
A.Derezińska, K. Kowalski, Object-Oriented Mutation Applied in Common Intermediate Language Programs Originated from C#, Proc. of IEEE 4th Inter.
Conf. Software Testing Verification and Validation Workshops (ICSTW), IEEE Comp. Soc., 2011, pp. 342 - 350
The original publication is available at http://ieeexplore.ieee.org, DOI 10.1109/ICSTW.2011.54

Object-oriented Mutation Applied in Common Intermediate Language Programs
Originated from C#

Anna Derezińska, Karol Kowalski
Institute of Computer Science, Warsaw University of Technology

Warsaw, Poland
e-mail: A.Derezinska@ii.pw.edu.pl

Abstract—Application of object-oriented mutation operators in
C# programs using a parser-based tool can be precise but
requires compilation of mutants. Mutations can be introduced
faster directly to the Common Intermediate Language of .NET.
It can be simple for traditional mutation operators but more
complicated for the object-oriented ones. We propose the
reconstruction of complex object-oriented faults on the
intermediate language level. The approach was tested in the
ILMutator tool implementing few object-oriented mutation
operators in the intermediate code derived from compiled C#
programs. Exemplary mutation and performance results are
given and compared to results of the parser-based mutation
tool CREAM.

Keywords-mutation testing of C#, object oriented mutation
operators, Common Intermediate Language of .NET

I. INTRODUCTION

Mutation testing inserts faults in a program under test in
order to assess or generate test cases, or evaluate the
reliability of the program. When the testing of programs
written in an object-oriented language is considered, we
cannot ignore faults related to object-oriented programming
constructs.

A transformation rule that generates a mutant from the
original program is called a mutation operator. So-called
standard (or traditional) mutation operators introduce small,
basic changes that are possible in typical expressions or
assignment statements of any general purpose language [1].
Mutation operators dealing with specific programming
features, including object-oriented ones, were also developed
[3-8].

Traditional mutation operators are not sufficient for
verification of tests to reveal object-oriented flaws.
Experiments performed with unit tests distributed with
various open source programs indicated at the insufficient
ability of these tests to detect faults of object-oriented origin
in C# programs [9].

Mutation testing should contribute to improving a test
suite. A mutant is said to be killed if the result of running the
original program is different from the mutants’ result for at
least one test case of the test suite T. A mutant that cannot be
killed by any test suite is counted as an equivalent one. The
adequacy level of the test suite T, so-called mutation score,
is calculated as a ratio of the number of mutants killed over
the total number of non-equivalent mutants.

Mutation testing is known to be very laborious and has
high demands on computing resources. Object-oriented
mutation can be successfully introduced into a source code
of a high-level language, like on C# in the CREAM system
[10]. In its next version some improvements in the
performance were achieved [9], but a parser-based approach
requires mutant recompilation or code interpretation [11].

This paper presents development of object oriented
mutations on the intermediate code derived from compiled
C# programs. This approach can be considered as an
execution cost reduction technique [12], similar to Java
Bytecode manipulation [13]. An efficient tool introducing
this kind of mutations should make program changes
possibly omitting the steps of code compilation or its
disassembly/assembly. Introduced changes should not
damage a correctly compiled code.

An open question is how the idea can be realized in the
.NET environment. Introduction of traditional mutation
operators on the intermediate language level is
straightforward, as it is similar to the mutation on the high
language level. However, the problem addressed in this
paper refers to object oriented operators, which are
substantially more complex and in general might not be
directly reflected on the intermediate level. We have shown
how the changes that correspond to selected object oriented
mutation operators specified on the high-language (C#) are
made in the Common Intermediate Language (CLI) of .NET.

The approach was used in the ILMutator (Intermediate
Language Mutator) tool [14] Its first version supported six
selected types of object oriented program changes.
Modification of a program is performed through
manipulation in its metadata and intermediate code, what
enables omitting recompilation. The Mono.Cecil library [15]
was used for browsing and altering metadata and an
intermediate code.

The tool was used to perform mutation and testing of
several widely used open source libraries and their unit test
suites. It allowed to determine the quality of the tests, which
were supplied with these tested programs, the usefulness of
the implemented mutation operators and the tool
performance.

The paper is organized as follows. In the next section we
discuss briefly the background of object-oriented mutation
testing. In Sec. 3 we present object oriented mutations at CIL
of .NET. Mapping of several mutation operators representing
object oriented faults of the C# language to intermediate

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357556058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

language was proposed. Basic information about the tool
implementing the approach and experimental results is given
in Sec. 4 and Sec. 5, respectively. Finally, Sec. 6 concludes
the paper.

II. RELATED WORK

The mutation testing approach was developed primarily
for structural languages, like Fortran, Ada, C, developing
standard mutation operators that can be adopted for any
general purpose language [1]. Further, similar standard
mutation operators were also applied for object-oriented
languages, like Java, C++, C#.

In object-oriented programs standard mutation was used
for intra-method level testing. Object oriented languages also
provide new structures, like class declarations and
references, information hiding, inheritance, polymorphism,
method over-loading. They are not considered directly by
standard mutation operators, therefore the object-oriented
mutation operators were defined.

The research on the object-oriented mutation was done
mostly on Java programs [2-5, 13, 16, 17].

