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Abstract: Finite mixtures of generalized linear mixed effect models are presented to handle situations
where within-cluster correlation and heterogeneity (subpopulations) exist simultaneously. For this class of
model, we consider maximum likelihood (ML) as our main approach to estimation. Owing to the
complexity of the marginal loglikelihood of this model, the EM algorithm is employed to facilitate
computation. The major obstacle in this procedure is to integrate over the random effects’ distribution to
evaluate the expectation in the E step. When assuming normally distributed random effects, we consider
adaptive Gaussian quadrature to perform this integration numerically. We also discuss nonparametric ML
estimation under a relaxation of the normality assumption on the random effects. Two real data sets are
analysed to compare our proposed model with other existing models and illustrate our estimation methods.
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1 Introduction

Finite mixture models with regression structure have a long and extensive literature
and have been commonly used in fields such as epidemiology, medicine, genetics,
economics, engineering, marketing and in the physical and social sciences. Much of
this work has focused on mixtures of normal distributions (e.g., McLachlan and
Basford, 1988), but non-normal mixtures have received attention as well in the
recent literature. Some of this work has included regression structure in the linear
predictor only (Deb and Trivedi, 1997; Dietz and Böhning, 1997; Jansen, 1993),
whereas other authors have considered covariates in both the linear predictor and the
mixing probability (Thompson et al., 1998; Wang and Puterman, 1998). Of course,
models without covariates occur as a special case, and such models have been
considered by Titterington et al. (1985) and Lindsay (1995), among others. A special
case of the two component mixture occurs when one component is a degenerate
distribution with point mass of one at zero. Such models are known as zero inflated
regression models and include zero inflated Poisson (ZIP); (Lambert, 1992), zero
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inflated negative binomial, zero inflated binomial (ZIB); (Hall, 2000) and others
(reviewed in Ridout et al., 1998).

Recently, many researchers have incorporated random effects into a wide variety of
regression models to account for correlated response and multiple sources of variance.
Generalized linear models (GLMs) with fixed and random (mixed) effects and normal
theory nonlinear mixed effects models are two model classes that have attracted an
enormous amount of attention in recent years (Davidian and Giltinan, 1995; 2003;
McCulloch and Searle, 2001; e.g., for recent reviews). A recent example falling slightly
outside the class of generalized linear mixed models (GLMMs) was provided by Booth
et al. (2003) who considered loglinear mixed models for counts based on the negative
binomial distribution. In a mixture model context, van Duijn and Bockenholt (1995)
presented a latent class Poisson model for analysing overdispersed repeated count data.
Hall (2000) added random effects to ZIP and ZIB models. Zero inflated regression
models with mixed effects for clustered continuous data have been considered by Olsen
and Schafer (2001) and Berk and Lachenbruch (2002).

In this paper, we formulate a class of regression models based on the two component
mixture of generalized linear mixed effect models (two-component GLMMs). This class
can be viewed as an extension of finite mixtures of GLMs (Jansen, 1993) in which cluster
specific random effects are included to account for within cluster correlation. Alternatively,
it can be viewed as an extension of GLMMs in which a second component is added. We
envision that finite mixtures of GLMMs will have application primarily in problems where
there is some readily identified heterogeneity in the population so that the data represent a
small number of subpopulations that cannot be directly identified except through the value
of the response. We focus on the case in which it is reasonable to hypothesize two latent
subpopulations underlying the data. For example, disease counts from epidemic and non
epidemic years, weekly epileptic seizure counts from patients who have ‘good weeks’ and
‘bad weeks’, arrhythmia counts from a sample of clinically normal patients that is
contaminated with abnormal patients, counts from honest and dishonest self-reports
pertaining to some stigmatized act, counts from adherers and non adherers to some
study protocol, and so on. GLMs, finite mixtures of GLMs, ZIP, ZIB and many other
models are special cases of this broad class.

The difficulty of parameter estimation in mixture models is well known. A major
advance came with the publication of the seminal paper of Dempster et al. (1977) on
the EM algorithm. With the EM algorithm, latent variables or ‘missing data’ are
introduced, which allows finite mixture models to be fit by iteratively fitting weighted
versions of the component models. So, for example, a K component finite mixture of
GLMs can be fit via maximum likelihood (ML) by fitting K weighted GLMs, updating
the weights and iterating to convergence. Mixture models with random effects pose an
additional challenge to ML estimation as the marginal likelihood involves an integral
that cannot be evaluated in closed form. This challenge is similar to that found with
ordinary (nonmixture) GLMMs and other nonlinear mixed models.

The paper is organized as follows: we formulate the two component mixture of
GLMMs in Section 2. In Section 3, we outline the EM algorithm and consider various
methods of handling the required integration with respect to the missing data. The
model class and estimation methods are illustrated with two real data examples in
Section 4. Finally, we give a brief discussion in Section 5.
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2 Two-component mixture of GLMMs

Suppose, we observe an N-dimensional response vector y containing data from C
independent clusters, so that y ¼ (yT

1 ; . . . ; yT
C)T, where yi ¼ (yi1; . . . ; yini

)T. We assume
that, conditional on a q-dimensional vector of random effects bi, the random variable
Yij associated with observation yij follows a two-component mixture distribution

Yijjbi �
F1(yijjbi; z1ij;s1); with probability pij

F2(yijjbi; z2ij;s2); with probability 1� pij

�

Here, F1 and F2 are assumed to be exponential dispersion family distributions, with
densities fk(yijjbi; zkij; sk) ¼ hk(yij; sk) exp [{zkijyij � kk(zkij)}wij=sk], k ¼ 1; 2, respec-
tively, where the wij’s are known constants (e.g., binomial denominators). The func-
tions k1 and k2 are cumulant generating functions, so F1 and F2 have (conditional)
means m1ij ¼ k01(z1ij) and m2ij ¼ k02(z2ij).

