
BRIEF NOTES 

Gravity Flow of Frictional-GoSiesive 
S o l i d s — C o n v e r g e n c e to 
Radial S t r e s s Fields 

A . W . J E N I K E 1 

Evidence is presented to the effect that general stress fields in the 
steady, gravity flow of frictional-cohesive solids in converging chan-
nels in plane strain and in axial symmetry approach geometrically 
similar radial stress fields in the region of the vertex. Radial stress 
fields were discussed in an earlier paper [i].2 

Introduction 

I.N" AN EARLIER paper [1], ' Jeuike discussed the stress fields 
which occur in steady gravity How of frictional-cohesive partic-
ulate solids in converging channels in plane strain and in axial 
symmetry. Using the principles of plasticity, he described the 
fields by means of the following relations: 

{a) Two equations of equilibrium in plane-polar/spherical 
coordinates 

dcr r 1 dTro 1 
1 — - -| [cr,. - 0-0 + Hi (cr,. - FFA) + »ITR$ c o t 9\ 

Or r Od r 

+ Y COS E = 0 ( 1) 

^re + 1 + - [m(cT„ - a a) cot 9 + (2 + m)rre] 
or r Og r 

- 7 sin 9 = 0 ( 2 ) 

Here, Hi = 0 for plane strain and m = 1 for axial symmetry. The 
coordinates and the stresses are defined in Fig. 1. Compressive 
stresses are taken positive. 

(6) The equation of stale, called the "effective yield function" 
[2] 

(<jr + a e ) sin 8 - [(cr, - <7»)2 + 4rr92]'• ! = 0 (3) 

where 8 is the effective angle of friction of a solid, Fig. 2, and is 
assumed constant for a given solid. 

(c) In axial symmetry, the Haar and von Karman hypothesis 
[3] which, in converging How, sets the value of the circumferential 
pressure a a equal to the major pressure o"i of the meridian plane 
r, 9 

<ra = or, ( 4 ) 

(d) A one-to-one relat ion bet ween mean pressure 

a = i(<7, + (5) 

and density 

7 = 7 ( c ) (6) 

These equations, together with appropriate stress boundary con-
ditions, define a general stress field. 

Jenike then numerically computed the particular stress fields, 
called the "radial stress fields," for which a and \p have the 
particular forms 

a = 7 rs(6) (7) 

i = i{9) (8) 

in which s(0) is a stress function and \p is the angle between the 
direction of the major pressure <ri and the coordinate ray, Fig. 1. 
Density 

7 = To (9) 
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is constant ; i.e., the solid is incompressible. 
In channels with straight walls, radial stress fields are defined by 

one pair (9', <£'), when the walls are symmetric with respect to the 
vertical axis, and by two pairs (9' , <$>') and (9", <f>"), when 
the walls are not symmetric. 9' and 9" measure the slopes of the 
walls with respect to the vertical, while <j>' and 4>" are the kine-
matic angles of friction between the flowing solid and the walls, 
Fig. 1. 

Convergence of General Stress Fields to Radial Stress Fields 

The significance of radial stress fields is greatly enhanced by the 
fact, that real stress fields in plane strain and in axial symmetry 
converge to the radial stress fields as the vertex of the channel is 
approached; i.e., for r -*• 0. This convergence is of fundamental 
importance in the derivation of flow-no-flow criteria for particu-
late solids (bulk solids) [4] because most obstructions to flow 
originate at the outlets of channels; i.e., in the vicinity of the 
vertex. Since, in real channels, convergence to a radial stress 
field is very rapid, the stresses in the region of an outlet are 
usually sufficiently well represented by the radial stress field. 
Therefore, they can be predicted on the basis of the slope and 
angle of friction of the walls at the outlet, without reference to the 
top boundary conditions, such as the head of the solid over the 
outlet, the shape of the top traction-free boundary, and the shape 
of the walls away from the outlet. 

