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The performance of the zero-effort-miss/zero-effort-velocity feedback guidance algorithm is evaluated through
practical space application examples. The zero-effort-miss/zero-effort-velocity feedback guidance algorithm is, in
general, not an optimal solution; however, it is an optimal solution in a uniform gravitational environment. It is also
conceptually simple and easy to implement and, thus, has great potential for autonomous onboard implementation. It
is shown that, for some classic ballistic missile intercept and asteroid intercept scenarios, the zero-effort-miss/zero-
effort-velocity algorithm can even compete with corresponding open-loop optimal solutions, while its feedback
characteristicsmake itmore suitable to deal with uncertainties and perturbations. By employing the zero-effort-miss/
zero-effort-velocity algorithm in the highly nonlinear orbital transfer and raising problems and comparing with
corresponding open-loop optimal solutions, its simplicity and near-optimality are further verified.

I. Introduction

O PTIMAL control theory has been widely used for decades in
many different applications; examples include spacecraft orbit

control, missile guidance control, robot control, and flight vehicle
trajectory control [1,2]. The problem of controlling the trajectory of
aerospace vehicles from an arbitrary initial position and initial
velocity to a desired target position with constrained, free or pointed
terminal velocity in a specific time, or within a predefined time range,
is of fundamental interest as an optimal control problem.
Bryson and Ho discussed optimal control laws for a simple

rendezvous problem, considering both free terminal velocity and
constrained terminal velocity [2]. They also discussed the relation-
ship between optimal control and proportional navigation guidance.
Battin also discussed an optimal terminal state vector control for the
orbit control problem, directly compensating for the known
disturbing gravitational acceleration [3]. D’Souza further examined
an optimal control algorithm in a uniform gravitational field and
developed a computational method to determine the optimal time-to-
go [4]. Ebrahimi et al. proposed a robust optimal sliding mode
guidance law for an exoatmospheric interceptor using fixed-interval
propulsive maneuvers [5]. In this paper, gravity was considered to be
an explicit function of time. Onemajor contribution of Ebrahimi et al.
was the new concept of the zero-effort-velocity (ZEV) error, analo-
gous to thewell-known zero-effort-miss (ZEM) distance. The ZEVis
the velocity error at the end of the mission if no further control
accelerations are imparted. Furfaro et al. later employed the ZEM/
ZEV concept to construct two classes of nonlinear guidance
algorithms for a lunar precision landing mission [6]. Guo et al. [7]
showed that in a uniform gravitational field, the ZEM/ZEV logic is
basically a generalized form of variouswell-known optimal feedback
guidance solutions such as intercept or rendezvous [2], terminal
guidance [3], and planetary landing [4]. The performance of the
ZEM/ZEV logic for an asteroid intercept mission with precision
targeting requirements was evaluated by Hawkins et al. [8] and

compared with the performances of classical missile guidance
methods like proportional navigation guidance (PNG) and aug-
mented proportional navigation guidance (APNG).
For many practical missions, the gravitational acceleration is not

constant nor an explicit function of time, but is instead a function of
position. The ZEM/ZEV algorithm is not an optimal solution when
the gravitational acceleration is a function of position. However, the
ZEM and ZEV terms can be obtained by numerically propagating the
dynamic equations, and the ZEM/ZEV algorithm can accomplish
the control mission in a near-optimal manner. The objective of this
paper is to showhow to use the generalized ZEM/ZEValgorithm for a
variety of practical applications. For highly nonlinear systems,
numerical propagation of the states for the entire remaining mission
time is not sufficient, as nonlinearities during the actual mission
violate the assumptions of the ZEM/ZEValgorithm. For these highly
nonlinear cases, a general way to improve the performance of the
ZEM/ZEV feedback algorithm is to divide the total flight time into
one or more segments and somehow determine optimal or near-
optimal waypoints to connect the different segments. Such a
waypoint concept was considered by Sharma et al. [9], and the
computational method was provided to solve nonlinear optimal
control problems with terminal constraints.
In the last decade, pseudospectral optimizationmethods have been

used for a variety of optimal control applications [10–12]. NASA’s
Transition Region and Corona Explorer spacecraft successfully
flight-tested time-optimal slews in the presence of various constraints
[13], ushering in a new era of employing optimization techniques
for spacecraft attitude control. A number of optimization software
packages are now on the market, including SNOPT, DIDO,
TOMLAB [14], and others. General pseudospectral optimal control
software (GPOPS) is one of the most versatile open-source multi-
phase optimizers and is used in this paper [15]. GPOPS is used in this
study to generate the open-loop optimal solution to compare the
ZEM/ZEV algorithm against, and to obtain optimal waypoints to
improve the performance of the generalized ZEM/ZEValgorithm for
missions with highly nonlinear dynamics.
In this paper, the generalized optimal control problem is first

briefly reviewed. Three different types of ZEM/ZEV optimal
feedback control algorithms are obtained for different terminal
requirements. Each algorithm is then investigated through an
illustrative example, and the characteristics of each algorithm are
discussed.

