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dSPACE IFOC Fuzzy Logic Controller 
Implementation for Induction Motor 

Drive  

This paper presents an dSPACE implementation of a sensorless speed control for three-
phase squirrel-cage induction motor control using Indirect Field Oriented control (IFOC) 
technique. The speed loop regulation is carried out by a fuzzy controller giving exceeding 
performance in comparison with a classic PI regulator. The design of the controller is 
based on the experience without knowing the mathematical model of the Motor. 
Experimental results for a 3kW induction motor are presented and analyzed using a 
dSPACE system with DS1104 controller board based on digital processor Texas 
Instruments TMS320F240 DSP. A good agreement between the simulation results and 
experimental results are achieved.  
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1. Introduction 
 
The induction motor is one of the most widely used machines in industrial applications due 
to its high reliability, relatively low cost, and modest maintenance requirements.  The Rotor 
Flux Oriented Control (RFOC) is probably the most common control method used for high-
performance induction machine applications. Rotor flux orientation (RFO) in the 
synchronous reference frame is considered here [1]-[2]. There are other orientation 
possibilities, but rotor flux orientation is the most prominent. The RFOC method involves 
making the induction machine behave similarly to a DC machine. The rotor flux is aligned 
entirely along the d-axis. The stator currents are split into two components: a Field -
producing component that induces the rotor flux and a torque-producing component that is 
orthogonal to the rotor field. This is analogous to the DC machine where the field flux is 
along one direction, and the commutator ensures an orthogonal armature current vector [4]. 
This task is greatly simplified through transformation of the machine variables to the 
synchronously rotating reference frame. 

    On the other hand, ongoing research has concentrated on the elimination of the speed 
sensor at the machine shaft without deteriorating the dynamic performance of the drive 
control system [5]-[6]-[9]. The advantages of speed sensorless induction motor drives are 
reduced hardware complexity and lower cost, reduced size of the drive machine, 
elimination of the sensor cable, better noise immunity, increased reliability and less 
maintenance requirements.  

     In this paper we interest a real implementation using DS1104 controller board of indirect 
rotor flux oriented control (IRFOC) of an induction motor supplied by hysteresis current-
controlled inverter. Simulation and Experimental results of a sensorless speed control using 
a PI Fuzzy speed controller are presented. The control loop of the motor speed, proposed in 
this paper, is provided by a PI controller based on fuzzy logic. The induction motor speed 
estimation proposed in this paper is based on simple relationships between voltage and 
current and easy to implement in real time.    
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     This paper organized as follows: The induction model is presented in the second 
section, the RFOC strategy is developed in the third section, section fourth present a speed 
method estimation, the speed PI Fuzzy controller design is performed in the five section, 
and section six is devoted to experimental setup and results, a conclusion and reference list 
end the paper 

 

2. Induction motor model 

The state equation of induction motor written in the (d, q) oriented axes, can be expressed 
as follows [5]: 
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The electromagnetic torque can be expressed as (Φrq=0): 
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With, 
Vsd,q  : Stator voltage in the stationary d, q axis 
isd,q    :  Stator current in the stationary d, q axis 
Φrd,q   : Rotor flux in the stationary d, q axis 
Ω      : Rotor speed 
ωr      : Rotor electrical speed 

[ ]trdh ΦΩ= (4) 
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ρ       : Rotor flux angle 
σ       : Leakage coefficient of the machine 
Cr      : Load torque 
J        : Rotor inertia 
p       : Number of pole pairs 
Rs      : Stator resistance 
Rr      : Rotor resistance 
M, Ls, Lr  : Are respectively the mutual, the stator and the rotor cyclic inductances 
 

 
 