We assume the canonical parameters fki ¼ (zki1; . . . ; zkini
)T, k ¼ 1; 2, are related to

covariates and cluster specific random effects through GLM type specifications.
Specifically, for canonical link functions, we assume

f1i(l1i) ¼ g1i ¼ XiaþU1iD
T=2
1 b1i or l1i ¼ f

�1
1i ¼ (g1i)

f2i(l2i) ¼ g2i ¼ Zib þU2iD
T=2
2 b2i þU3iD

T=2
3 b1i or l2i ¼ f

�1
2i (g2i) (2:1)

Here, Xi and Zi are ni � r1 and ni � r2 design matrices, respectively, for fixed effects
parameters a and b; bi ¼ (b

T
1i; b

T
2i)

T, where b1i and b2i are of dimension q1 and q2,

respectively, where q ¼ q1 þ q2; and Uki, k ¼ 1; 2; 3, are random effects design

matrices. In some applications, we may drop the term U3iD
T=2
3 b1i from the model, but

in general it is present to allow covariance between the two linear predictors. We assume
b1; . . . ;bC are independent, identically distributed Nq(0; Iq) vectors, and model covar-
iance through the shared random effects b1i in the two linear predictors and through the
lower triangular scale matrices DT=2

k , k ¼ 1;2; 3. That is, model (2.1) implies

var(g1i) ¼ U1iD1UT
1i

var(g2i) ¼ U2iD2UT
2i þU3iD3UT

3i

cov(g1i; g
T
2i) ¼ U1iD

T=2
1 D1=2

3 UT
3i

Here, Dk contains variance components along the diagonal and covariance components
on the off diagonal. We assume that each Dk is parameterized by a vector hk, where we
adopt an unconstrained Cholesky parameterization (Pinheiro and Bates, 1996) in which
the elements of hk are the nonzero entries in the upper triangular Cholesky factor D1=2

k .
That is, hk ¼ vech(D1=2

k ), k ¼ 1; 2; 3, where vech stacks the columns of its matrix
argument including only those elements on and above the diagonal. (Note that our
definition of vech differs from the usual usage in which the elements on and below the
diagonal are stacked.)
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The model form given by Equation (2.1) is quite flexible, allowing a wide variety of
random effects specifications. For example, a model with random cluster specific
intercepts might assume Z1ij ¼ xT

ij aþ y1b1i and Z2ij ¼ zT
ij b þ y2b2i. This implies inde-

pendent cluster effects in the two components. Correlated components can be induced
by assuming Z1ij ¼ xT

ij aþ y1b1i and Z2ij ¼ zT
ij b þ y2b2i þ y3b1i, which leads to

corr(Z1ij; Z2iij) ¼ y3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

2 þ y2
3

q
. The form given by Equation (2.1) simply generalizes

these cases to higher dimension, allowing random slope and intercept models and other
more general random effects structures. An alternative approach would have been to
allow correlated random effects ~b1i;

~b2i, say, where ~bki appears only in the kth linear
predictor and cov( ~b1i;

~b2i) 6¼ 0. However, this more straight forward approach, which is
essentially a reparametrization of the model we focus on, is not as conducive to
estimation via the EM algorithm because it leads to a complete data likelihood, which
does not factor cleanly into terms for each component in the mixture. [In particular, the
second and third terms of formula (3.3) defined subsequently, which is the expected
complete data loglikelihood used in the EM algorithm, would share parameters

pertaining to corr( ~b1i;
~b2i).]

Note that in Equation (2.1) we have assumed canonical links, but this is not
necessary. In general, we allow known links g1 and g2 so that m1ij ¼ g�1

1 (Z1ij) and
m2ij ¼ g�1

2 (Z2ij). Furthermore, we assume that the mixing mechanisms for each observa-
tion are independent, with probabilities pi ¼ (pi1; . . . ;pini

)T, i ¼ 1; . . . ;C, each follow-
ing a regression model of the form gp(pi) ¼Wic, involving a known link function gp,
unknown regression parameter c and ni � s design matrix Wi. Typically, gp will be
taken to be the logit link, but the probit, complementary log–log, or other link function
can be chosen here.

Let ~a ¼ (aT; hT
1 )T and ~b ¼ (bT; hT

2 ; hT
3 )T, and denote the combined vector of model

parameters as d ¼ (~aT; ~bT; cT; s1;s2)T. The loglikelihood for d based on y is given by

‘(d; y) ¼
XC

i¼1

log

ðYni

j¼1

f (yijjbi; d)fq(bi)dbi

( )

where f (yijjbi; d) ¼ {pij(c)}f1(yijjbi; ~a; s1)� {1� pij(c)}f2(yijjbi;
~b; s2), fq( � ) denotes the

q-dimensional standard normal density function, and the integral is q-dimensional.

