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Abstract—Application of object-oriented mutation operatorsin
C# programs using a parser-based tool can be preeisbut
requires compilation of mutants. Mutations can bentroduced
faster directly to the Common Intermediate Languageof .NET.
It can be simple for traditional mutation operators but more
complicated for the object-oriented ones. We propes the
reconstruction of complex object-oriented faults on the
intermediate language level. The approach was testén the
ILMutator tool implementing few object-oriented mutation
operators in the intermediate code derived from comiled C#
programs. Exemplary mutation and performance resuls are
given and compared to results of the parser-based utation
tool CREAM.

Keywords-mutation testing of C#, object oriented mutation
operators, Common | ntermediate Language of .NET

l. INTRODUCTION

Mutation testing inserts faults in a program untest in
order to assess or generate test cases, or evahmte
reliability of the program. When the testing of grams
written in an object-oriented language is consideree
cannot ignore faults related to object-orientedgpranming
constructs.

A transformation rule that generates a mutant ftbm
original program is called anutation operatar So-called
standard (or traditional) mutation operators introel small,
basic changes that are possible in typical exmessbr
assignment statements of any general purpose lgadai
Mutation operators dealing with specific programgnin
features, including object-oriented ones, were ds@loped
[3-8].

Traditional mutation operators are not sufficiemtr f
verification of tests to reveal object-oriented wita
Experiments performed with unit tests distributedthw
various open source programs indicated at the fiogrft
ability of these tests to detect faults of objeteated origin
in C# programs [9].

Mutation testing should contribute to improving estt
suite. A mutant is said to bdled if the result of running the
original program is different from the mutants’ uktfor at
least one test case of the test suite T. A mubenttdannot be
killed by any test suite is counted asejuivalentone. The
adequacy level of the test suite T, so-catlimatation scorg
is calculated as a ratio of the number of mutaiitsdkover
the total number of non-equivalent mutants.

Mutation testing is known to be very laborious dvas
high demands on computing resources. Object-odente
mutation can be successfully introduced into a s®wode
of a high-level language, like on C# in the CREA}tem
[10]. In its next version some improvements in the
performance were achieved [9], but a parser-bagpbach
requires mutant recompilation or code interpretafid].

This paper presents development of object oriented
mutations on the intermediate code derived from mted
C# programs. This approach can be considered as an
execution cost reduction technique [12], similar Java
Bytecode manipulation [13]. An efficient tool inthacing
this kind of mutations should make program changes
possibly omitting the steps of code compilation its
disassembly/assembly. Introduced changes should not
damage a correctly compiled code.

An open question is how the idea can be realizettien
.NET environment. Introduction of traditional mudet
operators on the intermediate language level
straightforward, as it is similar to the mutation the high
language level. However, the problem addressedhis t
paper refers to object oriented operators, whicle ar
substantially more complex and in general might het
directly reflected on the intermediate level. Werdnahown
how the changes that correspond to selected objesited
mutation operators specified on the high-langudiy®) @re
made in the Common Intermediate Language (CLIN&T.

The approach was used in the ILMutator (Intermediat
Language Mutator) tool [14] Its first version suped six
selected types of object oriented program changes.
Modification of a program is performed through
manipulation in its metadata and intermediate cadeat
enables omitting recompilation. The Mono.Cecil dityr [15]
was used for browsing and altering metadata and an
intermediate code.

The tool was used to perform mutation and testihg o
several widely used open source libraries and thir test
suites. It allowed to determine the quality of thsts, which
were supplied with these tested programs, the bmefsi of
the implemented mutation operators and the
performance.

The paper is organized as follows. In the nexticeate
discuss briefly the background of object-orientedtation
testing. In Sec. 3 we present object oriented nunsiat CIL
of .NET. Mapping of several mutation operators espnting
object oriented faults of the C# language to inttiate
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language was proposed. Basic information abouttdioé
implementing the approach and experimental regitigven
in Sec. 4 and Sec. 5, respectively. Finally, Secortcludes
the paper.

II. RELATED WORK

The mutation testing approach was developed priynari
for structural languages, like Fortran, Ada, C, eleping
standard mutation operators that can be adoptecarigr
general purpose language [1]. Further, similar dsech
mutation operators were also applied for objearugd
languages, like Java, C++, C#.