Fig.1. d-q and α-β frames 

3. RFOC Scheme for Induction Motor 

a. IRFOC Strategy 
The block diagram of the proposed sensorless control scheme is shown in figure 2 is similar 
to that of the separately excited DC machine. The space angle of the rotor flux space phasor 
(ρ) is obtained as the sum of the rotor angle (θr) and the reference value of the slip angle 
(θsl). These angles are shown in Fig.1 and the stator voltage angular frequency ( sω ) is 
determined by the controller [2] according to which the speed of the rotor flux space 
phasor, is  

slrs ωωω +=  
Where ωr is the rotor electrical speed, 

dt
d r

r
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And ωsl is the reference value of the slip frequency,
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Note that the rotor pole position is not absolute, but is slipping with respect to the rotor at 
frequency ωsl. The phasor diagram suggests that for decoupling control, the stator flux 
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component of current isα should be aligned and the d axis, and the torque component of 
current isβ should be on the q axis, as shown.  
In order to transform the two rotating input quantities into two stationary output quantities, 
we need to perform the inverse Park transformations P(ρ). It utilizes the positional angle of 
the rotor flux (ρ) to do this: 
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Fig.2. Block diagram of sensorless control proposed 

b. Rotor flux estimation 
The rotor flux components can be synthesized more easily with the help of speed and 

current signals. The rotor circuit equations of (α, β) equivalent circuits [2] can be given as. 
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Adding terms αsikM ..  and   βsikM .. , respectively, on both sides of the above equations, 
we get 
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Substituting equations (16) and (17), respectively, and simplifying, we 
get: ααα rrsr iLiM .. +=Φ                                                                                                     

(16)                                                   βββ rrsr iLiM .. +=Φ                                                                         
(17) 

(13) 

(14) 

(15) 
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Equation (18) gives rotor fluxes as functions of stator currents and speed. Therefore, 
knowing these signals, the fluxes and corresponding unit vector signals can be estimated. 
Finally,  

)( 22
βα rrr Φ+Φ=Φ

 
 

4. Speed Method Estimation 

The estimation speed method used for induction motor is simple and can be easily 
implemented. It is possible to obtain an expression for the rotor speed by considering the 
following equation:  

rs ωωω −=ˆ  
Where ωs is the speed of the rotor flux (relative to the stator): 

dt
d

s
ρω =  

 And ωr the angular slip frequency, given by equation: 
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In order words, ωs is the speed of the rotor flux linkage space vector with respect to the 
rotor. It is possible to obtain an expression for ωs in terms of the rotor linkage components 
by expanding the expression for the derivative (14). Since the rotor flux linkage space 
vector expressed in the stationary reference frame is: 
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Considering the electromagnetic expression, the angular slip frequency can be rewritten 
as: 
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In this last case, the components of stator flux are thus known for the control of the 
machine. We will make use of it, as well as equations (2) binding flux to the currents, to 
determine the components of rotor flux: 
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5. PI Fuzzy Controller     

The block diagram of the PI Fuzzy controller is shown in fig.3,     

 
Fig.3. PI Fuzzy controller 

 
FLC replace the traditional PI controller. For the proposed FL speed controller, the inputs 
are the normalized values of the speed error and the rate of change to remain between ±1 
limits of speed error. Two scaling factors (Ke and Kd) are used to normalize the actual speed 
error and its rate of change. The output of the controller is the normalized change of the 
motor torque command which when multiplied by a third scaling factor (Ku) generates the 
actual value of the rate of change of the motor torque demand. 
Finally, a discrete integration is performed to get the value of 
the electromagnetic torque command. Hence a PI-Type FLC is created [13]. The FLC 
structure is shown in Fig. 3.  
Table I shows the fuzzy rule base with 49 rules which can be obtained from observation of 
the drive performance at different operating points [13]. 
The following fuzzy sets are used:  
 
                                                    NB=NEGATIVE BIG, 
                                                    NM=NEGATIVE MEDUIM, 

NS =NEGATIVE SMALL, 
                                                    EZ = ZERO, 
                                                     PS = POSITIVE SMALL, 

    PM= POSITIVE MEDUIM, 
                                                     PB = POSITIVE BIG. 
 
The membership functions of the FLC shown in Fig. 4 are obtained by a trial and error 
technique where the EZ fuzzy set has a narrow shape different from other fuzzy sets to 
improve the controller steady state performance. 
 