3 Fitting the two-component mixture model via the EM algorithm

The complications of parameter estimation in mixture models are simplified consider-
ably by applying the EM algorithm. Let uij, i ¼ 1; . . . ;C, j ¼ 1; . . . ;ni denote the
component membership; uij equals one if Yij is drawn from distribution F1 and equals
zero if Yij is drawn from F2. Then the ‘complete’ data for the EM algorithm are (y, u, b).
Here, (u, b) play the role of missing data, where u ¼ (u11; � � � ;uCnC

)T. On the basis of
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the complete data (y, u, b), the loglikelihood is given by
log f (b)þ log f (ujb; c)þ log f (yju;b; ~a; ~b; s1;s2), which has kernel

XC

i¼1

Xni

j¼1

[uij log pij(c)þ (1� uij) log {1� pij(c)}]þ
XC

i¼1

Xni

j¼1

uij log f1(yijjbi; z1ij;s1)

þ
XC

i¼1

Xni

j¼1

(1� uij) log f2(yijjbi; z2ij; s2) �
XC

i¼1

Xni

j¼1

‘c(d; yij;uijjbi)

where b ¼ (b1; . . . ; bC)T. On the basis of this complete data loglikelihood, the EM
algorithm is applied both to ML estimation in Section 3.1 and to nonparametric ML
estimation (NPML) in Section 3.2.

3.1 ML estimation for normal random e¡ects

Given a starting value for the parameter vector d, the EM algorithm yields ML estimates
by alternating between an expectation step and a maximization step. At convergence,
computation of an observed information matrix for parameter standard errors and
Wald-type statistical inference is based upon Oakes formula (Oakes, 1999). Refer to
Wang (2004) for details.

3.1.1 E step

In the (hþ 1)th iteration of EM algorithm, we compute Q(djd(h)) ¼
E{ log f (y;ujb; d)jy; d(h)} in the E step, where the expectation is with respect to the
joint distribution of u, b given y and d(h). This conditional expectation can be taken in
two stages where the inner expectation is with respect to u only. As log f (y;ujb; d) is
linear with respect to u, this inner expectation can be taken simply by substituting
u(h) ¼ E(ujy; b; d(h)) for u. The vector u(h) is easily computed, with elements

u(h)
ij (bi) ¼ 1þ

1� pij(c
(h))

pij(c
(h))

f2{yijjbi;
~b(h); s(h)

2 }

f1{yijjbi; ~a(h); s(h)
1 }

" #�1

(3:1)

Here, the superscript (h) indicates evaluation at the value obtained in the hth step of the
algorithm. Note that u(h) is a function of bi, so we have indicated that dependence in
the notation u(h)

ij (bi). Taking the outer expectation and dropping terms not involving d,
we obtain

Q(djd(h)) ¼
XC

i¼1

Pni

j¼1

Ð
‘c(d; yij;u

(h)
ij (bi)jbi)f (yijbi; d(h))fq(bi)dbiÐ

f (yijbi; d(h))fq(bi)dbi

(3:2)

The integrals in Equation (3.2) are now with respect to the random effects b only,
which must be ‘integrated out’ of Q. We propose performing this integration via

Two-component mixtures of GLMMs 25



adaptive Gaussian quadrature (AGQ) (Liu and Pierce, 1994; Pinheiro and Bates, 1995).

Let b̂
1
i and b̂

2
i denote the modes of the integrands in the numerator and denominator,

respectively, of Equation (3.2), and let g1(bi) �
Pni

j¼1 ‘
c(d; yij; u

(h)
ij (bi)j

bi)f (yijbi; d(h))fq(bi) and g2(bi) � f (yijbi; d(h))fq(bi) from equation (3.2). In addition,
let Ĝ1i and Ĝ2i be the Hessian matrices of log g1(bi) and log g2(bi) evaluated at b̂

1
i and

b̂
2
i , and let p‘1;...;‘q

¼ (p‘1
; . . . ;p‘q

)T and z‘1;...;‘q
¼ (z‘1

; . . . ; z‘q
)T, where p1; . . . ; pm and

z1; . . . ; zm are m-point ordinary Gaussian quadrature (OGQ) weights and abscissas,
respectively. Then the quadrature points under AGQ are shifted and rescaled versions
of z‘1;...;‘q

as follows: b
1�
i‘1;...;‘q

¼ (b1�
i‘1
; . . . ;b1�

i‘q
)T ¼ b̂

1
i þ 2q=2Ĝ�1=2

1i z‘1;...;‘q
and

b
2�
i‘1;...;‘q

¼ (b2�
i‘1
; . . . ;b2�

i‘q
)T ¼ b̂

2
i þ 2q=2Ĝ�1=2

2i z‘1;...;‘q
for g1(bi) and g2(bi), respectively.

The corresponding AGQ weights are (p�‘1
; . . . ; p�‘q

)T, where p�i ¼ pi exp (z2
i ).

Hence, at the E step, Q(djd(h)) is approximated by

X
i;j

� Xm

‘1;...;‘q

w(h)
i‘1;...;‘q

[u(h)
ij (b

1�
i‘1;...;‘q

) log pij(c)þ {1� u(h)
ij (b

1�
i‘1;...;‘q

)} log {1� pij(c)}]

þ
Xm

‘1;...;‘q

w(h)
i‘1;...;‘q

u(h)
ij (b

1�
i‘1;...;‘q

) log f1(yijjb
1�
i‘1;...;‘q

; ~a;s1)
n o

þ
Xm

‘1;...;‘q

w(h)
i‘1;...;‘q

{1� u(h)
ij (b

1�
i‘1;...;‘q

)} log f2(yijjb
1�
i‘1;...;‘q

; ~b;s2)
n o�

(3:3)

where

w(h)
i;‘1;...;‘q

¼
jĜ1ij

�1=2f (yijb
1�
i‘1;...;‘q

; d(h))fq(b
1�
i‘1;...;‘q

)
Qq

n¼1 p
�
‘n

jĜ2ij
�1=2Pm

‘1;...;‘q
f (yijb

2�
i‘1;...;‘q

; d(h))fq(b
2�
i‘1;...;‘q

)
Qq

n¼1 p
�
‘n

h i

are weights that do not involve d.