Kim et al. [4] proposed 15 mutation operators for Java
programs regarding object-oriented concepts and other
programming mechanisms (e.g. exception handling). It was
extended by Chevalley [2]. Ma et al. proposed the most
comprehensive set of 24 class mutation operators for Java
described in [5]. These operators were implemented in the
tools supporting mutation of Java programs MuJava [13].
Usefulness of the object oriented operators and their
orthogonality were studied in experiments [16 - 19].

Mutation of object-oriented features of C++ code and a
UML class specification was studied in [6]. Five groups of
object oriented operators were proposed and evaluated in
experiments. The operators were introduced to programs on
the source code level.

Object oriented operators of Java and C++ were
examined according to their applicability to the C# language.
The set of adapted object oriented operators was extended
with other operators dealing with object oriented features
(e.g. handling of exceptions) or specific for C# language
(e.g. delegates, properties). In result, the set of about 40
advanced (not traditional) mutation operators of C# was
proposed and partially evaluated in some experiments [8,
20].

Mutation operators are usually defined informally and
illustrated by code examples. To make a definition concise
and unambiguous the operators were specified as a
transformation with pre- and post-conditions [7, 8]. It is
important especially for complex object oriented operators
dealing with the structural features of a program.

A comprehensive overview of mutation testing applied to
different programming and specification languages can be
found in the survey of the development of mutation testing
[12].

Simple changes to Java source code, without parser
involvement, were implemented in Jester environment [21].
The ideas of Jester system were transformed to Python and
C# languages. The Nester tool [22] supports the standard
mutations of C# language. The improved version of Nester

makes only one compilation run for all mutants. Afterwards,
it is decided during test execution which mutant should run.
Five traditional mutation operators (sufficient according to
Offutt) has been incorporated into PexMutator of C# code
applied also in CIL code [23].

Several testing systems for the C++ language use
standard mutation testing also in commercial products, as
Insure++ from Parasoft [24].

Standard mutations introduced into Java Byte Code are
supported in different tools, like Jumble [25], MuGamma
[26]. Selected traditional and some object oriented mutations
in Java were also implemented in MuJava [13], MuClipse
[17] - an Eclipse plug-in based on MuJava, Judy [27] and
Javalanche [28] tools. In MuJava, mutants are generated
either as a parameterized program (so-called meta-mutant)
that is further recompiled and executed as a mutant
according to a given parameter, or a mutation is introduced
directly in the Byte Code. Test cases considered for Java
programs were commonly unit tests suitable for JUnit
environment [21, 25, 27, 29], or similar but specialized like
in MuJava [13].

The Nmutator tool announced in 2002 was supposed to
introduce object oriented mutations into C# programs but it
was probably not completed. Research in [30] mentioned
object oriented features of C# but concentrated on algorithms
for optimization of test cases selection. They referred to
standard mutation operators (LOR, NOR, ROR),
perturbation on values of constant and variables, invocation
of an exception and two object oriented operators (MCR,
RFI). Operator MCR replaces a method call by another
method with the same signature. Operator RFI forces the
reference to an object to be stuck at null after its creation.
The object oriented operators were not studied in detail.

The first tool supporting selected object-oriented
mutations for C# was the CREAM system [10, 31]. It was a
parser-based mutation tool cooperating with the NUnit
environment [32]. Further development of the CREAM v2
system, including code parsing improvements, preventing
generation of invalid and partially of equivalent mutants,
cooperation with the distributed Tester environment and
reduction of disc space requirements by storing mutants
updates in a SVN repository, is presented in [9]. In
comparison to this approach reduction of time requirements
could be obtained by introducing mutation at the lower
program level, eliminating necessity of many mutant
compilations but also a time-consuming interpretation of a
high-level program.

In [33] examples of introducing simple mutations into
intermediate .NET code are discussed. The principles of a
mutation tool based on this approach can be summarized in
the following way:

• disassembly of an assembly file into a managed code
expressed in a textual format,

• searching for a mutation location according to
pattern matching,

• introduction of mutation into found locations,
• assembly of the text file with intermediate code

including a mutant.

The author persuades of an easy way of mutant
implementation, but the solution has two main limitations.
The disassembly and assembly steps require a time overhead
for each mutant (can be compared to the compilation of C#
code). Secondly, introduction of mutation via simple pattern
matching can be successful but only for a subset of simple
traditional mutation operators. Therefore we present idea of
introduction of selected object oriented mutations directly in
the intermediate code derived from compiled C# programs
and their implementation in the ILMutator prototype [14].
The idea is similar to the Bytecode translation of Java
programs realized for structural mutants in MuJava [13]. In
order to introduce advance mutation operators possible forms
of intermediate code generated by the compiler were
examined and all structures corresponding to primary C#
constructions distinguished. Introduction of this kind of
operators requires an intermediate code analysis, but it can
be automated for various operators, as discussed below.

III. OBJECT-ORIENTED MUTATION INJECTED ON

COMMON INTERMEDITE LANGUAGE LEVEL

In this section we present how object-oriented mutation
operators can be introduced directly into Common
Intermediate Language. Examples of several operators are
provided.