II. Optimal Feedback Guidance Algorithms
A. General Equations of Motion

The equations of motion of a space vehicle in a gravitational field
are given by
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_r ! v (1)

_v ! g"r# $ a (2)

a ! T∕m (3)

where r and v represent the position and velocity vectors,
respectively; a is the control acceleration provided by the thrusting
force T; m is the vehicle mass; and g"r# denotes the gravitational
acceleration acting on the vehicle, which is generally a function of
position. In this paper, these vectors denote 3 × 1 column vectors
expressed in a nonrotating inertial reference frame.

B. Optimal Feedback Guidance Algorithms for a Special Case
of g ! g"t#
The gravitational acceleration is, in general, a function of position,

which will not lead to an analytical solution of the optimal control
problem. However, if the gravitational acceleration is assumed to be
an explicit function of only time, then the analytical optimal solution
can be found.
For a mission from time t0 to tf, the optimal control acceleration

needs to be determined by minimizing the classical performance
index of the form

J ! 1

2

Z
tf

t0

aTa dt (4)

subject to Eqs. (1–3) and the following given boundary conditions:

r"t0# ! r0; r"tf# ! rf v"t0# ! v0; v"tf# ! vf (5)

The Hamiltonian function for this problem is then defined as

H ! 1

2
aTa$ pTr v$ pTv "g"t# $ a# (6)

where pr and pv are the costate vectors associated with the position
and velocity vectors, respectively.
The costate equations provide the optimal control solution

expressed as a linear combination of the terminal values of the costate
vectors. The time-to-go is defined as: tgo ! tf − t. The optimal
acceleration at any time t is expressed as

a ! −tgopr"tf# − pv"tf# (7)

By substituting Eq. (7) into the dynamic equations to solve for pr"tf#
and pv"tf#, the optimal control solution with the specified rf, vf, and
tgo is finally obtained as

a ! 6%rf − "r$ tgov#&
t2go

−
2"vf − v#
tgo

$ 6
R tf
t "τ − t#g"τ# dτ

t2go

−
4
R tf
t g"τ# dτ
tgo

(8)

The ZEM distance and ZEV error denote, respectively, the differ-
ences between the desired final position and velocity and the
projected final position and velocity if no additional control is
commanded after the current time. For the assumed gravitational
acceleration g"t#, the ZEM and ZEV have the following expressions
[8,9]:

ZEM ! rf −
!
r$ tgov$

Z
tf

t
"tf − τ#g"τ# dτ

"
(9)

ZEV ! vf −
!
v$

Z
tf

t
g"τ# dτ

"
(10)

Then, the optimal control lawEq. (8) can be equivalently expressed as

a ! 6

t2go
ZEM −

2

tgo
ZEV (11)

For certain missions where the terminal velocity is not specified, the
optimal control law, in terms of ZEM only, can be obtained as

a ! 3

t2go
ZEM (12)

Though of limited interest for most intercept and rendezvous
missions, the optimal control to regulate only the terminal velocity, in
terms of ZEVonly, can also be obtained as

a ! 1

tgo
ZEV (13)

A special case of uniform gravitational environment can be assumed
for many planetary landing and asteroid terminal guidance problems.
The three optimal algorithms described by Eqs. (11–13) then become
the exact optimal solutions that achieve the optimal feedback
performance andmaintain robustness against uncertainties. For other
missions, though, the gravitational acceleration cannot be simply
modeled as a constant (or as a pure function of time), but must be
considered a function of position. For this case, the ZEM and ZEV
can be found by numerically integrating the dynamic equations. The
same control expressions are used with the numerically propagated
values of ZEM and ZEV. The predictions and controls are updated in
real time, finally accomplishing the control mission at near-optimal
levels with acceptable computational complexity.
For highly nonlinear systems, predicting the future states is prone

to errors. Another alternative form of the ZEM/ZEValgorithm can be
adopted for this situation. Rather than predicting the effect of the
nonlinear terms, the effects of these terms are directly compensated
for at all times. The algorithm thus approaches feedback linearization
behavior. The control algorithm Eq. (8) then simply becomes the
following form suggested by Battin in [3]:

a ! 6%rf − "r$ tgov#&
t2go

−
2"vf − v#
tgo

− g"r# (14)