In object-oriented programs standard mutation wseslu
for intra-method level testing. Object orienteddaages also
provide new structures,
references, information hiding, inheritance, polypiism,
method over-loading. They are not considered dirday
standard mutation operators, therefore the objeetizd
mutation operators were defined.

The research on the object-oriented mutation waee do
mostly on Java programs [2-5, 13, 16, 17].

Kim et al. [4] proposed 15 mutation operators faval

makes only one compilation run for all mutants.efftards,
it is decided during test execution which mutardawti run.
Five traditional mutation operators (sufficient aing to
Offutt) has been incorporated into PexMutator of &¥de
applied also in CIL code [23].

Several testing systems for the C++ language use
standard mutation testing also in commercial prtgjuas
Insure++ from Parasoft [24].

Standard mutations introduced into Java Byte Cade a
supported in different tools, like Jumble [25], Mai@ma
[26]. Selected traditional and some object oriemedations
in Java were also implemented in MuJava [13], Mp&&i
[17] - an Eclipse plug-in based on MuJava, Judy] @7
Javalanche [28] tools. In MuJava, mutants are geeer

like class declarations andither as a parameterized program (so-called matant)

that is further recompiled and executed as a mutant
according to a given parameter, or a mutation tioduced
directly in the Byte Code. Test cases consideredJ&va
programs were commonly unit tests suitable for gUni
environment [21, 25, 27, 29], or similar but spbze like
in MuJava [13].

The Nmutator tool announced in 2002 was supposed to

programs regarding object-oriented concepts anceroth introduce object oriented mutations into C# proggaut it

programming mechanisms (e.g. exception handlingjak
extended by Chevalley [2]. Ma et al. proposed thastm
comprehensive set of 24 class mutation operatarsldoa
described in [5]. These operators were implemeirtetthe
tools supporting mutation of Java programs MuJah&. [

was probably not completed. Research in [30] maeetio
object oriented features of C# but concentratedlgarithms
for optimization of test cases selection. They meft to
standard mutation operators (LOR, NOR, ROR),
perturbation on values of constant and variablegydation

Usefulness of the object oriented operators andr theof an exception and two object oriented operatMER,

orthogonality were studied in experiments [16 - 19]

Mutation of object-oriented features of C++ code @n
UML class specification was studied in [6]. Fiveogps of
object oriented operators were proposed and ealuit
experiments. The operators were introduced to pragron
the source code level.

RFI). Operator MCR replaces a method call by arothe
method with the same signature. Operator RFI fotbes
reference to an object to be stuck at null afterciteation.
The object oriented operators were not studiecktaid

The first tool supporting selected object-oriented
mutations for C# was the CREAM system [10, 31jvdis a

Object oriented operators of Java and C++ werdarser-based mutation tool cooperating with the WUn

examined according to their applicability to the I@#guage.
The set of adapted object oriented operators wenéed
with other operators dealing with object orientegtbires
(e.g. handling of exceptions) or specific for C#hdaage
(e.g. delegates, properties). In result, the seahoiut 40
advanced (not traditional) mutation operators of W#s
proposed and partially evaluated in some experisnéBit
20].

Mutation operators are usually defined informallyda
illustrated by code examples. To make a definitoncise
and unambiguous the operators were specified as
transformation with pre- and post-conditions [7, 8] is
important especially for complex object orienteceigors
dealing with the structural features of a program.

A comprehensive overview of mutation testing ajpptie
different programming and specification languagas be
found in the survey of the development of mutatiesting
[12].

Simple changes to Java source code, without parser

involvement, were implemented in Jester environnj2h}.
The ideas of Jester system were transformed tooRyahnd
C# languages. The Nester tool [22] supports thadsial
mutations of C# language. The improved version e$tir

environment [32]. Further development of the CREARI
system, including code parsing improvements, priavgn
generation of invalid and partially of equivalentutants,
cooperation with the distributed Tester environmant
reduction of disc space requirements by storingamtst
updates in a SVN repository, is presented in [9]. |
comparison to this approachduction of time requirements
could be obtained by introducing mutation at thevdo
program level, eliminating necessity of many mutant
compilations but also a time-consuming interpretatof a
kigh-level program.

