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Abstract—Application of object-oriented mutation operators in 
C# programs using a parser-based tool can be precise but 
requires compilation of mutants. Mutations can be introduced 
faster directly to the Common Intermediate Language of .NET. 
It can be simple for traditional mutation operators but more 
complicated for the object-oriented ones. We propose the 
reconstruction of complex object-oriented faults on the 
intermediate language level. The approach was tested in the 
ILMutator tool implementing few object-oriented mutation 
operators in the intermediate code derived from compiled C# 
programs. Exemplary mutation and performance results are 
given and compared to results of the parser-based mutation 
tool CREAM.  

Keywords-mutation testing of C#, object oriented mutation 
operators, Common Intermediate Language of .NET 

I.  INTRODUCTION 

Mutation testing inserts faults in a program under test in 
order to assess or generate test cases, or evaluate the 
reliability of the program. When the testing of programs 
written in an object-oriented language is considered, we 
cannot ignore faults related to object-oriented programming 
constructs.  

A transformation rule that generates a mutant from the 
original program is called a mutation operator. So-called 
standard (or traditional) mutation operators introduce small, 
basic changes that are possible in typical expressions or 
assignment statements of any general purpose language [1]. 
Mutation operators dealing with specific programming 
features, including object-oriented ones, were also developed 
[3-8].  

Traditional mutation operators are not sufficient for 
verification of tests to reveal object-oriented flaws. 
Experiments performed with unit tests distributed with 
various open source programs indicated at the insufficient 
ability of these tests to detect faults of object-oriented origin 
in C# programs [9]. 

Mutation testing should contribute to improving a test 
suite. A mutant is said to be killed if the result of running the 
original program is different from the mutants’ result for at 
least one test case of the test suite T. A mutant that cannot be 
killed by any test suite is counted as an equivalent one. The 
adequacy level of the test suite T, so-called mutation score, 
is calculated as a ratio of the number of mutants killed over 
the total number of non-equivalent mutants.  

Mutation testing is known to be very laborious and has 
high demands on computing resources. Object-oriented 
mutation can be successfully introduced into a source code 
of a high-level language, like on C# in the CREAM system 
[10]. In its next version some improvements in the 
performance were achieved [9], but a parser-based approach 
requires mutant recompilation or code interpretation [11]. 

This paper presents development of object oriented 
mutations on the intermediate code derived from compiled 
C# programs. This approach can be considered as an 
execution cost reduction technique [12], similar to Java 
Bytecode manipulation [13]. An efficient tool introducing 
this kind of mutations should make program changes 
possibly omitting the steps of code compilation or its 
disassembly/assembly. Introduced changes should not 
damage a correctly compiled code.  

An open question is how the idea can be realized in the 
.NET environment. Introduction of traditional mutation 
operators on the intermediate language level is 
straightforward, as it is similar to the mutation on the high 
language level. However, the problem addressed in this 
paper refers to object oriented operators, which are 
substantially more complex and in general might not be 
directly reflected on the intermediate level. We have shown 
how the changes that correspond to selected object oriented 
mutation operators specified on the high-language (C#) are 
made in the Common Intermediate Language (CLI) of .NET.  

The approach was used in the ILMutator (Intermediate 
Language Mutator) tool [14] Its first version supported six 
selected types of object oriented program changes. 
Modification of a program is performed through 
manipulation in its metadata and intermediate code, what 
enables omitting recompilation. The Mono.Cecil library [15] 
was used for browsing and altering metadata and an 
intermediate code. 

The tool was used to perform mutation and testing of 
several widely used open source libraries and their unit test 
suites. It allowed to determine the quality of the tests, which 
were supplied with these tested programs, the usefulness of 
the implemented mutation operators and the tool 
performance. 

The paper is organized as follows. In the next section we 
discuss briefly the background of object-oriented mutation 
testing. In Sec. 3 we present object oriented mutations at CIL 
of .NET. Mapping of several mutation operators representing 
object oriented faults of the C# language to intermediate 
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language was proposed. Basic information about the tool 
implementing the approach and experimental results is given 
in Sec. 4 and Sec. 5, respectively. Finally, Sec. 6 concludes 
the paper.  

II. RELATED WORK 

The mutation testing approach was developed primarily 
for structural languages, like Fortran, Ada, C, developing 
standard mutation operators that can be adopted for any 
general purpose language [1]. Further, similar standard 
mutation operators were also applied for object-oriented 
languages, like Java, C++, C#.  