III. Optimization with General Pseudospectral Optimal
Control Software

GPOPS uses hp-adaptive pseudospectral methods to solve
optimal control problems of one or more phases. The user supplies
the governing dynamic equations, cost function, and various
constraints, and, if feasible, GPOPS returns the optimal control
histories. The theoretical basis and implementation of GPOPS are
now briefly described.
Pseudospectral numerical optimization methods approximate the

states, costates, and controls using Lagrange interpolating polyno-
mials. Because Lagrange polynomials and their derivatives can be
evaluated for any time, the states and controls can be represented by a
discrete set of points. If there is an integral in the cost functional, this
is approximated with Gaussian quadrature. An hp-adaptive method
can automatically adjust the mesh points (h-adaptivity) and the order
of the approximating polynomial (p-adaptivity). The complete
problem is thus posed as a nonlinear program (NLP), which can be
solved using one of a variety of well-known NLP solvers.
TheGPOPS usermust supply the governing differential equations,

minimum and maximum values for all of the states and controls, and
minimum and maximum values for the initial and final times.
Guesses for the initial and final values of all of the states, controls, and
times are also supplied. Finally, the cost functional, a combination of
the standard Mayer (endpoint) and Lagrange (running) costs, is
specified.
The initial time is typically fixed, and the final time can be fixed or

free. In a multiphase problem, each phase can have a minimum or
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maximum duration. For example, a three-stage rocket could be
designed with the first two phases lasting a specified length of time,
and the third phase and, thus, the final time, free.
In addition to these inputs, some optional constraints may be

specified. Event constraints are equality or inequality constraints that
are expressed as functions of initial and final time, as well as initial
and final values of the states. A typical event constraint might be
ensuring that the final position falls on some specified curve. Path
constraints are equality or inequality constraints expressed as
functions of the time, states, and controls. A typical path constraint
might be ensuring that the norm of the controls always equals control
magnitude for a constant-thrust mission. Parameter constraints are
equality or inequality constraints on parameters, variables that are
constant during the mission but not known ahead of time. A typical
parameter constraint might be the mass ratio of a staged rocket.
Because the controls and states are approximated with polyno-

mials, the controls and states (and costates) must be smooth within a
given phase. The examples considered in this paper, and many other
guidance problems with continuous thrust, are smooth in this sense.
Known or suspected discontinuities and singularities, such as “bang–
bang” control or problems with singular arcs, can be handled by
breaking the problem into multiple phases. Even in these cases,
GPOPS can often find a good approximation to the discontinuous
solution in a single phase, which can then be refined into amultiphase
problem. GPOPS can find numerical derivatives of the various
constraints, but if available, analytical expressions should be used to
enhance speed and accuracy. Certain constraints, such as control
saturation, do not have continuous derivatives. For such cases, an
approximation with continuous derivatives can be used.

IV. Ballistic Missile Intercept Example
Before introducing the full ZEM/ZEValgorithm, it is instructive to

consider ZEM control for a well-known example problem. The
ballistic missile intercept problem is considered to put considerations
of the ZEM and the mission time in familiar terms. With this
background, the full ZEM/ZEV algorithm will be introduced in the
next example problem.
The objective of an example problem here is to examine the

performance of guidance algorithms for a tactical missile to intercept
a ballistic missile target. The dynamic models for the missile and
target are represented as [16]

!xM !
−μxM

"x2M $ y2M#1.5
$ axM ! gxM $ axM

!yM !
−μyM

"x2M $ y2M#1.5
$ ayM ! gyM $ ayM (15)

and

!xT !
−μxT

"x2T $ y2T#1.5
! gxT ; !yT !