In [33] examples of introducing simple mutationgoin
intermediate .NET code are discussed. The priripfea
mutation tool based on this approach can be surmmethin
the following way:

« disassembly of an assembly file into a managed code
expressed in a textual format,

» searching for a mutation location according to
pattern matching,

* introduction of mutation into found locations,

« assembly of the text file with intermediate code
including a mutant.



The author persuades of an easy way of mutardnd return values are put on it. An instructionsists of one

implementation, but the solution has two main lati@ns.
The disassembly and assembly steps require a trerbead
for each mutant (can be compared to the compilaifoB#
code). Secondly, introduction of mutation via simphttern
matching can be successful but only for a subseirople
traditional mutation operators. Therefore we presdgea of
introduction of selected object oriented mutatidimectly in
the intermediate code derived from compiled C# o
and their implementation in the ILMutator prototyft].
The idea is similar to the Bytecode translation Jafva
programs realized for structural mutants in MuJgha]. In
order to introduce advance mutation operators plesrms

or two bytes operation codeogcodg@ and an optional
parameter.

B. Mutation Operators

A mutation operator defined for a given programming
language is a transformation of language instrastidt
substitutes given language structures with a defiset of
others. The source and target code should be sigatihc
correct. For the traditional mutation operators ghbstituted
sets are reduced to a single instruction or evesingle
logical or arithmetical operators and are not dissated in
a program. Object-oriented or other advanced operan a

of intermediate code generated by the compiler wergigh-level language can refer to complex structtnes are

examined and all structures corresponding to psim@#
constructions distinguished. Introduction of thigik of
operators requires an intermediate code analysisit ltan
be automated for various operators, as discusded be

lll.  OBJECT-ORIENTEDMUTATION INJECTED ON

COMMON INTERMEDITE LANGUAGE LEVEL
In this section we present how object-oriented tria

not only locally interpreted but are distributedeowa whole
program, e.g. class hierarchy. However, the moshahges
are bounded to a single instruction at this languagel.

While reflecting an object oriented mutation operain
the intermediate language level, we have to identif
appropriate language structures and introduce @saingo
several instructions of this lower level. Below,eaplary
object oriented mutation operators of C# and their

operators can be introduced directly into CommorfOrreésponding operators in the Intermediate Languag

Intermediate Language. Examples of several operaice
provided.

A. Common Intermediate Language
The C# language is one of the languages the apiphsa

discussed. We also define correctness conditicatsstiould
be met in order to create valid mutants.

Operator PNCrfew method call with child class type
swaps a calling of operatonew of a non-parametric
constructor of a given class, with a constructor aof

of which can be run on .NET Framework using a Commoinherited class. A given class can be used asa dlass in

runtime environment [34]. The basic components h#d t
framework are Common Language Runtim@gLR) and
Framework Class Library (FCL). CLR is a runtime
environment that supports the object-oriented fogning
paradigm, including concepts of types, objects #meir

behavior. All .NET applications are run in CLR - an

intermediate layer between them and the operatystes.
FCL includes library classes supporting
functionality for applications, e.g. GUI interfacesveb
facilities. Compilers of different programming larages,
like C++, C#, Visual Basic, J#, IL Assembler, can Used,
building a code aimed at the common runtime enwvirent.
A so-called assembly is created, which is an inteliate
form of a .NET application that can be run in theRC
environment. An assembly consists of managed medhbt

different assemblies distributed on different pbhgbkiplaces.
Hence, inherited classes are searched only insthenably in
which a given base class is defined. The PNC operat
applied in the C# and CIL code is illustrated byexiample
(Fig. 1).

After identification of a constructor calling in €hCIL
code, the appropriate conditions are checked. Bhenably

standardfefines a type that inherits for the given type,ckssB

inherits fromclassAin the example. The considered type
should have the definition of a non-parametric toresor. A
type name can be substituted in the appropriatstagrtor
call. In this case the change in the intermediatgliage is
also made only in one instruction, as at the Céllev
Operator OMR dverloading method contents chahpge
substitutes a body of an overloaded method haviorges

include two parts: metadata and managed code. Mligtad Parameters (let call it method A) with a calling ah

describes a structure of the application, its etgmend

overloaded method with a less number of parameters

relations. Managed code includes body of applicatio (method B). The necessary condition of the sultsituis

methods written in an intermediate form calliticrosoft
Intermediate Languag€MSIL) or Common Intermediate
Language(CIL) [35].