In object-oriented programs standard mutation was used 
for intra-method level testing. Object oriented languages also 
provide new structures, like class declarations and 
references, information hiding, inheritance, polymorphism, 
method over-loading. They are not considered directly by 
standard mutation operators, therefore the object-oriented 
mutation operators were defined. 

The research on the object-oriented mutation was done 
mostly on Java programs [2-5, 13, 16, 17].  

Kim et al. [4] proposed 15 mutation operators for Java 
programs regarding object-oriented concepts and other 
programming mechanisms (e.g. exception handling). It was 
extended by Chevalley [2]. Ma et al. proposed the most 
comprehensive set of 24 class mutation operators for Java 
described in [5]. These operators were implemented in the 
tools supporting mutation of Java programs MuJava [13]. 
Usefulness of the object oriented operators and their 
orthogonality were studied in experiments [16 - 19]. 

Mutation of object-oriented features of C++ code and a 
UML class specification was studied in [6]. Five groups of 
object oriented operators were proposed and evaluated in 
experiments. The operators were introduced to programs on 
the source code level.  

Object oriented operators of Java and C++ were 
examined according to their applicability to the C# language. 
The set of adapted object oriented operators was extended 
with other operators dealing with object oriented features 
(e.g. handling of exceptions) or specific for C# language 
(e.g. delegates, properties). In result, the set of about 40 
advanced (not traditional) mutation operators of C# was 
proposed and partially evaluated in some experiments [8, 
20].  

Mutation operators are usually defined informally and 
illustrated by code examples. To make a definition concise 
and unambiguous the operators were specified as a 
transformation with pre- and post-conditions [7, 8]. It is 
important especially for complex object oriented operators 
dealing with the structural features of a program. 

A comprehensive overview of mutation testing applied to 
different programming and specification languages can be 
found in the survey of the development of mutation testing 
[12]. 

Simple changes to Java source code, without parser 
involvement, were implemented in Jester environment [21]. 
The ideas of Jester system were transformed to Python and 
C# languages. The Nester tool [22] supports the standard 
mutations of C# language. The improved version of Nester 

makes only one compilation run for all mutants. Afterwards, 
it is decided during test execution which mutant should run. 
Five traditional mutation operators (sufficient according to 
Offutt) has been incorporated into PexMutator of C# code 
applied also in CIL code [23].  

Several testing systems for the C++ language use 
standard mutation testing also in commercial products, as 
Insure++ from Parasoft [24]. 

Standard mutations introduced into Java Byte Code are 
supported in different tools, like Jumble [25], MuGamma 
[26]. Selected traditional and some object oriented mutations 
in Java were also implemented in MuJava [13], MuClipse 
[17] - an Eclipse plug-in based on MuJava, Judy [27] and 
Javalanche [28] tools. In MuJava, mutants are generated 
either as a parameterized program (so-called meta-mutant) 
that is further recompiled and executed as a mutant 
according to a given parameter, or a mutation is introduced 
directly in the Byte Code. Test cases considered for Java 
programs were commonly unit tests suitable for JUnit 
environment [21, 25, 27, 29], or similar but specialized like 
in MuJava [13]. 

The Nmutator tool announced in 2002 was supposed to 
introduce object oriented mutations into C# programs but it 
was probably not completed. Research in [30] mentioned 
object oriented features of C# but concentrated on algorithms 
for optimization of test cases selection. They referred to 
standard mutation operators (LOR, NOR, ROR), 
perturbation on values of constant and variables, invocation 
of an exception and two object oriented operators (MCR, 
RFI). Operator MCR replaces a method call by another 
method with the same signature. Operator RFI forces the 
reference to an object to be stuck at null after its creation. 
The object oriented operators were not studied in detail. 

The first tool supporting selected object-oriented 
mutations for C# was the CREAM system [10, 31]. It was a 
parser-based mutation tool cooperating with the NUnit 
environment [32]. Further development of the CREAM v2 
system, including code parsing improvements, preventing 
generation of invalid and partially of equivalent mutants, 
cooperation with the distributed Tester environment and 
reduction of disc space requirements by storing mutants 
updates in a SVN repository, is presented in [9]. In 
comparison to this approach reduction of time requirements 
could be obtained by introducing mutation at the lower 
program level, eliminating necessity of many mutant 
compilations but also a time-consuming interpretation of a 
high-level program.  