−μyT
"x2T $ y2T#1.5

! gyT (16)

where the subscriptM is used for the missile, the subscript T is used
for the target ballisticmissile, (x, y) are positionvector components in
an Earth-centered inertial coordinate system, μ is the gravitational
parameter of the Earth (3.986 × 1014 m3∕s2), and a is the control
acceleration.
The line-of-sight (LOS) is defined as the line from themissile to the

target. The LOS angle λ is the angle between this line and a constant
reference line in the inertial frame, and it is expressed as

λ ! tan−1
yTM
xTM

(17)

where (xTM, yTM) are the relative position components in the inertial
frame defined as

xTM ! xT − xM yTM ! yT − yM (18)

The relative velocity components (vx, vy) are also defined as

vx ! _xTM ! _xT − _xM vy ! _yTM ! _yT − _yM (19)

The distance from the missile to the target is

r !
#######################
x2TM $ y2TM

q
(20)

A. Classical Guidance Algorithms

Before discussing an application of the ZEM/ZEValgorithms, first
the classical PNG law will be described. The classical PNG law is
simply given by

!
axM
ayM

"
! NVc _λ

!
− sin λ
cos λ

"
(21)

whereN is the effective navigation ratio, a user-adjustable parameter,
and the closing velocity Vc and LOS rate _λ are determined as

Vc ! − _r ! −"xTMvx $ yTMvy#
r

(22)

_λ ! xTMvx − yTMvy
r2

(23)

The classical PNG algorithm commands acceleration perpendicular
to the instantaneous LOS direction. For a missile with aerodynamic
actuators, the actual acceleration would be perpendicular to the
missile’s velocity vector. For small turn rates, the missile velocity
vector and LOS direction are approximately aligned.
When the gravitational environment is known, the APNG

algorithm can be used to improve the performance of the PNG. The
APNG law is

!
aXM
aYM

"
! N

$
Vc _λ$

1

2
"gT⊥ − gM⊥#

%!
− sin λ
cos λ

"
(24)

where gT⊥ and gM⊥ are components of gravity acting on the missile
and target, perpendicular to the LOS direction. The best PNG law,
described in [16], is the so-called predictive guidance algorithm.
When accurate models of the missile and target dynamics are

known, the positions of the missile and target at the planned intercept
time can be found by numerical integration. The ZEM vector is
determined as

ZEM !
!
ZEMx

ZEMy

"
!
!
~xTF − ~xMF
~yTF − ~yMF

"
(25)

where ( ~xTF, ~yTF) are the predicted final position components of the
target and ( ~xMF, ~yMF) are the predicted final position components of
the missile if no further accelerations are imparted.
The predictive guidance algorithm is based on PNG, so only

components normal to the LOS are considered. The control
acceleration is then given as

!
aXM
aYM

"
! N ZEM⊥

t2go

!
− sin λ
cos λ

"
(26)

where

ZEM⊥ ! −ZEMx sin λ$ ZEMy cos λ

B. Feedback Guidance Using Generalized Zero-Effort-Miss
Algorithm

The optimal ZEM feedback algorithm given by Eq. (12) is then
expressed as

!
aXM
aYM

"
! 3

t2go

!
ZEMx

ZEMy

"
(27)
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The predictive guidance algorithm, Eq. (26), differs from the
generalized ZEM algorithm [(Eq. 27)] in two main ways. First, the
predictive algorithm restricts accelerations to be perpendicular to the
LOS, while the ZEM algorithm can command accelerations in any
direction. Second, the predictive algorithm leaves the navigation
constantN as an adjustable parameter, while the ZEMalgorithmhas a
fixed gain to ensure optimality.
Both algorithms are derived assuming that the total flight time is

specified. There are some cases where enforcing a particular mission
time may be desirable, such as intercepting a target missile before
multiple payloads can be deployed or ensuring that intercept does not
occur above a particular location on Earth. For most missions,
though, the particular time of intercept is not crucial and is not
specified beforehand. Although in principle a broad range of
intercept times could be specified, missions that are too short or too
long can experience problems. More control energy will be
consumed, which may exceed the capacity of the actuators and result
in a failure to intercept.
Recall that the ZEM is a function of the time-to-go, in addition to

being a function of the current missile and target states. The simplest
way to determine the time-to-go is to choose the time-to-go that
corresponds to the minimum norm of the ZEM. The ZEM is found
by numerically integrating the current states without control
accelerations, so the ZEM is found at every time step in the
integration. Finding the minimum norm of the ZEM is equivalent to
simply predicting the time of closest approach. The goal of the
control law is to reduce the ZEM to zero, so choosing the time of
minimum ZEM corresponds to exploiting the dynamics to give the
control algorithm the smallest error to overcome.
A simple line search can be used to find the best time-to-go. As the

dynamic equations are integrated, there will be a ZEM associated
with each time step. Due to the assumptions for PN guidance, the
missile must be headed “toward” the target. When this is true, the
predicted ZEMwill monotonically decreasewith increasing tf, reach
a minimum, then monotonically increase. Finding the time-to-go is
just a matter of integrating until the predicted ZEM starts to increase.
The smaller of the last two ZEM predictions corresponds to the best
time-to-go.