The intermediate language is a machine-level laggua
In comparison to other low-level languages, it ulles
instructions for creating, initializing and manigtihg object
types. It also supports array manipulation and gtice
handling. The language has different mechanisnwvadb
to exploit all capabilities of the CLR layer. Hovesy
programs translated from a high-level source laggug.g.
C#) use only a subset of these mechanisms [36].iCkK
stack-based language. All arguments are taken &atack

existence of at least one variation of method Aapeaters
that corresponds to parameters of calling methofioBavoid

a recursive calling of methods, there should beaiting of
method A in the body of method B. An example of the
operator is shown in Fig. 2.

If all correctness conditions of the operator aatis§ed,
calling of methodB is inserted into the body & before its
first instruction. On the intermediate level it etsis of
several instructions, namely an instruction putting
parameters into a stack, an instruction for calbngethod
will less number of parameters, andeturn instruction. The
rest of instructions of method will be deleted. The



Before mutatior

After mutatior

1IC#
public class ClassA

public class ClassB:ClassA

{

public void initiate()

ClassA a;
a = new ClassA();

}

/ICIL
.method public hidebysig instance
void initiate() cil managed

/I Code size 8 (0x8)
.maxstack 1

Jocals init ([0] class Operators.ClassA a)

IL_0000: nop
IL_0001: newobj instance void
Operators.ClassA::.ctor()
IL_0006: stloc.0
IL_0007: ret

} /I end of method
/[Program::initiate

public clasasSA

{ }
public class ClaS&3sA

{ 1}
public voiditiate()

ClassA a;
a = new ClassB();

.method ipdbtebysig instance
void initiate() managed

/I Code size 8 (0x8)
.maxstack 1
ocdls init (0] class Operators.ClassA a)
IL_0000: nop
IL_0001: ndjvimstance void
Operators.Class®r()
IL_0006: stloc.0
IL_0007: ret
} /I end of method
/IProgram::initiate

Figure 1. PNC example - C# and its corresponditeyinediate code.

Before mutation

After mutatior

1IC#
public class ClassA
{ void count(int a)

{ }
void count(int a, int b)
{ }

/ICIL
.method private hidebysig instance
void count(int32 a, int32 b) cil managed

{
/I Code size 2 (0x2)
.maxstack 8
IL_0000: nop
IL_0001: ret
Ylend of method ClassA::count }

public cl&tassA
{ void count(int a)

voiduwt(int a, int b)
{ count(a); }

.methoehpe hidebysig instance
voiduot(int32 a, int32 b) cil managed

/I Code size 10 (Oxa)
.maxstack 8
IL_0000: nop
IL_0001: Idarg.0
IL_000darg.1
IL_0003: call instance void
Operators.ClassA::count(int32)
IL_0008: nop
IL_0009: ret
} /lend of method ClassA::count

Figure 2. OMR example - C# and its corresponditermediate code.



sequence of inserted instructions can be seen @rCth
level from II\_0000 to II\_0003.
Each constructor of a class is transformed to @iape

call is substituted by a default calling of a nargmetric
constructor of the base class. The operator iseapphly if
the base class has its non-parametric construdtbis

.ctor() method on the intermediate level. The methoddeleting of the constructor can be realized initlbermediate

consists of three sections. In the first sectidtiainvalues are
assigned to all fields that were initialized in tlotass
definition. In the second section an appropriatestroictor
of the base class or another constructor of theegaass is
called. Instructions realizing operations defineceatly in

the constructor in the C# code are placed in thid Hection.
This constructor structure was used in mutationratpes
dealing with constructors, such as JDC and JID.

Operator JDC @#-supported default constructor crepte
deletes a definition of a non-parametric constmucto
Therefore the C# compiler creates a default cootstruThis
operator is used when this non-parametric construstthe
only one constructor of the class. On the interatedi
language level it is also checked if exactly onastactor
exists. In case of a unique constructor, all irdioms of its
third section are deleted. It simulates deletioinefructions
defined in a constructor body in the C# languagke T
constructor remains with its two initial sectionsdais the
same as if it were created by the compiler.