3.1.2 M step

In the (hþ 1)th iteration of the algorithm, the M step maximizes the approximation to
Q(djd(h)) given by Equation (3.3) with respect to d. Notice that Q(djd(h)) has a relatively
simple form that allows it to be maximized in a straightforward way. From Equation
(3.3), the approximation can be seen to be a sum of three terms: first, a weighted
binomial loglikelihood involving c only; secondly, a weighted exponential dispersion
family loglikelihood involving only a, h1 and s1; and thirdly, a weighted exponential
dispersion family loglikelihood involving only b, h2, h3 and s2. Therefore, the M step
for d can be done by separately maximizing the three terms in Q(djd(h)). For each term,
this can be done by fitting a weighted version of a standard GLM.

M Step for c. Maximization of Q(djd(h)) with respect to c can be accomplished by
fitting a weighted binomial regression of the u(h)

ij (b
1�
i‘1;...;‘q

)’s on Wi � 1mq with weights
w(h)

i‘1;...;‘q
. Here 1k is the k� 1 vector of ones. For instance, for gp taken to be the logit
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link, we would perform a weighted logistic regression with a Nmq � 1 response vector
formed by stacking the u(h)

ij (b
1�
i‘1;...;‘q

)’s in such a way so that the indices i; j; ‘1; . . . ; ‘q
cycle through their values most quickly from right to left. The design matrix for this
regression is formed by repeating each row of W ¼ (WT

1 ; . . . ;WT
C)T mq times, and the

weight for the (i; j; ‘1; . . . ; ‘q)th response is given by w(h)
i‘1;...;‘q

(constant over j).
M Step for ~a; s1. Maximization of Q(djd(h)) with respect to ~a and s1 can be done by

again fitting a weighted GLM. Let X� ¼ [(X� 1mq1 );u�1] where u�1 is the
Nmq1 � q1(q1 þ 1)=2 matrix with (i; j; ‘1; . . . ; ‘q1

)th row equal to {vech(b
1�
i‘1;...;‘q1

u1ij)}
T,

where u1ij is the jth row of the random effects’ design matrix u1i. Then maximization
with respect to ~a and s1 can be accomplished by fitting a weighted GLM with mean
g�1

1 (X� ~a), response vector y� 1mq1 and weight w(h)
i‘1;...;‘q1

u(h)
ij (b

1�
i‘1;...;‘q1

) corresponding to
the (i; j; ‘1; . . . ; ‘q1

)th element of the response vector.
M Step for ~b; s2. Maximization with respect to ~b and s2 can be done by maximizing

the third term of Q(djd(h)). This step proceeds in a similar manner as the M step for ~a
and s1. Again, we fit a weighted GLM based on the expanded data set. The design
matrix in this regression is Z� ¼ [(Z� 1mq); u�2;u

�
3], where u�2 is the

Nmq2 � q2(q2 þ 1)=2 matrix with (i; j; ‘q1þ1; . . . ; ‘q)th row equal to
{vech(b

1�
i‘q1þ1;...;‘q

u2ij)}
T, u�3 is the Nmq1 � q1(q1 þ 1)=2 matrix with (i; j; ‘1; . . . ; ‘q1

)th

row equal to {vech(b
1�
i‘1;...;‘q1

u3ij)}
T and ukij is the jth row of the random effects’ design

matrix uki; k ¼ 2; 3. The mean function is g�1
2 (Z� ~b), the response vector is y� 1mq and

the weight associated with the (i; j; ‘1; . . . ; ‘q)th response is w(h)
i‘1;...;‘q

{1� u(h)
ij (b

1�
i‘1;...;‘q

)}.

3.2 NPML estimation

One limitation of the modeling approach described earlier is the normality assumption on
the random effects. Although effects of mis-specification of the random effects distribu-
tion have been found to be mild in simpler contexts (Heagerty and Kurland, 2001;
Neuhaus et al., 1992), it still may desirable to estimate the random effects’ distribution
nonparametrically when little is known about the mixing distribution or if it is believed to
be highly skewed or otherwise non-normal. This approach, known as NPML, has been
developed by many authors (e.g., Aitkin, 1999; Follmann and Lambert, 1989; Hinde and
Wood, 1987; Laird, 1978; Lindsay, 1983) in simpler contexts; we follow Aitkin (1999)
and adapt his methods to the two component GLMM setting.