In [33] examples of introducing simple mutations into 
intermediate .NET code are discussed. The principles of a 
mutation tool based on this approach can be summarized in 
the following way: 

• disassembly of an assembly file into a managed code 
expressed in a textual format, 

• searching for a mutation location according to 
pattern matching, 

• introduction of mutation into found locations, 
• assembly of the text file with intermediate code 

including a mutant. 



 

The author persuades of an easy way of mutant 
implementation, but the solution has two main limitations. 
The disassembly and assembly steps require a time overhead 
for each mutant (can be compared to the compilation of C# 
code). Secondly, introduction of mutation via simple pattern 
matching can be successful but only for a subset of simple 
traditional mutation operators. Therefore we present idea of 
introduction of selected object oriented mutations directly in 
the intermediate code derived from compiled C# programs 
and their implementation in the ILMutator prototype [14]. 
The idea is similar to the Bytecode translation of Java 
programs realized for structural mutants in MuJava [13]. In 
order to introduce advance mutation operators possible forms 
of intermediate code generated by the compiler were 
examined and all structures corresponding to primary C# 
constructions distinguished. Introduction of this kind of 
operators requires an intermediate code analysis, but it can 
be automated for various operators, as discussed below. 

III.  OBJECT-ORIENTED MUTATION INJECTED ON 

COMMON INTERMEDITE LANGUAGE LEVEL 

In this section we present how object-oriented mutation 
operators can be introduced directly into Common 
Intermediate Language. Examples of several operators are 
provided.  

A. Common Intermediate Language 

The C# language is one of the languages the applications 
of which can be run on .NET Framework using a common 
runtime environment [34]. The basic components of the 
framework are Common Language Runtime (CLR) and 
Framework Class Library (FCL). CLR is a runtime 
environment that supports the object-oriented programming 
paradigm, including concepts of types, objects and their 
behavior. All .NET applications are run in CLR - an 
intermediate layer between them and the operating system. 
FCL includes library classes supporting standard 
functionality for applications, e.g. GUI interfaces, web 
facilities. Compilers of different programming languages, 
like C++, C#, Visual Basic, J#, IL Assembler, can be used, 
building a code aimed at the common runtime environment. 
A so-called assembly is created, which is an intermediate 
form of a .NET application that can be run in the CLR 
environment. An assembly consists of managed modules that 
include two parts: metadata and managed code. Metadata 
describes a structure of the application, its elements and 
relations. Managed code includes body of application 
methods written in an intermediate form called Microsoft 
Intermediate Language (MSIL) or Common Intermediate 
Language (CIL) [35]. 

The intermediate language is a machine-level language. 
In comparison to other low-level languages, it includes 
instructions for creating, initializing and manipulating object 
types. It also supports array manipulation and exception 
handling. The language has different mechanisms allowing 
to exploit all capabilities of the CLR layer. However, 
programs translated from a high-level source language (e.g. 
C#) use only a subset of these mechanisms [36]. CIL is a 
stack-based language. All arguments are taken from a stack 

and return values are put on it. An instruction consists of one 
or two bytes operation code (opcode) and an optional 
parameter. 

B. Mutation Operators 

A mutation operator defined for a given programming 
language is a transformation of language instructions. It 
substitutes given language structures with a defined set of 
others. The source and target code should be syntactically 
correct. For the traditional mutation operators the substituted 
sets are reduced to a single instruction or even a single 
logical or arithmetical operators and are not disseminated in 
a program. Object-oriented or other advanced operators in a 
high-level language can refer to complex structures that are 
not only locally interpreted but are distributed over a whole 
program, e.g. class hierarchy. However, the most of changes 
are bounded to a single instruction at this language level. 

While reflecting an object oriented mutation operator on 
the intermediate language level, we have to identify 
appropriate language structures and introduce changes into 
several instructions of this lower level. Below, exemplary 
object oriented mutation operators of C# and their 
corresponding operators in the Intermediate Language are 
discussed. We also define correctness conditions that should 
be met in order to create valid mutants.  

Operator PNC (new method call with child class type) 
swaps a calling of operator new of a non-parametric 
constructor of a given class, with a constructor of an 
inherited class. A given class can be used as a base class in 
different assemblies distributed on different physical places. 
Hence, inherited classes are searched only in the assembly in 
which a given base class is defined. The PNC operator 
applied in the C# and CIL code is illustrated by an example 
(Fig. 1).  