Operator JID fember variable initialization deletipn
deletes a member variable initialization that wéesced in
the variable definition. The operator will be applionly for
primitive types because deletion of an initialinatiof a field
of a reference type could usually cause an erraneallito a
non-initialized field. In the intermediate languadbis
initialization is deleted from all constructors dahble in this
class. The initialization is placed in the firscen of any
constructor and consists of few instructions. Ife th
initialization refers to a static field, it shoube deleted from
the static constructor of the class.

For example, to substitute a variable initializatio
“private int x = 5" with “private int X" in a C# code, the
following instructions will be deleted in each cbmstor:

IL_0000: Idarg.0
IL_0001: Idc.i4.5
IL_0002: stfld int32 Operators.ClassA::x

In C# all non-static instance constructors call theo
instance constructor. As a result the following ethr
possibilities can be distinguished:

1. A class inherits from its base class and a cortstrad the
base class is called usinbase(args)expression. The
constructor with the given list of parameters hasbe
declared in the base class.

. Another constructor of the same class is callechgusi

:this(args) In this case, the appropriate constructor with

given parameters is declared in the same class.

constructor.

constructor of the base class is called. It is \ejant to

the usage abase()phrase.

Operator IPC dxplicit call of a parent's constructor
deletion) deletes calling of a parametric constructor & th
base class used in an inheriting class. In C#,cibvistructor

language as modification of the appropriate coostrucall.
For example, in the second section of a construtier
following instructions:

IL_0000: Idarg.0

IL_0001: Idarg.1

IL_0002: call instance void
Operators.Class.A::.ctor(int32)

will be substituted by the sequence:

IL_0000: Idarg.0
IL_0001: call instance void Operators.Class.AorQt

Operator EOC réference comparison and content
comparison replaceméntswaps occurrences of method
Equalsused for variable comparison with usage of operato
"==", and vice versa. In C#, for EOC operator weyon
consider comparison on arguments of reference typkie
types are omitted, because thdiquals methods are
implemented as usage of operator "==" and ther@ois
difference in the .NET platform. We also or8istem.String
type as both cases refer to the same static pniwatkod for
comparing strings.

While introducing EOC in the intermediate language,
have to differentiate two cases. In the first cagmerator
"==" s overloaded neither in a considered clagsimany of
its base classes. Appropridigualsinstruction available in
the intermediate level will be substituted witbq (compare
equal) instruction. A reverse transformation is elon the
similar way, but an occurrence eokq instruction and its
context defined by current parameters on the sthokld be
carefully examined.

In the second case, operator "==" is overloadethé
considered class or any of its base classes. thstéa
instruction ceq an appropriate version of the overloaded
methodop_Equalityis considered. The overloaded operator
is searched in the class hierarchy according tgptimeiples
given in the C# language specification [37].

IV. ILMUTOTORSYSTEM

The ILMutator (Intermediate Language Mutator) syste
was designed to support mutation of programs inT.NE
environment. Its first version [14] introduced atijeriented
mutations in the intermediate code derived from mited
C# programs.

ILMutator reads a correct assembly compiled fro@#a
program and prepared for running @ommon Language

-Non of the above structures is used while calling a&Runtime.The mutation operators are selected and optionally
It is assumed that a non-parametria maximal number of generated mutants can be $wt. T

assembly is searched for a location were a mutationbe
introduced. The assembly is modified and the mutant
stored in a disc. A separate assembly is createcedoh
location where an operator is introduced (i.es hot a meta-
mutant approach [13]). On demand, a user can viev t



original intermediate code and the mutated codervbg TABLE I. MUTATED ASSEMBLIES

highlighted differences. Size Unit
The tool supports execution of tests on the origameal Program ke] | LOC | Classes | g
mutated assemblies. A mutant is counted as kifléd test 1| Castle.Dynamic| 76| 5036 71 82
result is different than the result of the origipebgram. Proxy
The ILMutator system consists of the following| 2| Castle.Core 60 6119 50 171
components: 3| Castle.Micro 112 | 11007 86 88
« functional modules (assembly management Kernel

mutation operators processing, test management), | 4| Castle.Wiondsor 64 424D 34 92
+ visualization modules  (viewing  assembly | 5| Nunitframework] 40| 4419 3y 397
intermediate code, presenting test results), 6] NUnit.mock 20 579 6 44
=
8