Aitkin’s (1999) approach to NPML estimation can be seen as a modification of
Gaussian quadrature in which the weights (i.e., mass points) and abscissas are estimated
from the data rather than taken as fixed constants. This can be done as part of the EM
algorithm as outlined in Section 3.1 by incorporating the abscissas and masses as
parameters of the complete data loglikelihood. The procedure is most easily described
for one dimensional random effects, so for the moment assume a random intercept
model with q1 ¼ q2 ¼ 1 dimensional random effects in each component’s linear
predictor. That is, for now suppose the two GLMMs have linear predictors
Z1ij ¼ xT

ij aþ y1b1i and Z2ij ¼ zT
ij b þ y2b2i, respectively. In the parametric setup, there

is mixing over the continuous distribution of ykbki, k ¼ 1; 2, in each component. In
NPML, we replace these continuous distributions with discrete ones with masses at the
unknown values b

�
k ¼ (b�k1;b

�
k2; . . . ; b�km)T, k ¼ 1; 2. Thus for each observation i, j, we
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obtain m linear predictors in each component: Z�1ij‘ ¼ xT
ij aþ b�1‘, ‘ ¼ 1; . . . ;m, and

Z�2ij‘ ¼ zT
ij b þ b�2‘, ‘ ¼ 1; . . . ;m, with unknown masses p ¼ (p1; . . . ;pm)T. The para-

meters b
�
1, b

�
2, and p describing the mixing distribution are regarded as nuisance

parameters, with interest centered on the regression parameters a, b and c.
To describe the EM algorithm for NPML, redefine d � (a; s1; b

�
1; b;s2; b

�
2; c)T. Then

the E step yields Q(d; pjd(h); p(h)), given by [cf. Equation (3.3)]

X
i;j

�Xm

‘¼1

w(h)
i‘ [u(h)

ij (b
�(h)
1 ;b

�(h)
2 ) log pij(c)þ {1� u(h)

ij (b
�(h)
1 ; b

�(h)
2 )} log {1� pij(c)}]

þ
Xm

‘¼1

w(h)
i‘ u(h)

ij (b
�(h)
1 ;b

�(h)
2 ) log f1(yijjb

�
i ; ~a;s1)

þ
Xm

‘¼1

w(h)
i‘ {1� u(h)

ij (b
�(h)
1 ; b

�(h)
2 )} log f2(yijjb

�
i ; ~b;s2)

�
þ
XC

i¼1

Xm

‘¼1

w(h)
i‘ log (p‘) (3:4)

where w(h)
i‘ ¼ f (yijb

�(h)
1‘ ;b

�(h)
2‘ ; d(h))p(h)

‘ =
Pm

‘0¼1 f (yijb
�(h)
1‘0 ;b

�(h)
2‘0 ; d(h))p(h)

‘0 . Comparing the
earlier expression for Q(d; pjd(h); p(h)) to Equation (3.3), we see that we have almost
the same form, with just an extra term for p in Equation (3.4). Therefore, the M step
proceeds along the same lines as described previously.

M Step for c. This can be done by fitting a weighted binomial regression of the

u(h)
ij (b

�(h)
1 ; b

�(h)
2 )’s on Wi � 1m with weights w(h)

i‘ .
M Step for a;s1; b

�
1. Let X� ¼ [(X� 1m); In � 1N]. Then maximization with respect

to a, s1 and b
�
1 consists of fitting a weighted GLM with mean g�1

1 {X�(aT;b
�T
1 )T},

response vector y� 1m and weight w(h)
i‘ u(h)

ij (b�1‘; b
�
2‘) corresponding to the (i; j; ‘)th

element of the response vector.
M Step for b;s2; b

�
2. Again, we fit a weighted GLM based on the expanded data set.

The design matrix in this regression is Z� ¼ [(Z� 1m); In � 1N], the mean function is

g�1
2 (Z�[bT;b

�T
2 ]T), the response vector is y� 1m and the weight associated with the

(i; j; ‘)th response is w(h)
i‘ {1� u(h)

ij (b�1‘; b
�
2‘)}.

M Step for p. Maximization with respect to p can be done by maximizing the fourth
term of Equation (3.4). This maximization yields the closed form solution
p(hþ1)
‘ ¼

PC
i¼1 w(h)

i‘ =C, ‘ ¼ 1; . . . ;m.
Extension to more than one dimensional random effects is straightforward. In that case,

the linear predictors for the two components take the form Z1ij ¼ xT
ij aþUT

1ijD
T=2
1 b1i and

Z2ij ¼ zT
ij b þUT

2ijD
T=2
2 b2i, respectively. Note that we have dropped the UT

3ijD
T=2
3 b1i term

from Z2ij here [cf. model (2.1)]. However, in the NPML approach no assumption (such as

independence) concerning the joint distribution of DT=2
1 b1i and DT=2

2 b2i is imposed, so
correlation between the two linear predictors is permitted automatically and the term
UT

3ijD
T=2
3 b1i becomes unnecessary. Again, NPML estimation results in m linear predictors

per component with masses p ¼ (p1; . . . ;pm)T: Z1ij ¼ xT
ij aþUT

ij b
�
1‘, Z2ij ¼ zT

ij b þUT
ij b
�
2‘,

‘ ¼ 1; . . . ;m, where the b
�
k‘s are unknown qk-dimensional parameters to be estimated.

Note that although it may be necessary to choose a larger value of m to capture the joint
distribution of bki when qk > 1, the computational effort when using NPML increases
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linearly with q. In contrast, quadrature methods involve the computation of mq term sums
for each observation in the data set.

In the NPML context, we adapt the method of Friedl and Kauermann (2000) to our
context to obtain an expected information matrix at convergence. Again, for details see
Wang (2004).

4 Examples

4.1 Measles data

As an illustration of our methodology, we analyse annual measles data that were
collected for each of 15 counties in the United States between 1985 and 1991. For each
county, the annual number of preschoolers with measles was recorded as well as two
variables related to measles incidence: immunization rate and number of preschoolers
per county. These data are presented and analysed by Sherman and le Cessie (1997).
They employed a bootstrap method for dependent data to get bootstrap replicates from
15 counties. For each bootstrap resample, the parameters of a loglinear regression of
number of cases on immunization rate were estimated by maximizing the Poisson GLM
likelihood under independence, using the natural logarithm of the number of children
as an offset.