This independence of the head and boundaries away from the 
vertex has been observed by experimenters and engineers for a 
long time [6, 7, 8], An analysis of the equations shows how this 
convergence takes place. 

It is compatible with experience and with the equation of state 
(3) to assume that density is represented by the function 

7 = 7o 4- 7(°") (10) 

where 7 ( 0 ) = 0, and the function is continuous. In general 
fields, expressions (7) and (S) for cr and tp do not hold but can be 
written in the form 

a = r[7o 4- 7(ff)]s(r, 6) (11) 

yp = 9) (12) 

The component stresses are 

cr,. = cr(l -)- sin 8 cos 2\p) (13) 

ae = cr(l — sin 8 cos 2ip) (14 ) 

Trg = cr sin 5 sin 2ip (15) 

cr„ = cr, = a{ 1 4" sin 5) (16) 
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BRIEF NOTES 

Expression (11) is substituted for a in the foregoing expressions, 
which are, in turn, substituted for the component stresses and 
their derivatives in the eciuations of equilibrium (1) and (2), 
leading, after transformations, to 

ds 

- + sf(r, 8) + g(r, 9) = 0 

ds 
, + sh(r, 9) + j(r, 8) = 0 

or 

(17) 

(IS) 

where 

/di1/ \ sin 5 
cos- § 

dij/ sm 5 
+ 2r — (sm o + cos 2ij/) 

d/• cos- o 

1 dy sin 8 . . . . . 
-1 — + m — (1 + sm o)[sm 2ij/ 

y oo cos- o 

sin 8 

sin 8 
jir, 9) = - cos (8 + 2^) + 

cos- 0 COS- 0 

Equations (17) and ( IS) have real characteristics whose direc-
tions are 

dr 

dd 
= r cot I ) ] (23) 

such a discontinuity can be looked upon as a wall and the regions 
on each side of the discontinuity can be considered as separate 
channels. Any other discontinuity would reach a wall, reflect 
from it, and continue reflecting from wall to wall since the field is 
hyperbolic. A solid flowing across these lines of stress discon-
tinuity would undergo successive, discontinuous expansions and 
contractions. I t is unlikely that these conditions can satisfy the 
second law of thermodynamics. 

In physical channels, discontinuities do not seem to appear in 
flowing solids. If a discontinuity is introduced at the wall of a 
channel, the solid either does not flow at all or remains rigid 
(elastic) in a part of the channel and forms new walls across itself. 
Surface discontinuities along a top boundary are invariably con-
tained within rigid regions. 

Results of numerical solutions of general fields were presented 
by Johanson [5], and an example from this paper is shown in Fig. 

cot 6(1 + cos 2t/0] (19) 

ijir, d) = - sin (6 + 2i/0 - — — (20) 
cos- o cos- 0 

/ d i p \ sin 8 
Mr, 6) = 1 + 2 - J + 1 - — (cos 2IA - sin 5) 

\d0 / cos- 0 

dl/* sin 8 r dy sin 5 
— 2r — sin 2\p + — — + in 

dr cos- 5 y dr cos3 5 

X (1 + sill 5)(cot 9 sin 2\p + cos 2 ^ - 1 ) (21) 

cos 6 
(22) 

The equations are hyperbolic for r ^ 0 but parabolic for r = 0 
(ip = 7t/4 — 8/2 and Ip — 37t/4 -f- 8/2 lie outside of real channels, 
because 4>' and cf>" < 8, Fig. 2). A typical field of characteristics 
for the general channel in Fig. 1 is shown in Fig. 3 in orthogonal 
axes r, 9. It is apparent that the effect of the variable r decreases 
as r —>• 0. At r = 0, the parabolic equations are independent of 
the derivatives with respect to r and, in fact, become those of the 
radial stress field. Hence, barring discontinuities, the general 
stress field converges to a unique radial stress field at the vertex. 