«  helpers modules (DiffEngine - to compare original NUnit.util 88 | 640¢ 34| 211

and mutated code, PEVerify, NUnit, Mono.Cecil). NUnit.uikit 352 | 7556 30 34
Portability of .NET applications in different opé&rey

systems is supported by the Mono project. One cowmto
of the project — the Mono.Cecil library [15] is dséor

TABLE Il NUMBER OFMUTANTS IN PROGRAMS PEROPERATORS

creation and exploitation a code written in theeintediate No | EOC | IPC | JDC | JID | OMR z
language consistent with the format ECMA CIL [3H]. 1 20 4 2 1 6] 33
supports reading and modifying metadata and ah 2 37 13 2 4 29| 85
intermediate code stored in a managed portableuedele 3 76 27 5 3 28| 139
file. A roundtrip operation on an assembly can bdgrmed. 4 15 16 2 3 121 48
Capabilities of the library assists ILMutator dgirthe 5 4 7 0 3 231 245
intermediate code analysis for identification of tation 6 17 2 0 0 1 20
operator's areas, its conditions, and changingopfapriate 7 12 3 1 13 >3] 52
instructions.

An application on the intermediate level does ratehto 8 10 3 ° 46 20| 84
be compiled, but its correctness can be verifietie T |_Z 191 75 17 73 350] 706

PEVerify tool distributed within .NET Framework SD¢an
be used for verification an assembly consistingnahaged initialized with a non-parametric constructor oftype to
modules. It validates metadata (MDValidator) andwhich its base constructor could be applied. Inpadigrams
intermediate managed code (ILVerifier). The tooused in  some comparisons were performed and EOC operator
ILMutator to verify an intermediate code after atation  generated nonempty sets of mutants. Operator IR€rgeed
was introduced. more mutants for assemblies from the Castle Pragedhere

In the prototype tool [14] six object-oriented ntiga  Were more types defined and the inheritance meshmeni
operators (EOC, IPC, JDC, JID, OMR and PNC) wergvere more frequently used than in the NUnit ass&sbl
implemented. Its next release was extended withesomOperator JDC was rarely used because the mostpesty
traditional operators, as well as operators dealvith have more than one constructor. Operator JID watieap

exceptions and delegtes: especially often in the NUnit.uikit assembly. In NUmany
« EHR (Exception handler removal), graphical components with default values of theaperties
« EHC (Exception handling change), are def_lned. OMR  operator created mutants for all
«  DMC (Delegated method change), assemblies, but particularly many for the framewark

NUnit. In this program many assertions are defiaed used
for comparison of expected and actual results df tests.

V. EVALUATION Therefore many overloaded methods can be mutatéd wi
OMR. We can observe that using different operatbes
investigation of a test suite is adjusted to thgakoriented
mechanisms really used in the program under test.

The original program and all created mutants were r
with the unit tests associated with the considgmnegrams.
Mutants were killed when their test results diftefeom the
test results of the original program (i.e. a teptassertion
A. Experimental results passed in the original program and failed in a mtuta vice
versa) or when an exception was detected. The clast

ncountered in two assemblies where mutants of OMR
operator cause8&tackOverflowExceptiodue to a recursive
method call.

The numbers of killed mutants per each operator are
given in Tab. 3. The last column shows a mutaticores
indicator calculated for a program and a givendage. The

« DMO (Delegated method order change).

Assemblies from the Castle project [38] and the NUn
library [32] were analyzed using the ILMutator todlhe
assemblies are public distributed with their ueits. The
basic complexity measures, such as program sizebeuof
code lines, classes and unit tests associated thich
assembly are given in Tab. 1.