C. Numerical Simulation Example
A ballistic intercept scenario, examined in [16], was used to

evaluate both the predictive and ZEM algorithms. With “perfect”
initial conditions, the predictive and ZEM laws will both achieve
impact with no control accelerations (an ideal situation), while the

PNG andAPNG lawswill still require some control accelerations. To
be able to compare the predictive and ZEM laws, the example was
modified appropriately. The initial position and initial velocity
magnitude are the same, but the initial velocity direction is
changed slightly. The initial conditions are rT0 ! "0; 6378.245# km,
vT0 ! "6785; 2880# m∕s, rM0 ! "4510.1; 4510.1# km, and vM0 !
"2006; 5954# m∕s.
Solving the optimal control problem with GPOPS is

straightforward for the ballistic missile intercept. There are no limits
on the control inputs, and generous limits on the states can be used.
For example, the x and y positions can be constrained to be from
negative two to positive two Earth radii. GPOPS will converge more
quickly if there are finite bounds. The flight time can be left free for
the overall optimal solution, or specified to find the optimal intercept
for a given mission time.
Figure 1 shows comparisons between the generalized ZEM

algorithm with adaptive tgo and the open-loop optimal solution, as
generated by GPOPS. The trajectories, control histories, and
performance index histories are shown. The adaptive flight-time
algorithm finds the best flight time to be 687 s, a little less than the
optimal time of 700 s. The control histories, however, are similar, and
the performance index value is only 2% larger.
The ZEMalgorithm has a fixed gain to ensure optimality, while the

gain is an adjustable parameter for the PNG-based methods. The
optimal value for the navigation constant turns out to be three, but it is
usually chosen in the range from three to five. Larger values cause the
vehicle to turn onto a collision course more quickly, at the expense of
more control effort. This increased control effort is manifest in two
differentways. First, the performance index for themission increases.
Second, the maximum level of commanded acceleration increases,
which can become important if there is an upper limit on available
accelerations.
To study the effect of changing the navigation constant, the

intercept mission example was simulated for both the PNG law and
theAPNG law for a variety ofN ranging from 2 to 10. Figure 2 shows
the performance index with varying N, as well as the maximum
control magnitude required. For the test case shown, the optimal N
for PNG is 5.3, while the optimalN for APNG is 3.4. Table 1 gives a
detailed comparison of the different guidance laws. The ZEM law
with adaptive flight time is shown, as well as the ZEM law using the
known optimal flight time of 700 s.
The best PNG law performs better than the ZEM lawwith adaptive

tf, which in turn is better than the APNG law. The ZEM law with the
known optimal flight time performs best of all, effectively identical to
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Fig. 1 Missile intercept using the generalized ZEM algorithm and an open-loop optimal approach.
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the optimal. The specific performance of the different algorithms
depends on the setup of the problem. The optimal values for N are
only found by simulating many cases, and the optimal flight time for
the ZEM algorithm comes from first finding the open-loop optimal
solution. If the maximum control magnitude is a concern, there is a
limit to how large a navigation ratio is acceptable. And although the
best case for theAPNGdoes not perform aswell as the best-case PNG
law, other tradeoffs for J and control magnitude must be considered
when the optimal N cannot be determined beforehand.
One advantage the ZEM law has over the PNG-based laws is the

ability to control flight time. A mission with the same initial
conditionswas simulated with flight times ranging from 500 to 900 s.
Figure 3 shows the trajectories for various cases, as well as the
performance index J for both the ZEM lawand the open-loop optimal
solution. Not only is the ZEM law able to intercept at a variety of
times, it does so with barely any discernible difference from the
optimal.