An interesting result of their analysis is the histogram of the 1000 bootstrap slope
estimates they obtained (Sherman and le Cessie, 1997: 914, Figure 1). This histogram
shows a clear bimodal shape, suggesting a possible mixture structure underlying the
data set. Such a structure is also apparent in a simple plot of the data by county (Figure
1). In Figure 1, there appears to be a mix of high and low incidences which may reflect
the epidemiology of this disease. Intuitively, it seems reasonable that there may be
epidemic and nonepidemic years. Because the categorization of any given year as an
epidemic year is determined by the magnitude of the response, it is necessary to infer the
latent class structure through a mixture model rather than to directly model it in the
linear predictor of a GLM. Because the data are also clustered by county, we feel that a
two component GLMM is a natural model to consider here. In addition, such a model
will allow us to separately quantify covariate effects in the two components. For
example, the effect of vaccination rate on the incidence of measles may be quite
different in epidemic and nonepidemic years.

Let yij be the number of cases in county i; (i ¼ 1; . . . ; 15) in year j; (j ¼ 1; . . . ; 7), and
let bi be a one-dimensional random county effect for county i. We considered several
models for these data all of which are special cases of a two-component GLMM of the
form Yijjbi � pijPoisson(l1ijjbi)þ (1� pij)Poisson(l2ijjb2), where

log (l1ij) ¼ a0 þ a1rateij þ y1b1i þ log (nij)

log (l2ij) ¼ b0 þ b1rateij þ y2b2i þ y3b1i þ log (nij)

logit(pij) ¼ g0 þ g1rateij (4:1)

and where a0, b0, g0 are fixed intercepts and a1, b1, g1 are fixed effects of immunization
rate for the two Poisson means l1ij, l2ij and the mixing probability pij, respectively.
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In addition, log (nij) represents an offset corresponding to the natural logarithm of the
number of children in the ith county during the jth year.

Table 1 lists eight models of this general form and the corresponding values of �2 times
the maximized loglikelihood (�2‘) and the Akaike information criterion (AIC). All of
the models in Table 1 except models 2 and 8 were fit with ML. Of these, model 1 is
a (nonmixture) GLMM, model 3 is a mixture model without random effects and
models 4–6 are two component GLMMs with identical fixed effects, but different
assumptions regarding the random effects structure. Among these models, it is clear
that models 1 and 3 fit much worse than the rest, suggesting that a two component
structure and county specific random effects are necessary here. Models 5 and 6 have very
similar values of �2‘, with AIC preferring the more parsimonious model 6. To investigate
whether the mixing probability varied with immunization rate, we refit model 6 with
immunization rate included as a covariate in the linear predictor for logit(pij). A
comparison of this model, listed as model 7 in Table 1, with model 6 via either a likelihood
ratio test or a AIC suggests that g1 ¼ 0. Thus, among the models fit with ML, we prefer
model 6 for these data.

To illustrate the NPML approach, we refit model 6 dropping the assumption of
normality on the random effects. This model is listed as model 8 in Table 1. For model
8, we followed the strategy described by Friedl and Kauermann (2000) and started the
fitting procedure from a large value of m (m ¼ 12), and then reduced m systematically

Figure 1 Measles data. Years are grouped together for each county 1985–1991
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until all quadrature points are different and no quadrature weights are very small (less
than 0.01). In this case, we stopped the fitting procedure at m ¼ 7. According to the
AIC criterion, model 8 offers a slight improvement in fit over model 6.

To further investigate the suitability of the models, we fit in this example, we follow
the approach of Vieira et al. (2000) who suggested the use of half normal plots as
goodness-of-fit tools. Half normal plots for the GLMM (model 1), two-component
GLM (model 3) and the two component GLMM with independent normal random
effects (model 6) appear in Figure 2(a–c). The plots display the absolute values of the
Pearson residuals versus half normal scores, with simulated envelopes based on the
assumed model evaluated at the estimated parameter values. A suitable model is
indicated by the observed values falling within the simulated envelope. The Pearson
residuals are defined as [yij �

dE(Yij)]=
p dvar(Yij), where E(Yij) ¼ E{E(Yijjbi)}, var(Yij) ¼

E(Y2
ij )� {E(Yij)}

2
¼ E{E(Y2

ij jbi)}� {E(Yij)}
2 for the mixed models. The marginal expec-

tations here were evaluated using 20-point OGQ, and the hats indicate evaluation at the
final parameter estimates, which were obtained using 11-point AGQ. For the two-

Table 1 Comparison of different models for the measles data

Model
number

Model
type

Random
effects

Fitting
method WT

ijg 72 Loglik AIC

1 GLMM y1b1i ML N=A 10174.0 10180.0
2 GLMM y1b1i

a NPML N=A 2677.7 2699.7
3 2-GLM N=A ML g0 2712.3 2722.3
4 2-GLMM y1b1i ; y2b2i þ y3b1i ML g0 1959.7 1975.7
5 2-GLMM y1b1i ; y3b1i ML g0 2140.1 2154.1
6 2-GLMM y1b1i ; y2b2i ML g0 1960.3 1974.3
7 2-GLMM y1b1i ; y2b2i ML g0 þ g1rate 1959.4 1975.4
8 2-GLMM y1b1i ; y2b2i

a NPML g0 1914.1 1962.1

aNPML model is most similar to this parametric description, having random intercept(s) in each linear
predictor. However, the normality assumption is dropped, and the ys are absorbed into the mass points.