In experiments six object-oriented mutation opegato
were applied. The number of mutants depends on
programming style and a program domain influendimeg
number of different structures used in a programb(R). A
column of PNC operator is omitted as no mutant evaated
for any program. In these programs no local alde was



TABLE llI. KILLED MUTANTS
EOC[IPC [JDC [ JD [OMR | = [ [%]
1 6 1 1 0 5 13 41
2 7 3 0 0 10 20 | 4cC
3 20 3 4 0 17 44| 47
4 15 2 2 0 1 20 34
5 4 3 0 2 68 77 44
6 2 2 0 0 1 EEE
7 3 0 0 1 22 26 45
8 5 2 1 1 0 9| 38
) 62| 16 8 4| 124 214
[%] | 325] 213| 471 5§ 354 308

summarized mutation results are not very highottficms,
similarly as during previous experiments using @REAM
tool, that tests aimed at checking basic programstfanality
do not detect all object-oriented flaws.

creation of an invalid code and possibly many eajeint

mutants. Although some valid mutants were also not

generated. It should be noted that identificatiba enutated
location is more difficult on the intermediate lewand we
would like to generate less mutants correspondimgat
desired high-level structure but for sure valid ga$sibly
not equivalent.

In case of operators EOC and JID, the number
generated mutants and the number of killed mutdifitsr;

the mutation scores are lower for CREAM. However,

especially for EOC operator, a part of mutants thate
generated by CREAM and not killed but not generdigd
ILMutator were equivalent. After omitting these eglent
mutants, the mutation scores were similar (diffeeewas no
bigger than 3%).

In two last columns of Tab. 4. times of introduntiof all

Mutants generated with ILMutator were compared withmutations are shown. In case of the CREAM todhdtudes
results of the CREAM tool - a parser-based mutatiorparsing of the code, its analysis and storing a ifieod

environment of C# programs [9]. The comparisonrretéto
only three object-oriented operators EOC, IPC dbdtliat
were common for both tools. Numbers of generatedl ,an
killed mutants are given in Tab. 4. It was checKeat, as
presumed, sets of mutants created by ILMutator wevper
subsets of mutants generated by CREAM v2.

IPC operator had the same interpretation in bodisto
and generated the same mutants. Therefore alsouthber
of killed mutants were the same, and calculatedatiaut
scores would be identical.

program, but also compilation time of a generatadamt
with the external compiler. Based on given data cae
calculate that generation time for a single mutaas on
average about 13 second, in detail for operator HOG,
IPC 13.45 s and JID 12.68 s accordingly. A timeagel
measured for ILMutator consists of the assemblylyaig
changing the intermediate code and storing it thisa. The
averaged time per one mutant was about 0.25 sd&D@
0.27, IPC 0.3, JID 0.22). It showed, that for exaadi
assemblies and given operators the time performarase

For operators EOC and JID less mutants were gemkratabout 50 times better. For other programs and tperéhe

by ILMutator. This follows directly for the more seictive
assumptions about operators. The EOC operator ped
only for reference types. Mutation comparison dafmgive
types, as well as typ&ystem.StringndSystem.Objeavere
omitted. In the case of JID operator initializatwimprimitive
types were mutated, whereas initialization of refieed

results can be different, but as expected, the ti
improvement was very significant.

However, the overall time of mutation testing
influenced not only by a mutant generation time &ab by
many factors, such as a time of a test executipertiting on

a program complexity, a sequential or distributgdcetion

types remained unchanged. These conditions prevent®f many mutants, a usage of repository for storimgants

TABLE IV. COMPARISON OFMUTANTS' NUMBER AND MUTANT GENERATION TIME FOR COMMON OBJECT ORIENTEDOPERATORS
Mutants generated | killed | killed/generated[% Mutation time [s]
Program Operator
CREAM I LMutator CREAM | LMutator
EOC 42 9 21 2( @ 30 568 6|5
Castle.Dynamic
1 IPC 4 1 25 4 1 25 66 2.0
Proxy
JID 39 33 84 1 100 543 0/4
EOC 74 9 12 31 1 19 917 715
2 | Castle.Core IPC 13 3 23 13 3 23 131 3]0
JID 22 7 32 4 4 10( 294 046
EOC 107 15 14 12 3 25 1416 4.7
7 | NUnit.util IPC 3 0 0 3 0 0 72 1.0
JID 34 28 82 13 13 100 368 310

of

me

is



(local or remote, storing as a whole or in an inmeatal
repository) [9], automation of the whole testingogess

intermediate level and their faults are inapprdprita create
mutation operators like that. This problem was uised in

management. As an example, average testing timea for [40].

mutant (including test evaluation by a NUnit conilglat
tool) was about 0.5 s for Castle.DynamicProxy ahdua
0.24 s for Castle.Core [39].
generation time for this sort of programs was d$igant
longer than a test execution time in case of thieguebased
CREAM, and the times were of the same magnitud=age
of ILMutator.