V. Asteroid Proximity Operation Example
The problem of detecting a possibly threatening near-Earth object

(NEO) and responding to that threat has been given much
consideration in recent years. Onemajor task of the planetary defense
community is to find an optimal approach to avert a potential NEO–
Earth collision [17]. Although there is no universally accepted
definition of optimal mitigation for this problem, three broad
categories of deflection missions have emerged. The first is a slow-
push scheme to gradually change the NEO’s orbit. The second is a
high-speed intercept mission by a massive spacecraft, changing the
NEO’s orbit via a kinetic impact [18,19]. The third approach is a
nuclear detonation for largeNEOs, orwhen there is littlemission lead
time. A number of different guidance algorithms can be employed for
such asteroid intercept or rendezvous missions.

A. Terminal Guidance for Asteroid Intercept

Consider both the target asteroid and the interceptor spacecraft as
point masses in a heliocentric Keplerian orbit, with the equations of
motion described by

!rT ! −
μ
r3T

rT (28)

!rS ! −
μ
r3S

rS −
μ⊗
r3

r$ a (29)

where rT and rS are the position vectors of the target and the
interceptor, respectively, with magnitudes rT and rS, μ is the
gravitational parameter of the sun (1.32715 × 1020 m3∕s2), μ⊗ is the
estimated gravitational parameter of the asteroid, a is the applied
control acceleration, and r is the relative position vector of the
interceptor (withmagnitude r) with respect to the asteroid, defined as

r ! rS − rT (30)

Neglecting the asteroid’s gravitational parameter, the equations of
motion are essentially the same as for missile intercept. The ZEM
algorithm can be obtained as

a ! −
3

t2go
~r ! 3

t2go
"~rTF − ~rSF# (31)

where ~rTF and ~rSF are the predicted final positions of the asteroid and
interceptor if no further control accelerations are applied, and tgo can
be based on a specified final time or adjusted as described in the
previous section.
For the casewhere the gravitational effect is negligible, the optimal

time-to-go can be calculated based on the current relative position r
and relative velocity v, as follows [7]:

tgo !
2r

v

$
cos θ −

##########################
cos2 θ − 3∕4

q %
; θ ∈ "−30 deg; 30 deg#

(32)

where θ is the angle between r and −v. There exists a solution for tgo
that locally minimizes the optimal performance index only when θ is
in the range shown in Eq. (32). Outside that range, the performance
index decreases monotonically with increasing tgo, and some upper
bound on the flight time must be selected.

B. Terminal Guidance for Asteroid Landing

For an asteroid landing problem, we assume that the asteroid is a
spherewith radiusR⊗. For convenience,we also ignore the negligible
gravitational acceleration of the asteroid, so the equations of motion
become

_r ! v _v ! a (33)

The terminal velocity is by definition zero for the landing mission. If
the landing site is specified, one of the algorithms from [8] can be

a) Performance index b) Maximum magnitude of control
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Fig. 2 Missile intercept using PNG and APNG with different navigation ratios.

Table 1 Performance of various guidance methods for missile intercept

PNG (N ! 5.3) APNG (N ! 3.4) ZEM (adaptive tf) ZEM (tf ! 700 s) Open-loop optimal
Performance index J 3526.5 3648.2 3594.1 3515.9 3515.8
Max control, m∕s2 6.14 4.94 6.25 5.79 5.79
Flight time tf , s 701 702 687 700 700

814 GUO, HAWKINS, ANDWIE
D

ow
nl

oa
de

d 
by

 IO
W

A
 S

TA
TE

 U
N

IV
ER

SI
TY

 o
n 

M
ay

 9
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
1.

58
09

9 



used. When the landing site is not specified, then the final position
must meet the following constraint:

rTfrf ! R2
⊗ (34)

Incorporating the terminal constraint, the performance index can be
modified as follows:

J ! 1

2
σ"rTfrf − R2

⊗# $
1

2

Z
tf

t0

aTa dt (35)

where σ is the scalarmultiplier for the terminal constraint. The costate
vector has the following terminal constraint:

pr"tf# !
∂J
∂rf
! σrf (36)

The optimal landing site r'f can be found as

r'f ! R⊗
tgo"v$ vf# $ 2r

ktgo"v$ vf# $ 2rk ! R⊗
tgov$ 2r

ktgov$ 2rk (37)

Finally, the guidance algorithm for optimal asteroid soft landing is
obtained as

a !
6%r'f − "r$ tgov#&

t2go
−
2"vf − v#
tgo

(38)

Similar to the intercept problem, an optimal time-to-go exists for
certain initial conditions [7]. The optimal time-to-go is found by
solving the final equation:

t2govTv − tgo6vT"rf − r# $ 9"rf − r#T"rf − r# ! 0 (39)

where the condition

%6vT"rf − r#&2 − "4vTv#9"rf − r#T"rf − r# ≤ 0 (40)

is required for a local minimum of tgo. When this minimum does not
exist, tgo needs to be as large as possible. However, there is no
guarantee that any particular tgo will not intercept the surface of the
asteroid, so a numerical simulation is required to evaluate feasibility
using the chosen tmax as the initial guess.