A. Common Intermediate Language

The C# language is one of the languages the applications
of which can be run on .NET Framework using a common
runtime environment [34]. The basic components of the
framework are Common Language Runtime (CLR) and
Framework Class Library (FCL). CLR is a runtime
environment that supports the object-oriented programming
paradigm, including concepts of types, objects and their
behavior. All .NET applications are run in CLR - an
intermediate layer between them and the operating system.
FCL includes library classes supporting standard
functionality for applications, e.g. GUI interfaces, web
facilities. Compilers of different programming languages,
like C++, C#, Visual Basic, J#, IL Assembler, can be used,
building a code aimed at the common runtime environment.
A so-called assembly is created, which is an intermediate
form of a .NET application that can be run in the CLR
environment. An assembly consists of managed modules that
include two parts: metadata and managed code. Metadata
describes a structure of the application, its elements and
relations. Managed code includes body of application
methods written in an intermediate form called Microsoft
Intermediate Language (MSIL) or Common Intermediate
Language (CIL) [35].

The intermediate language is a machine-level language.
In comparison to other low-level languages, it includes
instructions for creating, initializing and manipulating object
types. It also supports array manipulation and exception
handling. The language has different mechanisms allowing
to exploit all capabilities of the CLR layer. However,
programs translated from a high-level source language (e.g.
C#) use only a subset of these mechanisms [36]. CIL is a
stack-based language. All arguments are taken from a stack

and return values are put on it. An instruction consists of one
or two bytes operation code (opcode) and an optional
parameter.

B. Mutation Operators

A mutation operator defined for a given programming
language is a transformation of language instructions. It
substitutes given language structures with a defined set of
others. The source and target code should be syntactically
correct. For the traditional mutation operators the substituted
sets are reduced to a single instruction or even a single
logical or arithmetical operators and are not disseminated in
a program. Object-oriented or other advanced operators in a
high-level language can refer to complex structures that are
not only locally interpreted but are distributed over a whole
program, e.g. class hierarchy. However, the most of changes
are bounded to a single instruction at this language level.

While reflecting an object oriented mutation operator on
the intermediate language level, we have to identify
appropriate language structures and introduce changes into
several instructions of this lower level. Below, exemplary
object oriented mutation operators of C# and their
corresponding operators in the Intermediate Language are
discussed. We also define correctness conditions that should
be met in order to create valid mutants.

Operator PNC (new method call with child class type)
swaps a calling of operator new of a non-parametric
constructor of a given class, with a constructor of an
inherited class. A given class can be used as a base class in
different assemblies distributed on different physical places.
Hence, inherited classes are searched only in the assembly in
which a given base class is defined. The PNC operator
applied in the C# and CIL code is illustrated by an example
(Fig. 1).

After identification of a constructor calling in the CIL
code, the appropriate conditions are checked. The assembly
defines a type that inherits for the given type, as classB
inherits from classA in the example. The considered type
should have the definition of a non-parametric constructor. A
type name can be substituted in the appropriate constructor
call. In this case the change in the intermediate language is
also made only in one instruction, as at the C# level.

Operator OMR (overloading method contents change)
substitutes a body of an overloaded method having some
parameters (let call it method A) with a calling of an
overloaded method with a less number of parameters
(method B). The necessary condition of the substitution is
existence of at least one variation of method A parameters
that corresponds to parameters of calling method B. To avoid
a recursive calling of methods, there should be no calling of
method A in the body of method B. An example of the
operator is shown in Fig. 2.

If all correctness conditions of the operator are satisfied,
calling of method B is inserted into the body of A before its
first instruction. On the intermediate level it consists of
several instructions, namely an instruction putting
parameters into a stack, an instruction for calling a method
will less number of parameters, and a return instruction. The
rest of instructions of method A will be deleted. The

Before mutation After mutation

//C#
public class ClassA public class ClassA

{ void count(int a) { void count(int a)
 { } { }
 void count(int a, int b) void count(int a, int b)
 { } { count (a); }
} }

//CIL
.method private hidebysig instance .method private hidebysig instance
void count(int32 a, int32 b) cil managed void count(int32 a, int32 b) cil managed
{ {
// Code size 2 (0x2) // Code size 10 (0xa)

 .maxstack 8 .maxstack 8
 IL_0000: nop IL_0000: nop
 IL_0001: ret IL_0001: ldarg.0

}//end of method ClassA::count } IL_0002: ldarg.1
 IL_0003: call instance void

 Operators.ClassA::count(int32)
 IL_0008: nop
 IL_0009: ret
 } //end of method ClassA::count

Figure 2. OMR example - C# and its corresponding intermediate code.

Before mutation After mutation

//C#
public class ClassA public class ClassA

 { } { }
public class ClassB:ClassA public class ClassB:ClassA

 { } { }
public void initiate() public void initiate()

 { {
ClassA a; ClassA a;

 a = new ClassA(); a = new ClassB();
 } }

//CIL
 .method public hidebysig instance .method public hidebysig instance
void initiate() cil managed void initiate() cil managed
{ {
 // Code size 8 (0x8) // Code size 8 (0x8)

 .maxstack 1 .maxstack 1
 .locals init ([0] class Operators.ClassA a) .locals init ([0] class Operators.ClassA a)
 IL_0000: nop IL_0000: nop
 IL_0001: newobj instance void IL_0001: newobj instance void
 Operators.ClassA::.ctor() Operators.ClassB::.ctor()
 IL_0006: stloc.0 IL_0006: stloc.0
 IL_0007: ret IL_0007: ret

} // end of method } // end of method
 //Program::initiate //Program::initiate

Figure 1. PNC example - C# and its corresponding intermediate code.

sequence of inserted instructions can be seen on the CIL
level from Il_0000 to Il_0003.

