigenvalue and 
eigenvector respectively. Representing the complex eigenvalue  
λj  by 
 
                                    λj = σj  + iωj                                      (59)     
 
 
where the real part σj represents the vibration exponential decay 
while the imaginary part ωj is the damped frequency. The 
damping ratio is given by 
 

                        ξ
σ

σ ω
j

j

j j

= −
+2 2

                                 (60)     

 
 
 

NUMERICAL SIMULATION AND RESULTS  
 
       The system is simulated using the system parameters and 
material properties in Table 1. The arm is divided into five 
finite elements. Two effective measures of the vibration 
characteristic of the system are the damped frequency and the 
damping ratio. The closed-loop eigenvalue problem (58) is 
6 Copyright © 2002 by ASME 

 http://www.asme.org/about-asme/terms-of-use



 

Downlo
solved numerically to obtain the damped frequency and 
damping ratio under different parameters of the system.  
 
 

Table 1.  System parameters and material properties 
     

L  300 mm  ρ1  7,600 kgm−3 
Li  60 mm  ρ2  1,250 kgm−3 
b  12.7 mm  ρ3  2,700 kgm−3 
h1  0.762 mm  ′G2  0.2615 MPa 
h2  0.25 mm  η  0.38 
h3  2.286 mm  d31  23.0 × 10−12mV−1 
E1  64.9 GPa  g31  216 × 10−3 VmN−1 
E2  29.8 MPa  k31  0.12 
E3  71 GPa  k3t  12 

     
 

 
Figure 2.   The effect of angular velocity Dθ  on the first three 
modes of damped frequency and damping ratio for the case 
of PCLD (Kp, Kd = 0) when  h2 = 0.1094 h3  and  ηηηη = 0.38. 
 
        The effect of different angular velocity Dθ  of the arm, 
thickness ratio h2 /h3 and the VEM loss factor η on the first 
three modes of damped frequency and damping ratio for the 
case of PCLD are shown in Figures 2 to 4. PCLD (passive 
constrained   layer  damping )   is   the   case   when   ACLD   is 
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Figure 3. The effect of thickness ratio h2/h3 on the first three 
modes of damped frequency and damping ratio for the case 
of  PCLD (Kp, Kd = 0) when Dθ = 200 rpm and ηηηη = 0.38. 

Figure 4.  The effect of VEM loss factor ηηηη on the first three 
modes of damped frequency and damping ratio for the case 
of  PCLD (Kp, Kd = 0) when Dθ = 200 rpm and h2 = 0.1094 h3.      
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unactivated such that both Kd and Kp are zero. The results 
shown in the figures are reasonable. It can been seen that the 
damped frequency increases with an increase in the rotating 
speed Dθ  while the damping  ratio  decreases  with an increase 
in the rotating speed Dθ  which means that  the vibration of the 
system is intensified (Figure 2).  When  the thickness ratio h2 /h3 
is increased, the damping of the system will be increased and 
the damped frequency of the system will be reduced. However 
there is no appreciable improvement in the damping ratio 
(Figure 3). Figure 4 shows that although the damped frequency 
increases with an increase in the loss factor η of VEM, there is 
substantial increase in the damping ratio with an increase of η 
which means that the vibration of the system is greatly 
suppressed. 
      For the case of ACLD, Figure 5 shows the effect of the 
variation of rotating speed Dθ  on the first mode damped 
frequency and damping ratio under different values of 
proportional control gain Kp. It can be seen that increasing the 
proportional control gain Kp will reduce the first mode damping 
frequency and will increase the damping ratio. The maximum 
value that Kp can be increased is around 35. When Kp is 
increased beyond this value, instability of numerical results 
occurs and thus reliable results cannot be obtained. Figure 6 
shows the variation of the thickness ratio h2/h3 on the first mode 
damped frequency and damping ratio under different values of 
proportional control gain Kp. The first mode damped frequency 
and damping ratio are found to decrease and increase 
respectively with an increase in Kp. This effect is more obvious 
at high h2/h3 (i.e. h2/h3 =1.4). Unlike the case of Figure 5 the 
maximum value of Kp is around 12. Figure 7 shows the 
variation of the VEM loss factor η on the first mode damped 
frequency and damping ratio under different values of 
proportional control gain Kp. Similar to the case of Figures 5 
and 6, the first mode damped frequency and damping ratio are 
found to decrease and increase respectively with an increase in 
Kp and the effect on the damping ratio is intensified at high η = 
2.0. The maximum value of Kp for stable numerical results in 
this case is around 30. 
      Although Figures 5 to 7 show results on the first mode only, 
similar results are expected for the second and third modes. 
There is no derivative control gain Kd in Figures 5 to 7 since 
numerical  results  show  there  is  not much improvement  in  
the  vibration characteristic  of  the system. This shows that the 
proportional control alone is already sufficient and effective in 
attenuating the induced vibration of this system. 
 
 CONCLUSIONS 
 
     This paper has investigated the vibration behavior and 
control of a clamped-free rotating flexible cantilever arm 
rotating in a horizontal plane with fully covered Active 
Constrained Layer Damping (ACLD) treatment. The stress-
strain relationship for the viscoelastic  material  (VEM)  is 
described by a complex shear modulus. Hamilton’s principle  in  
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Figure 5.  The effect of angular velocity Dθ  on the first mode  
damped frequency and damping ratio for ACLD beam 
under  different  values  of  Kp  when  h2 = 0.1094 h3  and   ηηηη 
= 0.38. 
 

Figure 6.  The effect of thickness ratio h2/h3 on the first 
mode damped frequency and damping ratio for ACLD 
beam under different values of  Kp when Dθ  = 200 rpm  and  
ηηηη = 0.38. 
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Figure 7.   The effect of VEM loss factor ηηηη on the first mode 
damped frequency and damping ratio for ACLD beam  
under  different  values  of  Kp  when �θ  = 200 rpm and  h2 = 
0.1094 h3. 
 
conjunction with finite element method (FEM) is used to derive 
the governing equations of motion. PD controllers are designed  
for  the  piezo-sensor and actuator.  The  closed-loop  equation  
of  motion  for  the  system  is  derived  and  the characteristic 
complex eigenvalue problem is solved numerically. The effects 
of different rotating speed, thickness ratio and loss factor of the 
VEM as well as different controller gain on the damped 
frequency and damping ratio are presented. The results show 
that the proportional control gain Kp is sufficient and effective 
in attenuating the induced vibration of this system. The results 
of this study will be useful in the design of adaptive and smart 
structures for vibration suppression and control in rotating 
structures such as rotorcraft blades or robotic arms. 
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