After identification of a constructor calling in the CIL 
code, the appropriate conditions are checked. The assembly 
defines a type that inherits for the given type, as classB 
inherits from classA in the example. The considered type 
should have the definition of a non-parametric constructor. A 
type name can be substituted in the appropriate constructor 
call. In this case the change in the intermediate language is 
also made only in one instruction, as at the C# level.  

Operator OMR (overloading method contents change) 
substitutes a body of an overloaded method having some 
parameters (let call it method A) with a calling of an 
overloaded method with a less number of parameters 
(method B). The necessary condition of the substitution is 
existence of at least one variation of method A parameters 
that corresponds to parameters of calling method B. To avoid 
a recursive calling of methods, there should be no calling of 
method A in the body of method B. An example of the 
operator is shown in Fig. 2. 

If all correctness conditions of the operator are satisfied, 
calling of method B is inserted into the body of A before its 
first instruction. On the intermediate level it consists of 
several instructions, namely an instruction putting 
parameters into a stack, an instruction for calling a method 
will less number of parameters, and a return instruction. The 
rest  of   instructions   of   method   A   will  be  deleted.  The 



 

 

Before mutation       After mutation 
----------------------------------------------------------------------------------------------------------------------------------------------- 
//C#        
public class ClassA                    public class ClassA 

{     void count(int a)                       {      void count(int a) 
            {          }                                             {         } 
       void count(int a, int b)             void count(int a, int b) 
            {          }                                          {    count (a);     } 
}                                            } 

 
//CIL     
.method private hidebysig instance       .method private hidebysig instance     
void  count(int32 a, int32 b) cil managed   void  count(int32 a, int32 b) cil managed 
{       { 
// Code size 2 (0x2)       // Code size  10 (0xa) 

    .maxstack  8          .maxstack  8 
    IL_0000: nop            IL_0000: nop 
    IL_0001: ret                 IL_0001: ldarg.0 

}//end of method ClassA::count }           IL_0002: ldarg.1 
           IL_0003: call instance void   

    Operators.ClassA::count(int32) 
    IL_0008: nop 
    IL_0009:  ret 
 } //end of method ClassA::count 
 

Figure 2. OMR example - C# and its corresponding intermediate code. 

Before mutation      After mutation 
--------------------------------------------------------------------------------------------------------------------------------------------- 
//C#        
public class ClassA                  public class ClassA 

    {          }           {         } 
public class ClassB:ClassA      public class ClassB:ClassA 

    {          }                                 {         } 
public void initiate()                 public void initiate()  

    {             { 
ClassA a;                           ClassA a; 

         a = new ClassA();                           a = new ClassB(); 
    }                                          } 

 
//CIL     
 .method public hidebysig instance     .method public hidebysig instance   
void  initiate() cil managed     void  initiate() cil managed 
{         { 
 // Code size 8 (0x8)         // Code size 8 (0x8)  

 .maxstack  1          .maxstack  1   
 .locals init ([0] class Operators.ClassA a)     .locals init ([0] class Operators.ClassA a)   
 IL_0000: nop          IL_0000: nop   
 IL_0001: newobj instance void        IL_0001: newobj instance void 
 Operators.ClassA::.ctor()       Operators.ClassB::.ctor()  
 IL_0006: stloc.0         IL_0006: stloc.0  
 IL_0007: ret          IL_0007: ret  

} // end of method          } // end of method   
 //Program::initiate           //Program::initiate    
 

Figure 1. PNC example - C# and its corresponding intermediate code. 



 

sequence of inserted instructions can be seen on the CIL 
level from Il\_0000 to Il\_0003.  

Each constructor of a class is transformed to a special 
.ctor() method on the intermediate level. The method 
consists of three sections. In the first section initial values are 
assigned to all fields that were initialized in the class 
definition. In the second section an appropriate constructor 
of the base class or another constructor of the same class is 
called. Instructions realizing operations defined directly in 
the constructor in the C# code are placed in the third section. 
This constructor structure was used in mutation operators 
dealing with constructors, such as JDC and JID. 

Operator JDC (C#-supported default constructor create) 
deletes a definition of a non-parametric constructor. 
Therefore the C# compiler creates a default constructor. This 
operator is used when this non-parametric constructor is the 
only one constructor of the class. On the intermediate 
language level it is also checked if exactly one constructor 
exists. In case of a unique constructor, all instructions of its 
third section are deleted. It simulates deletion of instructions 
defined in a constructor body in the C# language. The 
constructor remains with its two initial sections and is the 
same as if it were created by the compiler. 