Each constructor of a class is transformed to a special
.ctor() method on the intermediate level. The method
consists of three sections. In the first section initial values are
assigned to all fields that were initialized in the class
definition. In the second section an appropriate constructor
of the base class or another constructor of the same class is
called. Instructions realizing operations defined directly in
the constructor in the C# code are placed in the third section.
This constructor structure was used in mutation operators
dealing with constructors, such as JDC and JID.

Operator JDC (C#-supported default constructor create)
deletes a definition of a non-parametric constructor.
Therefore the C# compiler creates a default constructor. This
operator is used when this non-parametric constructor is the
only one constructor of the class. On the intermediate
language level it is also checked if exactly one constructor
exists. In case of a unique constructor, all instructions of its
third section are deleted. It simulates deletion of instructions
defined in a constructor body in the C# language. The
constructor remains with its two initial sections and is the
same as if it were created by the compiler.

Operator JID (member variable initialization deletion)
deletes a member variable initialization that was placed in
the variable definition. The operator will be applied only for
primitive types because deletion of an initialization of a field
of a reference type could usually cause an erroneous call to a
non-initialized field. In the intermediate language this
initialization is deleted from all constructors available in this
class. The initialization is placed in the first section of any
constructor and consists of few instructions. If the
initialization refers to a static field, it should be deleted from
the static constructor of the class.

For example, to substitute a variable initialization
“private int x = 5;” with “ private int x;” in a C# code, the
following instructions will be deleted in each constructor:

 IL_0000: ldarg.0
 IL_0001: ldc.i4.5
 IL_0002: stfld int32 Operators.ClassA::x

In C# all non-static instance constructors call another

instance constructor. As a result the following three
possibilities can be distinguished:
1. A class inherits from its base class and a constructor of the

base class is called using :base(args) expression. The
constructor with the given list of parameters has to be
declared in the base class.

2. Another constructor of the same class is called using
:this(args). In this case, the appropriate constructor with
given parameters is declared in the same class.

3. Non of the above structures is used while calling a
constructor. It is assumed that a non-parametric
constructor of the base class is called. It is equivalent to
the usage of :base() phrase.
Operator IPC (explicit call of a parent's constructor

deletion) deletes calling of a parametric constructor of the
base class used in an inheriting class. In C#, this constructor

call is substituted by a default calling of a non-parametric
constructor of the base class. The operator is applied only if
the base class has its non-parametric constructor. This
deleting of the constructor can be realized in the intermediate
language as modification of the appropriate constructor call.
For example, in the second section of a constructor the
following instructions:

IL_0000: ldarg.0
IL_0001: ldarg.1
IL_0002: call instance void
Operators.Class.A::.ctor(int32)

will be substituted by the sequence:

IL_0000: ldarg.0
IL_0001: call instance void Operators.Class.A::.ctor()

Operator EOC (reference comparison and content

comparison replacement) swaps occurrences of method
Equals used for variable comparison with usage of operator
"==", and vice versa. In C#, for EOC operator we only
consider comparison on arguments of reference type. Value
types are omitted, because their Equals methods are
implemented as usage of operator "==" and there is no
difference in the .NET platform. We also omit System.String
type as both cases refer to the same static private method for
comparing strings.

While introducing EOC in the intermediate language, we
have to differentiate two cases. In the first case, operator
"==" is overloaded neither in a considered class nor in any of
its base classes. Appropriate Equals instruction available in
the intermediate level will be substituted with ceq (compare
equal) instruction. A reverse transformation is done in the
similar way, but an occurrence of ceq instruction and its
context defined by current parameters on the stack should be
carefully examined.

In the second case, operator "==" is overloaded in the
considered class or any of its base classes. Instead of
instruction ceq an appropriate version of the overloaded
method op_Equality is considered. The overloaded operator
is searched in the class hierarchy according to the principles
given in the C# language specification [37].

IV. ILM UTOTOR SYSTEM

The ILMutator (Intermediate Language Mutator) system
was designed to support mutation of programs in .NET
environment. Its first version [14] introduced object-oriented
mutations in the intermediate code derived from compiled
C# programs.

ILMutator reads a correct assembly compiled from a C#
program and prepared for running in Common Language
Runtime. The mutation operators are selected and optionally
a maximal number of generated mutants can be set. The
assembly is searched for a location were a mutation can be
introduced. The assembly is modified and the mutant is
stored in a disc. A separate assembly is created for each
location where an operator is introduced (i.e. it is not a meta-
mutant approach [13]). On demand, a user can view the

original intermediate code and the mutated code observing
highlighted differences.

The tool supports execution of tests on the original and
mutated assemblies. A mutant is counted as killed if its test
result is different than the result of the original program.