Figure 2 Half normal plot for assessing goodness-of-fit of models 1 (a), 3 (b) and 6 (c). These three models are
GLMM, two-component GLM, and two-component GLMM, respectively
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component GLM, E(Yij) ¼ pijl1ij þ (1� pij)l2ij, var(Yij) ¼ pij(l1ij þ l2
1ij)þ (1� pij)(l2ijþ

l2
2ij)� {E(Yij)}

2, where l1ij and l2ij are means for each Poisson component.
Figure 2(a) clearly indicates that the one-component GLMM model is inadequate for

the measles data because almost all points fall outside of the simulated envelope. Figure
2(b) shows that the two-component GLM improves the fit, but in the left half of the plot
there are still many points outside the envelope. In Figure 2(c), nearly all points are along
the simulated means, confirming that a two-component GLMM fits these data best.

The fitting results mentioned earlier are consistent with expectations based on a
preliminary examination of the data and some consideration of the epidemiology of this
disease. Because of the mixture of large and small incidences of measles and the epidemic
phenomenon, we expected that two components would be necessary to model these data.
This is borne out by the vast improvement in fit from a one to a two-component GLM. In
their analysis of these data, Sherman and le Cessie (1997) found that county number 6 was
largely responsible for the bimodal structure of the bootstrap distribution of the estimated
rate effect. However, we found no evidence that the necessity of a second component was
driven by this or by any other single county’s data. For model 6, the posterior component
membership probabilities (3.1) were computed at convergence. According to these posterior
probabilities, all but one county (county 10) had at least one observation (year) classified in
each component of the mixture. As the data are also clustered, the within county correlation
must also be accounted for. We have chosen to account for this correlation through a
random county effect, and this approach improves the fit compared with the fixed effect
two-component GLM.

The parameter estimates from models 6 and 8 are summarized in Table 2. Writing
somewhat informally, the ML results imply

log

predicted

measles

rate

0
B@

1
CA¼

1:97�0:133(imm. rate)

þ 0:669(county effect), in outbreak years

�5:53�0:0767(imm. rate)

þ 1:06(county effect), in nonoutbreak years

8>>><
>>>:

Table 2 Parameter estimates (standard errors) from
models 6 and 8 fit to measles data

Parameter AGQ NPML

a0 1.97 (1.58) –
a1 �0.133 (0.0232) �0.143 (0.0137)
b0 �5.53 (2.43) –
b1 �0.0767 (0.0354) �0.0962 (0.00811)
g0 �0.992 (0.230) �0.931 (0.204)
y1 0.669 (0.138) –
y2 1.06 (0.253) –

Note: The two components have been exchanged in these
two models.
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If we suppose an immunization rate of 70%, say and set the county effect to zero, the
fitted model predicts

annual measles rate ¼
0:000649; in outbreak years
0:0000185; in nonoutbreak years

�

with an estimated probability of an outbreak of logit
�1

{�0:992} ¼ 0:271. The NPML
results are similar. The parameters a0, b0, y1, and y2 have been absorbed into the
quadrature points and weights in the NPML approach. However, the immunization
rate effects for outbreak and nonoutbreak years, �0.143 and �0.0962, respectively, are
comparable, though somewhat larger, than those for ML. The estimated probability of
a measles outbreak, logit

�1
{�0:931} ¼ 0:283, is similar to that for ML.

An associate editor has inquired how the two component mixture fit with NPML
differs from a one-component model with NPML. The concern here is that the latter
model is fit as a finite mixture of GLMs and the former is fit as a two-component
mixture of finite mixtures of GLMs. Thus, both models are finite mixtures of GLMs,
and it is not completely obvious that the two-component model would result in a
substantially different fit or that it would even be identifiable. The difference between
the two types of models has to do with the level at which mixing occurs. In both cases,
the NPML approach assumes that cluster specific random effects are drawn from a
discrete probability distribution with finite support. That is, discrete mixing is assumed
at the cluster level. In the two component case, there is additional finite mixing at the
individual observation level. To highlight this difference, we fit the one-component
GLMM with NPML. This model is listed as model 2 in Table 1 and is based on m ¼ 5
mass points. Although this model fit substantially better than model 1 (fit with ML), it is
not competitive with the two-component GLMMs. In the context of this example, it
appears that it is useful to account for heterogeneity both between counties and from
year to year within counties. In addition, the superior fit of models 4–8 relative to model
2 undermines the notion that the two-component model fits better only because of an
inappropriate distributional assumption for the random effects in the one-component
model. Because the NPML models fit better than the corresponding ML models, it does
appear that the normality assumption on the random effects may be violated. However,
a two-component structure is still necessary for modeling these data adequately.

4.2 White£y data

Our second example involves data from a horticulture experiment to investigate the
efficacy of several different means of applying pesticide to control whiteflies on green-
house raised poinsettia plants. The data arise from a randomized complete block design
with repeated measures taken over 12 weeks. Eighteen experimental units were formed
from 54 plants, with units consisting of three plants each. These units were randomized to
six treatments in three blocks. The response variable of interest here is the number of
surviving whiteflies out of the total number placed on the plant two weeks previously.
These data are discussed in more detail in van Iersel et al. (2000). In that paper, ZIB
regression models were used to analyse these data, with random effects at the plant level
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to account for correlation among the repeated measures on a given plant. We return to
this problem to investigate whether a two-component mixture of GLMMs can improve
upon the fit of a ZIB mixed model for these data. That is, the question is whether an
improvement can be achieved by allowing the second component to be a binomial with
relatively small success probability rather than a zero success probability.