Operator JID (member variable initialization deletion) 
deletes a member variable initialization that was placed in 
the variable definition. The operator will be applied only for 
primitive types because deletion of an initialization of a field 
of a reference type could usually cause an erroneous call to a 
non-initialized field. In the intermediate language this 
initialization is deleted from all constructors available in this 
class. The initialization is placed in the first section of any 
constructor and consists of few instructions. If the 
initialization refers to a static field, it should be deleted from 
the static constructor of the class.  

For example, to substitute a variable initialization 
“private int x = 5;” with “ private int x;” in a C# code, the 
following instructions will be deleted in each constructor: 

 
      IL_0000:  ldarg.0  
      IL_0001:  ldc.i4.5   
      IL_0002:  stfld int32 Operators.ClassA::x 
 
In C# all non-static instance constructors call another 

instance constructor. As a result the following three 
possibilities can be distinguished:  
1. A class inherits from its base class and a constructor of the 

base class is called using :base(args) expression. The 
constructor with the given list of parameters has to be 
declared in the base class. 

2. Another constructor of the same class is called using 
:this(args). In this case, the appropriate constructor with 
given parameters is declared in the same class. 

3. Non of the above structures is used while calling a 
constructor. It is assumed that a non-parametric 
constructor of the base class is called. It is equivalent to 
the usage of :base() phrase. 
Operator IPC (explicit call of a parent's constructor 

deletion) deletes calling of a parametric constructor of the 
base class used in an inheriting class. In C#, this constructor 

call is substituted by a default calling of a non-parametric 
constructor of the base class. The operator is applied only if 
the base class has its non-parametric constructor. This 
deleting of the constructor can be realized in the intermediate 
language as modification of the appropriate constructor call. 
For example, in the second section of a constructor the 
following instructions: 

 
IL_0000:  ldarg.0 
IL_0001:  ldarg.1 
IL_0002: call instance void    
Operators.Class.A::.ctor(int32) 
 
will be substituted by the sequence: 
 
IL_0000:  ldarg.0 
IL_0001:  call instance void Operators.Class.A::.ctor()  
 
Operator EOC (reference comparison and content 

comparison replacement) swaps occurrences of method 
Equals used for variable comparison with usage of operator 
"==", and vice versa. In C#, for EOC operator we only 
consider comparison on arguments of reference type. Value 
types are omitted, because their Equals methods are 
implemented as usage of operator "==" and there is no 
difference in the .NET platform. We also omit System.String 
type as both cases refer to the same static private method for 
comparing strings.  

While introducing EOC in the intermediate language, we 
have to differentiate two cases. In the first case, operator 
"==" is overloaded neither in a considered class nor in any of 
its base classes. Appropriate Equals instruction available in 
the intermediate level will be substituted with ceq (compare 
equal) instruction. A reverse transformation is done in the 
similar way, but an occurrence of ceq instruction and its 
context defined by current parameters on the stack should be 
carefully examined.  

In the second case, operator "==" is overloaded in the 
considered class or any of its base classes. Instead of 
instruction ceq an appropriate version of the overloaded 
method op_Equality is considered. The overloaded operator 
is searched in the class hierarchy according to the principles 
given in the C# language specification [37]. 

IV.  ILM UTOTOR SYSTEM 

The ILMutator (Intermediate Language Mutator) system 
was designed to support mutation of programs in .NET 
environment. Its first version [14] introduced object-oriented 
mutations in the intermediate code derived from compiled 
C# programs. 

ILMutator reads a correct assembly compiled from a C# 
program and prepared for running in Common Language 
Runtime. The mutation operators are selected and optionally 
a maximal number of generated mutants can be set. The 
assembly is searched for a location were a mutation can be 
introduced. The assembly is modified and the mutant is 
stored in a disc. A separate assembly is created for each 
location where an operator is introduced (i.e. it is not a meta-
mutant approach [13]). On demand, a user can view the 



 

original intermediate code and the mutated code observing 
highlighted differences.  

The tool supports execution of tests on the original and 
mutated assemblies. A mutant is counted as killed if its test 
result is different than the result of the original program.  