The ILMutator system consists of the following
components:

• functional modules (assembly management,
mutation operators processing, test management),

• visualization modules (viewing assembly
intermediate code, presenting test results),

• helpers modules (DiffEngine - to compare original
and mutated code, PEVerify, NUnit, Mono.Cecil).

Portability of .NET applications in different operating
systems is supported by the Mono project. One component
of the project – the Mono.Cecil library [15] is used for
creation and exploitation a code written in the intermediate
language consistent with the format ECMA CIL [35]. It
supports reading and modifying metadata and an
intermediate code stored in a managed portable, executable
file. A roundtrip operation on an assembly can be performed.
Capabilities of the library assists ILMutator during the
intermediate code analysis for identification of mutation
operator's areas, its conditions, and changing of appropriate
instructions.

An application on the intermediate level does not have to
be compiled, but its correctness can be verified. The
PEVerify tool distributed within .NET Framework SDK can
be used for verification an assembly consisting of managed
modules. It validates metadata (MDValidator) and
intermediate managed code (ILVerifier). The tool is used in
ILMutator to verify an intermediate code after a mutation
was introduced.

In the prototype tool [14] six object-oriented mutation
operators (EOC, IPC, JDC, JID, OMR and PNC) were
implemented. Its next release was extended with some
traditional operators, as well as operators dealing with
exceptions and delegtes:

• EHR (Exception handler removal),
• EHC (Exception handling change),
• DMC (Delegated method change),
• DMO (Delegated method order change).

V. EVALUATION

Assemblies from the Castle project [38] and the NUnit
library [32] were analyzed using the ILMutator tool. The
assemblies are public distributed with their unit tests. The
basic complexity measures, such as program size, number of
code lines, classes and unit tests associated with the
assembly are given in Tab. 1.

A. Experimental results

In experiments six object-oriented mutation operators
were applied. The number of mutants depends on a
programming style and a program domain influencing the
number of different structures used in a program (Tab. 2). A
column of PNC operator is omitted as no mutant was created
for any program. In these programs no local variable was

TABLE I. MUTATED ASSEMBLIES

Program Size
[kB]

LOC Classes Unit
tests

1 Castle.Dynamic
Proxy

76 5036 71 82

2 Castle.Core 60 6119 50 171
3 Castle.Micro

Kernel
112 11007 86 88

4 Castle.Wiondsor 64 4240 34 92
5 Nunit.framework 40 4415 37 397
6 NUnit.mock 20 579 6 42
7 NUnit.util 88 6405 34 211
8 NUnit.uikit 352 7556 30 32

TABLE II. NUMBER OF MUTANTS IN PROGRAMS PER OPERATORS

No EOC IPC JDC JID OMR Σ
1 20 4 2 1 6 33
2 37 13 2 4 29 85
3 76 27 5 3 28 139
4 15 16 2 3 12 48
5 4 7 0 3 231 245
6 17 2 0 0 1 20
7 12 3 1 13 23 52
8 10 3 5 46 20 84
Σ 191 75 17 73 350 706

initialized with a non-parametric constructor of a type to
which its base constructor could be applied. In all programs
some comparisons were performed and EOC operator
generated nonempty sets of mutants. Operator IPC generated
more mutants for assemblies from the Castle Project, as there
were more types defined and the inheritance mechanisms
were more frequently used than in the NUnit assemblies.
Operator JDC was rarely used because the most of types
have more than one constructor. Operator JID was applied
especially often in the NUnit.uikit assembly. In NUnit many
graphical components with default values of their properties
are defined. OMR operator created mutants for all
assemblies, but particularly many for the framework of
NUnit. In this program many assertions are defined and used
for comparison of expected and actual results of unit tests.
Therefore many overloaded methods can be mutated with
OMR. We can observe that using different operators the
investigation of a test suite is adjusted to the object-oriented
mechanisms really used in the program under test.

The original program and all created mutants were run
with the unit tests associated with the considered programs.
Mutants were killed when their test results differed from the
test results of the original program (i.e. a testing assertion
passed in the original program and failed in a mutant or vice
versa) or when an exception was detected. The last case
encountered in two assemblies where mutants of OMR
operator caused StackOverflowException due to a recursive
method call.

The numbers of killed mutants per each operator are
given in Tab. 3. The last column shows a mutation score
indicator calculated for a program and a given test suite. The

TABLE III. KILLED MUTANTS

 EOC IPC JDC JID OMR Σ [%]
1 6 1 1 0 5 13 41
2 7 3 0 0 10 20 40
3 20 3 4 0 17 44 47
4 15 2 2 0 1 20 34
5 4 3 0 2 68 77 46
6 2 2 0 0 1 5 35
7 3 0 0 1 22 26 45
8 5 2 1 1 0 9 38

Σ 62 16 8 4 124 214
[%] 32.5 21.3 47.1 5.5 35.4 30.3

summarized mutation results are not very high. It confirms,
similarly as during previous experiments using the CREAM
tool, that tests aimed at checking basic program functionality
do not detect all object-oriented flaws.
Mutants generated with ILMutator were compared with
results of the CREAM tool - a parser-based mutation
environment of C# programs [9]. The comparison referred to
only three object-oriented operators EOC, IPC and JID that
were common for both tools. Numbers of generated and ,
killed mutants are given in Tab. 4. It was checked that, as
presumed, sets of mutants created by ILMutator were proper
subsets of mutants generated by CREAM v2.