Let yijk‘ be the number of live adult whiteflies on plant k (k ¼ 1; . . . ;54) in treatment
i (i ¼ 1; . . . ; 6) in block j (j ¼ 1; . . . ;3) measured at time ‘(‘ ¼ 1; . . . ;12). Let nijk‘ be
the total number of whiteflies placed on the leaf of plant k in treatment i in block j
measured at time ‘. Further, let ai be the ith treatment effect, bj be the jth block effect, t‘
be the ‘th week effect and b1k and b2k each be one-dimensional random plant effects for
plant k. For simplicity, we consider models containing only main effects (treatment,
block and week) and plant specific random intercepts. Specifically, the results we
present here all pertain to special cases of the model that assumes
Yijk‘jbk � pijk‘Binomial(nijk‘; p1ijk‘jbk)þ (1� pijk‘)Binomial(nijk‘;p2ijk‘jbk), where

logit(p1ijk‘) ¼ m1 þ a1itreatmenti þ b1jblockj þ t1‘week‘ þ y1b1k

logit(p2ijk‘) ¼ m2 þ a2itreatmenti þ b2jblockj þ t2‘week‘ þ y2b2k þ y3b1k

logit(pijk‘) ¼ m3 þ a3itreatment ti þ b3jblockj þ t3‘week‘ (4:2)

Fit statistics for model (4.2) and some simpler models appear in Table 3. Models 1, 4, 6,
7 and 8 in this table were fit with ML using five-point AGQ. Among these models, the
two-component GLMM with proportional plant specific random effects in each linear
predictor, model 7, yielded the smallest AIC. A similar two component GLMM with
plant effects in each component was also fit using NPML (model 9). In fitting model 9,
we followed the same procedure as described in Section 4.1, which resulted in m ¼ 5
non-negligible mass points and a slightly worse fit according to the AIC statistic. For
purposes of comparison, we also fit a one-component GLMM with both ML and
NPML (m ¼ 7), a ZIB model, a ZIB mixed model and a two-component GLM, all of
which were special cases of Equation 4.2. That is, they had the same linear predictors
for the first component (without random effects for models 3 and 5) and mixing
probability as in Equation (4.2).

Table 3 Comparison of different models for whitefly data

Model
number

Model
type

Random
effects Fitting method 72 Loglik AIC

1 GLMM y1b1k ML 2409.0 2449.0
2 GLMM y1b1k

a NPML 2392.2 2456.2
3 ZIB N=A ML 1928.7 2004.7
4 ZIB-Mixed y1b1k ML 1883.3 1961.3
5 2-GLM N=A ML 1628.2 1742.2
6 2-GLMM y1b1k ; y2b2k þ y3b1k ML 1606.5 1726.5
7 2-GLMM y1b1k ; y3b1k ML 1607.0 1725.0
8 2-GLMM y1b1k ; y2b2k ML 1642.9 1760.9
9 2-GLMM y1b1k ; y2b2k

a NPML 1596.4 1736.4

aAgain, NPML model is most similar to this parametric description.
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From Table 3, we find that the two component models are better than the
corresponding one component models. In addition, models with random plant effects
are better than the corresponding models without random effects. From these results, it
is clear that both random effects and second component are necessary here. In addition,
a nondegenerate (nonzero) second component also improves the fit over a ZIB model.
That is, two-component GLMMs fit best here, with proportional random effects
slightly preferred over the other random effects structures we considered.

5 Discussion

In this paper, we have formulated a class of two-component mixtures of GLMMs for
clustered data and described how the EM algorithm, combined with quadrature
methods, can be used to fit these models using ML estimation. Extension of this
model class to more than two components is possible and is, in principle, straight-
forward. However, the complexity of the model, its notation, and its fitting algorithm
will grow rapidly with the number of components, and it is not clear that the
practical value of such models justifies consideration of cases beyond two or three
components.

Our model class allows for correlation due to clustering to be accounted for through
the inclusion of cluster specific random effects. Clearly, there are other valid approaches
for accounting for within cluster correlation. Alternatives include marginal models
(Rosen et al., 2000) and transition models (Park and Basawa, 2002). As in the
nonmixture case, which approach is most appropriate for accounting for the correla-
tion will depend upon the application.

Extension to multilevel models (multiple nested levels of clustering), crossed random
effects and other more general random effects structures is an important area of future
research. One attractive approach for this extension is to use a Monte Carlo EM
algorithm (McCulloch, 1997) in place of our EM algorithm with quadrature. The main
challenge to implement the Monte Carlo EM in this context is sampling from f (bjy; d),
the conditional distribution of the random effects given the observed data. We have had
some success with this approach, but have found that the computing time is prohibi-
tively long for practical use. Another possibility raised by an anonymous referee is to
use simulated ML (refer, for example, McCulloch and Searle, 2001, Section 10.3.e).
However, this approach is well known to be very inefficient for nonoptimal importance
samplers, and, as mentioned previously, the optimal choice, f (bjy; d), can be quite
difficult to sample from. Furthermore, simulation based (McCulloch, 1997) and
analytical (Jank and Booth, 2003) investigations have found simulated ML estimation
to perform poorly relative to Monte Carlo EM, which we plan to investigate further in
future work.
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