The ILMutator system consists of the following 
components: 

•  functional modules (assembly management, 
mutation operators processing, test management),  

•  visualization modules (viewing assembly 
intermediate code, presenting test results), 

•  helpers modules (DiffEngine - to compare original 
and mutated code, PEVerify, NUnit, Mono.Cecil). 

Portability of .NET applications in different operating 
systems is supported by the Mono project. One component 
of the project – the Mono.Cecil library [15] is used for 
creation and exploitation a code written in the intermediate 
language consistent with the format ECMA CIL [35]. It 
supports reading and modifying metadata and an 
intermediate code stored in a managed portable, executable 
file. A roundtrip operation on an assembly can be performed. 
Capabilities of the library assists ILMutator during the 
intermediate code analysis for identification of mutation 
operator's areas, its conditions, and changing of appropriate 
instructions. 

An application on the intermediate level does not have to 
be compiled, but its correctness can be verified. The 
PEVerify tool distributed within .NET Framework SDK can 
be used for verification an assembly consisting of managed 
modules. It validates metadata (MDValidator) and 
intermediate managed code (ILVerifier). The tool is used in 
ILMutator to verify an intermediate code after a mutation 
was introduced.  

In the prototype tool [14] six object-oriented mutation 
operators (EOC, IPC, JDC, JID, OMR and PNC) were 
implemented. Its next release was extended with some 
traditional operators, as well as operators dealing with 
exceptions and delegtes: 

• EHR (Exception handler removal),  
• EHC (Exception handling change), 
• DMC (Delegated method change), 
• DMO (Delegated method order change). 

V. EVALUATION  

Assemblies from the Castle project [38] and the NUnit 
library [32] were analyzed using the ILMutator tool. The 
assemblies are public distributed with their unit tests. The 
basic complexity measures, such as program size, number of 
code lines, classes and unit tests associated with the 
assembly are given in Tab. 1.  

A. Experimental results 

In experiments six object-oriented mutation operators 
were applied. The number of mutants depends on a 
programming style and a program domain influencing the 
number of different structures used in a program (Tab. 2). A 
column of PNC operator is omitted as no mutant was created 
for any program.  In these programs  no local  variable  was 

TABLE I.  MUTATED ASSEMBLIES 

Program Size 
[kB] 

LOC Classes Unit 
tests 

1 Castle.Dynamic 
Proxy 

76 5036 71 82 

2 Castle.Core 60 6119 50 171 
3 Castle.Micro 

Kernel 
112 11007 86 88 

4 Castle.Wiondsor 64 4240 34 92 
5 Nunit.framework 40 4415 37 397 
6 NUnit.mock 20 579 6 42 
7 NUnit.util 88 6405 34 211 
8 NUnit.uikit 352 7556 30 32 

 

TABLE II.  NUMBER OF MUTANTS IN PROGRAMS PER OPERATORS 

No EOC IPC JDC JID OMR Σ 
1 20 4 2 1 6 33 
2 37 13 2 4 29 85 
3 76 27 5 3 28 139 
4 15 16 2 3 12 48 
5 4 7 0 3 231 245 
6 17 2 0 0 1 20 
7 12 3 1 13 23 52 
8 10 3 5 46 20 84 
Σ 191 75 17 73 350 706 

 
initialized with a non-parametric constructor of a type to 
which its base constructor could be applied. In all programs 
some comparisons were performed and EOC operator 
generated nonempty sets of mutants. Operator IPC generated 
more mutants for assemblies from the Castle Project, as there 
were more types defined and the inheritance mechanisms 
were more frequently used than in the NUnit assemblies. 
Operator JDC was rarely used because the most of types 
have more than one constructor. Operator JID was applied 
especially often in the NUnit.uikit assembly. In NUnit many 
graphical components with default values of their properties 
are defined. OMR operator created mutants for all 
assemblies, but particularly many for the framework of 
NUnit. In this program many assertions are defined and used 
for comparison of expected and actual results of unit tests. 
Therefore many overloaded methods can be mutated with 
OMR. We can observe that using different operators the 
investigation of a test suite is adjusted to the object-oriented 
mechanisms really used in the program under test. 

The original program and all created mutants were run 
with the unit tests associated with the considered programs. 
Mutants were killed when their test results differed from the 
test results of the original program (i.e. a testing assertion 
passed in the original program and failed in a mutant or vice 
versa) or when an exception was detected. The last case 
encountered in two assemblies where mutants of OMR 
operator caused StackOverflowException due to a recursive 
method call.  