 The Fuzzy controller input and output membership function (a) speed error (e), (b) change 
in speed error (Δe) and (c) change in the torque command are given in following figure: 
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Fig. 4. Membership functions 

 
TABLE I 

FUZZY RULES BASES 

    
 
For example, it follows from Table I that the first rule is: 
 
                    IF e is NB and Δe is PB then ΔTe is EZ  
 
On every of these universes is placed seven triangular membership functions (fig.6). It was 
chosen to set these universes to normalized type for all of inputs and output. The range of 
universe is set to -1 to 1.     
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6. Experimental Setup and Results    
                            

The control algorithm has been implemented using a dSPACE board with TMS320F240 
DSP. The dSPACE works on Matlab/Simulink platform which is a common engineering 
software and easy to understand. Another feature of the dSPACE is the Control desk which 
allows the graphical user interface, through the control desk the user can observe the 
response of the system also he can give command to the system through this interface. Real 
time interface is needed for the dSPACE to work. Real-time Interface (RTI) is the link 
between dSPACE’s real-time systems and the development software MATLAB/Simulink 
from the Math Works. It extends Real-Time Workshop (C-code generation) for the 
seamless and automatic implementation of our Simulink Models on the dSPACE Real-time 
Hardware. This allows us to concentrate fully on the actual design process and to carry out 
fast design iterations. To specify a dSPACE I/O board, we can simply pick up the 
corresponding I/O module graphically from the RTI block library and then attach and 
parameterize it within simulink. 
    Power circuit for the drive consist a Semikron IGBT based voltage source inverter with 
opto-isolation and gate driver circuit SKHI22A. The dc voltage for the VSI is achieved 
through a three-phase diode bridge rectifier module. A capacitive filter is used at the dc link 
of this module to reduce the voltage ripples. 
The motor used in this experimental investigation is a three phases, 3KW, 4 poles squirrel 
cage induction machine, 7.2A/12.5A, 220V/380V, 50HZ and 1400rpm.  
The induction motor is driven by IRFOC algorithm included in a speed control closed-loop 
and run under different loads with the help of DC generator mechanically coupled to the 
motor and having the following characteristics: 3KW, 120V, 25A and 1500rpm.  
All current and voltage are measured using LEM sensors (LEM HX15-P, LEM LV25-P), 
and both of them are then transformed to be a voltage ranging from 0 to ±10 volts which 
will be the input of A/D respectively.  
Figure 5 gives the experimental platform scheme used: 
 

 
 

Fig. 5. Experimental test setup. 
 
The torque value is considered equal to zero in the first test, but for the second test, the load 
torque is 10Nm. 
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A- Functioning in low speed (±30rad/s) 
 

   
 
  B- Functioning when the speed change (Ω=±100rad/s ) 
 

  
Fig. 6. Experimental Results 

Simulation Results Experemental  Results 

Experemental  Results Simulation Results 
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C. Commentaries’ 
The results presented in figure 6 show a perfect correlation between 
experiment based on the dSPACE board with TMS320F240 DSP and 
simulation using Matlab/Simulink,  for the planned operation (low speed 
and when the speed change). Estimated speed follows the reference speed closely. 
The stator phase current in the induction motor remains sinusoidal and takes appropriate 
value.  

7. Conclusion 

This paper presents a comparison between experimental and simulation results of an 
efficient Sensorless speed Indirect Field oriented Control for a 3kw induction motor drives. 
The results were satisfactory and the proposed PI fuzzy controller gives the system good 
performance and good dynamic behavior even at low speed. Also, the estimated speed 
follows the reference speed closely. Good agreement between theory and experiment is 
obtained by using a dSPACE system with DS1104 controller board based on digital 
processor Texas Instruments TMS320F240 DSP. 
 
Appendix 
 

TABLE II 
PARAMETERS INDUCTION MOTOR 

Rated power             3 KW 
Voltage                    380V Y 
Frequency  50 Hz 
Pair pole  2 
Rated speed  1400 rpm 
Stator resistance  1.7 Ω 
Rotor resistance  2.68 Ω 
Inductance stator  229 mH 
Inductance rotor  229 mH 
Mutual inductance 217 mH 
Moment of Inertia 0.046 kg.m2 
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