IPC operator had the same interpretation in both tools
and generated the same mutants. Therefore also the number
of killed mutants were the same, and calculated mutation
scores would be identical.

For operators EOC and JID less mutants were generated
by ILMutator. This follows directly for the more restrictive
assumptions about operators. The EOC operator was applied
only for reference types. Mutation comparison of primitive
types, as well as types System.String and System.Object were
omitted. In the case of JID operator initialization of primitive
types were mutated, whereas initialization of referenced
types remained unchanged. These conditions prevented

creation of an invalid code and possibly many equivalent
mutants. Although some valid mutants were also not
generated. It should be noted that identification of a mutated
location is more difficult on the intermediate level and we
would like to generate less mutants corresponding to a
desired high-level structure but for sure valid and possibly
not equivalent.

In case of operators EOC and JID, the number of
generated mutants and the number of killed mutants differ;
the mutation scores are lower for CREAM. However,
especially for EOC operator, a part of mutants that were
generated by CREAM and not killed but not generated by
ILMutator were equivalent. After omitting these equivalent
mutants, the mutation scores were similar (difference was no
bigger than 3%).

In two last columns of Tab. 4. times of introduction of all
mutations are shown. In case of the CREAM tool, it includes
parsing of the code, its analysis and storing a modified
program, but also compilation time of a generated mutant
with the external compiler. Based on given data we can
calculate that generation time for a single mutant was on
average about 13 second, in detail for operator EOC 13 s,
IPC 13.45 s and JID 12.68 s accordingly. A time delay
measured for ILMutator consists of the assembly analysis,
changing the intermediate code and storing it to a disc. The
averaged time per one mutant was about 0.25 second (EOC
0.27, IPC 0.3, JID 0.22). It showed, that for examined
assemblies and given operators the time performance was
about 50 times better. For other programs and operators the
results can be different, but as expected, the time
improvement was very significant.

However, the overall time of mutation testing is
influenced not only by a mutant generation time but also by
many factors, such as a time of a test execution depending on
a program complexity, a sequential or distributed execution
of many mutants, a usage of repository for storing mutants

TABLE IV. COMPARISON OF MUTANTS' NUMBER AND MUTANT GENERATION TIME FOR COMMON OBJECT ORIENTED OPERATORS

Program Operator
Mutants generated | killed | killed/generated[%] Mutation time [s]

CREAM ILMutator CREAM ILMutator

1
Castle.Dynamic

Proxy

EOC 42 9 21 20 6 30 568 6.5

IPC 4 1 25 4 1 25 66 2.0

JID 39 33 84 1 1 100 543 0.4

2 Castle.Core

EOC 74 9 12 37 7 19 917 7.5

IPC 13 3 23 13 3 23 131 3.0

JID 22 7 32 4 4 100 294 0.6

7 NUnit.util

EOC 107 15 14 12 3 25 1416 4.7

IPC 3 0 0 3 0 0 72 1.0

JID 34 28 82 13 13 100 368 3.0

(local or remote, storing as a whole or in an incremental
repository) [9], automation of the whole testing process
management. As an example, average testing time for a
mutant (including test evaluation by a NUnit compatible
tool) was about 0.5 s for Castle.DynamicProxy and about
0.24 s for Castle.Core [39]. It shows, that a mutant
generation time for this sort of programs was significant
longer than a test execution time in case of the parser-based
CREAM, and the times were of the same magnitude in case
of ILMutator.

In this paper we deal with the object-oriented operators,
as realization of traditional operators in CIL code is not such
a difficult task. Other tools dealing with operators for C#,
like Nester [22] and Pexmutator [23], do not consider any
object-oriented operators. Therefore the evaluation results
are not comparable.

There are tools that support object-oriented operators for
Java language, like [13,28]. The exemplary OBJECT
ORIENTED operators, for which CIL implementation was
presented, have their corresponding operators in MuJava.
However, they use different source and target languages.
Thus, the problems of mapping programming structures in
.NET environment discussed here are irrelevant.

B. Threads to Validity

While interpreting experiment results several threats to
validity should be taken into account.

Threats to external validity are conditions that limit the
ability to generalize the results of experiments. The subjects
chosen for the analysis were "real", practically used
programs. Also the examined test suites were developed in
advance independently of the concerned mutation process.
On the other hand, the limited number of mutation operators
was used in experiments. A threat to the mono-operational
bias was lowered by conducting experiments not only on
one, but on several, different programs.

The basic limitation of the approach is the ability to
imitate a complex fault from the high programming level at
the lower level. As we have shown it is possible for selected
advanced operators. The number of generated mutants was
limited in comparison to parser-based mutation in order to
avoid possibility of creation of equivalent mutants.

However, we cannot guarantee that this approach can be
applied for any kind of object-oriented or other specialized
operators. Each operator have to be carefully examined
analyzing all possible situations in the corresponding
intermediate code. It is also sensitive to the current version
of the compiler that translates C# code to its intermediate
form. Apart from discussed six operators also other can be
implemented in this way (it is made for few in the next tool
release). In general, even complex object oriented operators
of C# can be implemented in CIL, but some operators will
not cover all possible situations and generate less mutants.
An open question is how this will influence mutation score
for some operators.