The numbers of killed mutants per each operator are 
given in Tab. 3. The last column shows a mutation score 
indicator calculated for a program and a given test suite. The  



 

TABLE III.  KILLED MUTANTS 

 EOC IPC JDC JID OMR Σ [%] 
1 6 1 1 0 5 13 41 
2 7 3 0 0 10 20 40 
3 20 3 4 0 17 44 47 
4 15 2 2 0 1 20 34 
5 4 3 0 2 68 77 46 
6 2 2 0 0 1 5 35 
7 3 0 0 1 22 26 45 
8 5 2 1 1 0 9 38 

Σ 62 16 8 4 124 214  
[%] 32.5 21.3 47.1 5.5 35.4 30.3  

 
summarized mutation results are not very high. It confirms, 
similarly as during previous experiments using the CREAM 
tool, that tests aimed at checking basic program functionality 
do not detect all object-oriented flaws.  
Mutants generated with ILMutator were compared with 
results of the CREAM tool - a parser-based mutation 
environment of C# programs [9]. The comparison referred to 
only three object-oriented operators EOC, IPC and JID that 
were common for both tools. Numbers of generated and , 
killed mutants are given in Tab. 4. It was checked that, as 
presumed, sets of mutants created by ILMutator were proper 
subsets of mutants generated by CREAM v2.  

IPC operator had the same interpretation in both tools 
and generated the same mutants. Therefore also the number 
of killed mutants were the same, and calculated mutation 
scores would be identical. 

For operators EOC and JID less mutants were generated 
by ILMutator. This follows directly for the more restrictive 
assumptions about operators. The EOC operator was applied 
only for reference types. Mutation comparison of primitive 
types, as well as types System.String and System.Object were 
omitted. In the case of JID operator initialization of primitive 
types were mutated, whereas initialization of referenced 
types remained unchanged. These conditions prevented 

creation of an invalid code and possibly many equivalent 
mutants. Although some valid mutants were also not 
generated. It should be noted that identification of a mutated 
location is more difficult on the intermediate level and we 
would like to generate less mutants corresponding to a 
desired high-level structure but for sure valid and possibly 
not equivalent.  

In case of operators EOC and JID, the number of 
generated mutants and the number of killed mutants differ; 
the mutation scores are lower for CREAM. However, 
especially for EOC operator, a part of mutants that were 
generated by CREAM and not killed but not generated by 
ILMutator were equivalent. After omitting these equivalent 
mutants, the mutation scores were similar (difference was no 
bigger than 3%).  

In two last columns of Tab. 4. times of introduction of all 
mutations are shown. In case of the CREAM tool, it includes 
parsing of the code, its analysis and storing a modified 
program, but also compilation time of a generated mutant 
with the external compiler. Based on given data we can 
calculate that generation time for a single mutant was on 
average about 13 second, in detail for operator EOC 13 s, 
IPC 13.45 s and JID 12.68 s accordingly. A time delay 
measured for ILMutator consists of the assembly analysis, 
changing the intermediate code and storing it to a disc. The 
averaged time per one mutant was about 0.25 second (EOC 
0.27, IPC 0.3, JID 0.22). It showed, that for examined 
assemblies and given operators the time performance was 
about 50 times better. For other programs and operators the 
results can be different, but as expected, the time 
improvement was very significant. 

However, the overall time of mutation testing is 
influenced not only by a mutant generation time but also by 
many factors, such as a time of a test execution depending on 
a program complexity, a sequential or distributed execution 
of many mutants, a usage of repository for storing mutants 

TABLE IV. COMPARISON OF MUTANTS' NUMBER AND MUTANT GENERATION TIME FOR COMMON OBJECT ORIENTED OPERATORS 

Program Operator 
Mutants generated  |  killed  |  killed/generated[%] Mutation time [s] 

CREAM ILMutator CREAM ILMutator 

1 
Castle.Dynamic 

Proxy 

EOC 42 9 21 20 6 30 568 6.5 

IPC 4 1 25 4 1 25 66 2.0 

JID 39 33 84 1 1 100 543 0.4 

2 Castle.Core 

EOC 74 9 12 37 7 19 917 7.5 

IPC 13 3 23 13 3 23 131 3.0 

JID 22 7 32 4 4 100 294 0.6 

7 NUnit.util 

EOC 107 15 14 12 3 25 1416 4.7 

IPC 3 0 0 3 0 0 72 1.0 

JID 34 28 82 13 13 100 368 3.0 

 



 

(local or remote, storing as a whole or in an incremental 
repository) [9], automation of the whole testing process 
management. As an example, average testing time for a 
mutant (including test evaluation by a NUnit compatible 
tool) was about 0.5 s for Castle.DynamicProxy and about 
0.24 s for Castle.Core [39]. It shows, that a mutant 
generation time for this sort of programs was significant 
longer than a test execution time in case of the parser-based 
CREAM, and the times were of the same magnitude in case 
of ILMutator. 