In this paper we deal with the object-oriented afms,
as realization of traditional operators in CIL casl@ot such
a difficult task. Other tools dealing with operatdor C#,
like Nester [22] and Pexmutator [23], do not coaesidny
object-oriented operators. Therefore the evaluatiesults
are not comparable.

There are tools that support object-oriented opes&br
Java language, like
ORIENTED operators, for which CIL implementation sva
presented, have their corresponding operators idavau
However, they use different source and target laggs.
Thus, the problems of mapping programming strusettne
.NET environment discussed here are irrelevant.

B. Threads to Validity

While interpreting experiment results several ttyda
validity should be taken into account.

Threats to external validity are conditions thatitithe
ability to generalize the results of experimentse Bubjects
chosen for the analysis were "real", practicallyedis
programs. Also the examined test suites were dpedldn
advance independently of the concerned mutatiogess
On the other hand, the limited number of mutatiperators
was used in experiments. A threat to the mono-otipes
bias was lowered by conducting experiments not amly
one, but on several, different programs.

The basic limitation of the approach is the ability
imitate a complex fault from the high programmiegd| at
the lower level. As we have shown it is possibleselected
advanced operators. The number of generated mutags
limited in comparison to parser-based mutation ritleo to
avoid possibility of creation of equivalent mutants

However, we cannot guarantee that this approactbean
applied for any kind of object-oriented or otheedplized
operators. Each operator have to be carefully exadni
analyzing all possible situations in the correspognd
intermediate code. It is also sensitive to the enirversion
of the compiler that translates C# code to iterimediate
form. Apart from discussed six operators also ottaer be
implemented in this way (it is made for few in thext tool
release). In general, even complex object orienfeetators
of C# can be implemented in CIL, but some operatdglis
not cover all possible situations and generate hegtants.
An open question is how this will influence mutatiscore
for some operators.

Another fact is that it is not worthwhile to usd al
operators due to their tendency to create equitatemants.
On the other hand, many new structures introdutcé#i 2.0
and 3.0 language versions are not distinguishahlehe

[13,28]. The exemplary OBJECT

In order to cope with threats to the statisticaliaosion
validity the selected programs were not very small.

It shows, that a mutanHowever, due to a rare usage of some programming

structures, a limited number of mutants was credtathg
experiments. The calculated mutation scores catrdated
approximately. Therefore the comparison of mutatioores
obtained by both tools can be generalized only dmes
extend. The presented evaluation results illustedézation
possibilities of the approach and performance imgmneents.
We do not focus here on statistical evaluationhef abject-
orented operators, hence we do not related thist&tatto
more complete experiments of C# [41] or Java [19].

VI. CONCLUSIONS

Introducing mutations on the intermediate languagel
turned out, according to expectations, more effictban to

the high-level source program. Possibility of defgnobject-
oriented operators for several faults reflecting tbject-
oriented faults at C# level was presented. A mdtptegram
does not have to be recompiled and thanks to direct
manipulation on the intermediate code via the MGeail
library no disassembly or assembly was necessaryhd
comparison to a parser-based mutation it has more
limitations concerning identification of mutatiomchtions
and correctness conditions.

The improved version of ILMutator is enhanced with
greater number of mutation operators, other ways of
generating and storing mutants, and diverse mettodds
testing, e.g. cooperation not only with NUnit. Wpports

visualization of mutation changes not only on the

intermediate but also the C# code level. It coulgprove

identification of equivalent mutants, if necessaRurther
investigation of object-oriented operators usinghb&#
related tools considers analysis of dependenci¢éaeka
operators, reduction of mutants number via selectd
mutants subsets for a given operator etc.
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