The concepts of plasticity permit some stress discontinuities. 
In particular, a discontinuity can follow a streamline. This type 
of discontinuity does not affect llie present discussion because 

'9 6' 0 9" 

Fig. 3 Field of characteristics 

A x i l of 
S y m m e t r y 

Wall 

Fig. 2 Angles of friction Fig. 4 Example of convergence 

2 0 6 / M A R C H 1 9 6 5 Transact ions of the A S M E 

Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



BRIEF NOTES 

4. Mean pressures, equation (5), are plotted: a" is the value 
along the axis of symmetry, and cr" along the wall. The dashed 
lines represent radial stress values; the continuous wavy lines 
represent the values of a general stress field which arises from a 
high vertical head of the solid above the wedge. The con-
vergence is very rapid. 

It should be noted that the effective yield function used in this 
analysis applies to cohesive as well as cohesionless solids. The 
relevant relations are discussed in [1, 2, 4, 9, 10, 11], 
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Pi, and cross-sectional area .-li). In Fig. 1(b), the flow is made 
steady b y the overall superposition of the flow velocity —(a + 
i/,). Quantities behind the pulse are denoted by the subscript 2. 
Referring to the steady flow, the continuity equation is 

,1k* = A«[a - (ut - «.)] (1) 

and if the average pressure on t he inside of the wall at the transi-

tion section is taken to be — (p, + p_>), the momentum principle 

gives 

p[a - («•> - M , ) ] » A » - pa'-A, = - p 2 ) ( , l , + A«) ( 2 ) 

where p is the density of the fluid. Viscosity of the fluid and the 
wall material are ignored, and it is therefore unnecessary to con-
sider energy conservation explicitly. 

Equations (1 ) and (2 ) yield the following result for the wave 
velocity: 

1 At , , A-, + .4, 

2 p . l i '" 41 
( 3 ) 

There will be a pressure-area relationship associated with any 
particular tube, and this may or may not be linear and elastic. 
For a given .l i and p,, compatible values of A2 and p-i must be 
chosen for the tube and equation (3 ) solved for a. 

For small disturbances, /12 and p< may be put equal to (.4 + 
dA) and (p + dp), respectively. T o the first order in small quan-
tities, equation (3 ) gives the usual expression3 for the speed of 
propagation a of a weak pulse 

p ' dA 
( 4 ) 

Sharp finite discontinuities are most likely to occur for compres-
sion waves. This is because an increase in pressure is associated 
with an increase in velocity, so that each successive increment, in 
pressure will be traveling relative to successively greater flow 
velocities. If the tube is such that the wave speed either remains 
constant or increases with pressure, compression waves will con-
verge to form a sharp discontinuity. 

3 D . A . McDonald , Blood Flow in Arteries, Edward Arnold, Ltd. , 
London, England, 1960. 

Finite Wave Propagation 
in Deformable Tubes 

G . A . B I R D 1 a n d W . E. B O D L E Y 2 

MOST STUDIES of transient flow in deformable tubes have 
been made in connection with the analysis of water hammer. 
They have dealt therefore with small elastic deformations of 
tubes which are so stiff that the compressibility of the fluid must 
be taken into account. This Note is concerned with tubes which 
allow such large deformations that the fluid may be regarded as 
incompressible. 

Il is shown that, in such systems, strong compression waves 
will normally travel appreciably faster than weak ones. This 
prediction has been confirmed by experiment. 

Theoretical Treatment 

Fig. 1(a) shows a pressure pulse propagating with speed ri 
relative to the fluid in front of it (which has velocity u,, pressure 

1 Professor, Department of Aeronautical Engineering, University of 
Sydney, Sydney, Australia. 

- Research Officer, Department of Physiology, University of Syd-
ney. Sydney, Australia. 

Manuscript received bv A S M E Applied Mechanics Division, .Julv 
2, 1964. 

(a) Unsteady flow case. 

a-(u - u ) 2 V 

(b) Steady flow case, (wave stationary) 

Fig. 1 Propagation of pressure pulse in deformable tube 
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