In this paper we deal with the object-oriented operators, 
as realization of traditional operators in CIL code is not such 
a difficult task. Other tools dealing with operators for C#, 
like Nester [22] and Pexmutator [23], do not consider any 
object-oriented operators. Therefore the evaluation results 
are not comparable.  

There are tools that support object-oriented operators for 
Java language, like [13,28]. The exemplary OBJECT 
ORIENTED operators, for which CIL implementation was 
presented, have their corresponding operators in MuJava. 
However, they use different source and target languages. 
Thus, the problems of mapping programming structures in 
.NET environment discussed here are irrelevant.  

B. Threads to Validity 

While interpreting experiment results several threats to 
validity should be taken into account.  

Threats to external validity are conditions that limit the 
ability to generalize the results of experiments. The subjects 
chosen for the analysis were "real", practically used 
programs. Also the examined test suites were developed in 
advance independently of the concerned mutation process. 
On the other hand, the limited number of mutation operators 
was used in experiments. A threat to the mono-operational 
bias was lowered by conducting experiments not only on 
one, but on several, different programs. 

The basic limitation of the approach is the ability to 
imitate a complex fault from the high programming level at 
the lower level. As we have shown it is possible for selected 
advanced operators. The number of generated mutants was 
limited in comparison to parser-based mutation in order to 
avoid possibility of creation of equivalent mutants.  

However, we cannot guarantee that this approach can be 
applied for any kind of object-oriented or other specialized 
operators. Each operator have to be carefully examined 
analyzing all possible situations in the corresponding 
intermediate code. It is also sensitive to the current version 
of the compiler that translates  C# code to its intermediate 
form. Apart from discussed six operators also other can be 
implemented in this way (it is made for few in the next tool 
release). In general, even complex object oriented operators 
of C# can be implemented in CIL, but some operators will 
not cover all possible situations and generate less mutants. 
An open question is how this will influence mutation score 
for some operators. 

Another fact is that it is not worthwhile to use all 
operators due to their tendency to create equivalent mutants. 
On the other hand, many new structures introduced in C# 2.0 
and 3.0 language versions are not distinguishable on the 

intermediate level and their faults are inappropriate to create 
mutation operators like that. This problem was discussed in 
[40]. 

In order to cope with threats to the statistical conclusion 
validity the selected programs were not very small. 
However, due to a rare usage of some programming 
structures, a limited number of mutants was created during 
experiments. The calculated mutation scores can be treated 
approximately. Therefore the comparison of mutation scores 
obtained by both tools can be generalized only to some 
extend. The presented evaluation results illustrate realization 
possibilities of the approach and performance improvements. 
We do not focus here on statistical evaluation of the object-
orented operators, hence we do not related the statistics to 
more complete experiments of C# [41] or Java [19].  

VI.  CONCLUSIONS 

Introducing mutations on the intermediate language level 
turned out, according to expectations, more efficient than to 
the high-level source program. Possibility of defining object-
oriented operators for several faults reflecting the object-
oriented faults at C# level was presented. A mutated program 
does not have to be recompiled and thanks to direct 
manipulation on the intermediate code via the Mono.Cecil 
library no disassembly or assembly was necessary. In the 
comparison to a parser-based mutation it has more 
limitations concerning identification of mutation locations 
and correctness conditions.  

The improved version of ILMutator is enhanced with 
greater number of mutation operators, other ways of 
generating and storing mutants, and diverse methods of 
testing, e.g. cooperation not only with NUnit. It supports 
visualization of mutation changes not only on the 
intermediate but also the C# code level. It could improve 
identification of equivalent mutants, if necessary. Further 
investigation of object-oriented operators using both C# 
related tools considers analysis of dependencies between 
operators, reduction of mutants number via selection of 
mutants subsets for a given operator etc.  
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