Another fact is that it is not worthwhile to use all
operators due to their tendency to create equivalent mutants.
On the other hand, many new structures introduced in C# 2.0
and 3.0 language versions are not distinguishable on the

intermediate level and their faults are inappropriate to create
mutation operators like that. This problem was discussed in
[40].

In order to cope with threats to the statistical conclusion
validity the selected programs were not very small.
However, due to a rare usage of some programming
structures, a limited number of mutants was created during
experiments. The calculated mutation scores can be treated
approximately. Therefore the comparison of mutation scores
obtained by both tools can be generalized only to some
extend. The presented evaluation results illustrate realization
possibilities of the approach and performance improvements.
We do not focus here on statistical evaluation of the object-
orented operators, hence we do not related the statistics to
more complete experiments of C# [41] or Java [19].

VI. CONCLUSIONS

Introducing mutations on the intermediate language level
turned out, according to expectations, more efficient than to
the high-level source program. Possibility of defining object-
oriented operators for several faults reflecting the object-
oriented faults at C# level was presented. A mutated program
does not have to be recompiled and thanks to direct
manipulation on the intermediate code via the Mono.Cecil
library no disassembly or assembly was necessary. In the
comparison to a parser-based mutation it has more
limitations concerning identification of mutation locations
and correctness conditions.

The improved version of ILMutator is enhanced with
greater number of mutation operators, other ways of
generating and storing mutants, and diverse methods of
testing, e.g. cooperation not only with NUnit. It supports
visualization of mutation changes not only on the
intermediate but also the C# code level. It could improve
identification of equivalent mutants, if necessary. Further
investigation of object-oriented operators using both C#
related tools considers analysis of dependencies between
operators, reduction of mutants number via selection of
mutants subsets for a given operator etc.

REFERENCES
[1] J.M. Voas, G. McGraw, Software Fault Injection, Inoculating

ProgramsAgainst Errors, John Wiley & Sons Inc., 1998.
[2] P. Chevalley, “Applying mutation analysis for object-oriented

programs using a reactive approach,” in Proc. of 8-th Asia-
Pacific Soft. Eng. Conf., ASPEC 2001, pp. 267-270.

[3] P. Chevalley, P. Themvenod-Fosse, “A mutation analysis tool
for Java programs,” J. on Software Tools for Technology
Transfer (STTT), Vol 5 Issue 1, Nov. 2003, pp. 90-103.

[4] S. Kim, J. Clark, J. A. McDermid, “Class Mutation: mutation
testing for object-oriented programs,” in Proc. of
Net.ObjectDays Conf. on Object-Oriented Software Systems,
Erfurt, Germany, Oct. 2000.

[5] Y-S. Ma, Y-R. Kwon, A.J. Offutt, “Inter-class mutation
operators for Java,” in Proc. of 13-th Inter. Symphosium on
Softwre Reliability Engineering, ISSRE'02, IEEE Computer
Soc. 2002.

[6] A. Derezińska, “Object-Oriented Mutation to Assess the
Quality of Tests,” in Proc. of the 29th Euromicro Conf., IEEE
Comp. Society, 2003, pp.417-420.

[7] A. Derezińska, Specification of mutation operators
specialized for C# code, Inst. of Computer Science Research
Raport 2/05, Warsaw University of Technology, 2005.

[8] A. Derezińska, “Advanced mutation operators applicable in
C# programs,” in K. Sacha (ed.) IFIP Vol. 227, Software
Engineering Techniques: Design for Quality, Springer,
Boston, 2006, pp. 283-288.

[9] A. Derezińska, A. Szustek, “Object-Oriented Testing
Capabilities and Performance Evaluation of the C# Mutation
System,” Pre. of Proc. 4th Central and Eastern Europen Conf.
on Softwre Engeenieering Technique, Krakow, Poland, 2009,
pp. 270-283.

[10] A. Derezińska, A. Szustek, “CREAM - a System for Object-
oriented Mutation of C# Programs,” in: S. Szczepański, M.
Kosowski, and Z. Felendzer (eds.) Annals Gdansk University
of Technology Faculty of ETI, no 5, Information Technology,
vol.13, Gdańsk, 2007, pp. 389-406.

[11] B. Choi, A. P. Mathur, “High-performance mutation testing,”
Journal of Systems and Software, vol. 20, no. 2, Feb. 1993,
pp.135-152.

[12] Y. Jia, M. Harman, “An analysis and survey of the
development of mutation testing,” Crest Centre, King's
College London, Technical Report TR-09-06, 2009,
http://www.dcs.kcl.ac.uk/pg/jiayue/repository/

[13] Y-S. Ma, A.J. Offutt, Y-R. Kwon, “MuJava: an automated
class mutation system,” Soft. Testing, Verification &
Reliability, vol 15, no 2, June 2005, pp.97-133.

[14] K. Kowalski, Implementing object mutations into
intermediate code for C# programs, Bach. Thesis, Inst. of
Comp. Science, Warsaw Univ. of Techno., 2008 (in polish).

[15] Mono.Cecil, http://www.mono-project.com/Cecil
[16] H-J. Lee, Y-S Ma, Y-R. Kwon, “Empirical evaluation of

orthogonality of class mutation operators”’ in 11th Asia-
Pacific Softwar. Engineering Conf., IEEE Comp. Soc. 2004.

[17] B. H. Smith, L. Williams, “An Empirical Evaluation of the
MuJava Mutation Operators,” Mutation'07 at TAIC.Part'07,
3th Inter. Workshop on Mutation Analysis, Cumberland
Lodge, Windsor UK, Sep. 2007, pp. 193-202.

[18] Y.-S. Ma, M. J. Harrold, Y.-R. Kwon, “Evaluation of
Mutation Testing for Object-Oriented Programs,” in Proc. of
the 28th Inter. Conf. on Software Engeeneering (ICSE 06),
Shanghai, China, 20-28 May, 2006, pp. 869-872.

[19] M.Y-S Ma, Y-R Kwon, S-W Kim, “Statistical Investigation
on Class Nutation Operators,” ETRI Journal, vol 31, No 2,
April 2009, pp. 140-150.

[20] A. Derezińska, “Quality Assessment of Mutation Operators
Dedicated for C# Programs,” in: 6th Inter. Conf. on Quality
Software, QSIC'06, Beijing, China, Oct. 2006, IEEE
Computer Soc. Press, California, 2006, pp. 227-234.

[21] I. Moore, Jester a JUnit Test Tester. eXtreme Programming
and Flexible Process in Software Engineering - XP2000,
2000.

[22] Nester, http://nester.sourceforge.net/
[23] Pexmutator, http://www.pexase.codeplex.com
[24] Parasoft Insure++, http://www.parasoft.com/jsp/

products/home.jsp?product=Insure

[25] Irvine, S. A., Pavlinic at. all, “Jumble Java Byte Code to
Measure the Effectiveness of Unit Tests,” Mutation'07 at
TAIC.Part'07, 3th Inter. Workshop on Mutation Analysis,
Cumberland Lodge, Windsor UK, Sep. 2007, pp. 169-175.

[26] S-W. Kim, M. J. Harrold, Y-R. Kwon, “MuGamma: Mutation
Analysis of Deployed Software to Increase Confidence and
Assist Evolution,” in 2nd Workshop on Mutation Analysis,
Mutation 2006, Releigh, North Carolina, Nov. 2006.

[27] L. Madeyski, “On the effects of pair programming on
thoroughness and fault-finding effectiveness of unit tests,” in:
J. Munch, P. J. Abrahamsson (eds.) Profes 2007. LNCS, vol.
4589, Springer, Heidelberg, 2007, pp. 207-221.

[28] B.J.M. Grun, D. Schuler, A. Zeller, The Impact of Equivalent
Mutants. 4th Inter. Workshop on Mutation Analysis,
Mutation'09, Denver, Colorado, 1-4 Apr. 2009, pp. 192-199.

[29] H. Do, G. Rothermel, A Controlled Experiment Assessing
Test Case Prioritization Techniques via Mutation Faults. in
Proc. of the 21st IEEE Int. Conf. on Software Maintanance,
IEEE Comp. Soc., 2005, pp. 411-420.

[30] B. Baudry, F. Fleurey, J-M. Jezequel, Y. Le Traon, “From
genetic to bacteriological algorithms for mutation-based
testing,” Software Testing Verification. and Reliability, vol
15, no 2, June, 2005, pp.73-96.

[31] A. Derezińska, A. Szustek, “Tool-supported mutation
approach for verification of C# programs,” in W. Zamojski, et
al. (eds.) Inter. Conf. on Dependability of Computer System,
DepCos, IEEE Comp. Soc., 2008, pp. 261-268.

[32] NUnit, http//www.nunit.org
[33] J. McCaffrey, “Create a Simple Mutation Testing System with

the .NET Framework,” MSDN Magazine, The Microsoft
Journal for Developers, vol. 21, no 5, Apr. 2006.

[34] D. Chappell, Understanding .NET, Second Edition, Addison
Wesley Professional, 2006.

[35] Standard ECMA-335, Common Language Infrastruc-ture
(CLI), 4th edition (June 2006), http://www.ecma-
international.org/publications/standards/Ecma-335.htm

[36] J. Richter, CLR via C#, 2nd Ed., Microsoft Press 2006.
[37] Standard ECMA-334, C# Language Specification, 4th edition,

June 2006, http://www.ecma-international.org/
publications/standards/Ecma-334.htm

[38] Castle Project, http://www.castleproject.org
[39] A. Derezińska, K. Sarba, “Distributed environment

integrating tools for software testing,” in: K. Elleithy (Ed.)
Advanced Techniques in Computing Sciences and Software
Eng., Springer Dordrecht, Netherlands, 2010, pp.545-550.

[40] A. Derezińska, “Analysis of Emerging Features of C#
Language Towards Mutation Testing,” in J. Mazurkiewicz, et
al. (eds.), Models and methodology of system dependability,
Monographs of system dependability, vol. 1, Publish.
Wrocław University of Technology, 2010, pp. 47-59.

[41] A. Derezińska, “Classification of Operators of C# Language,”
in L. Borzemski et al. (Eds.) Information Systems
Architecture and Technology, New Developments in Web-
Age Information Systems, Publish. Wrocław Univ. of
Technology 2010, pp.261-271.