C. Numerical Simulation Example

An asteroid landing problem using the guidance law expressed by
Eq. (38) was numerically simulated for a variety of initial conditions.
The target asteroid has a radius of 100 m and is assumed to be
centered at the origin of the coordinate system. The lander has an
initial velocity of "20;−40; 0# m∕s. Various initial positions are
tested to illustrate the performance of the ZEM/ZEValgorithm with
adaptive tf and landing site. For initial conditions without a local
minimum for the performance index, the ultimate upper bound of the
flight time is 40 s.
Solving the optimal asteroid landing problem with GPOPS

requires only a couple of constraints. There is a terminal event
constraint requiring that the final position lies on a circle or radius
100 m. The final time is free, with the designer-chosen upper bound
of 40 s. In this case, the optimal solution always takes the maximum
amount of time. As in the previous example, generous bounds on the
states and controls are provided to make the search space finite.
Figure 4 shows the trajectories using the ZEM/ZEVapproach and

the open-loop optimal trajectories obtained from GPOPS. Figure 5
compares the calculated flight time and performance index for the
ZEM/ZEV law and the open-loop optimal solution.
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Fig. 4 Vehicle trajectories for asteroid landing (tmax ! 40 s).
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The landing mission can be successfully completed for all of the
initial conditions considered. The initial conditions roughly fall into
two different types. The first type includes initial conditions that will
collidewith, or come close to colliding with, the asteroid if the lander
continues on a straight-line trajectory. The second type has initial
conditions that will travelwell outside the asteroid’s footprint. For the
second type of initial conditions, the ZEM/ZEValgorithm performs
identically to the open-loop optimal solution, which verifies the
optimal feature of autonomous landing site calculation approach. For
initial conditions on a collision course (or nearly so), a collision
hazard is detected and the flight time is adjusted downward until the
mission is safe. The reduced mission time leads to more acceleration
commanded.
One trajectory of particular interest is the case when the spacecraft

starts on a collision course through the center of the asteroid. The
ZEM/ZEValgorithm will simply reduce the mission time and arrest
the spacecraft’s forward velocity, while the optimal solution is to turn
the spacecraft to fly around the asteroid while taking the full 40 s.

VI. Orbit Transfer Example with Continuous Thrust
The objective of an orbital transfer/raising problem is to optimally

transfer a spacecraft from a lower orbit to a higher orbit, with a
specified injection point and velocity, at a given time. The spacecraft
can also be brought from a higher orbit to a lower one. For high-
thrust engines, the well-known impulsive Hohmann transfer is the
minimum-energy transfer, however, for continuous low-thrust
engines, other methods must be used.
For simplicity, consider the following spacecraft dynamic

equations:

_x ! vx _y ! vy (41)

_vx ! −μ
x

"x2 $ y2#1.5 $ ax _vy ! −μ
y

"x2 $ y2#1.5 $ ay (42)

where (x, y) and (vx, vy) denote the position components and velocity
components in heliocentric inertial orbit plane, μ is the gravitational
parameter of the sun, and (ax, ay) are control accelerations along the
(x, y) axes.
The only requirement for the control system is to ensure that

the spacecraft satisfies the following terminal conditions at the final
time tf:

x"tf# ! xc; y"tf# ! yc
vx"tf# ! vxc; vy"tf# ! vyc (43)

A. Application of Zero-Effort-Miss/Zero-Effort-Velocity Feedback
Guidance Algorithm

The equations of motion are strongly coupled, and an analytic
optimal control algorithm does not exist. The ZEM/ZEV algorithm
[Eq. (11)] can control the terminal position and velocity at a specified

final time. These encompass all of the requirements of the orbit
transfer mission, making it a good candidate for this problem.
Expressed in the x and y coordinates, the proposed ZEM/ZEV law
becomes

!
ax
ay

"
! 6

t2go

!
ZEMx

ZEMy

"
−

2

tgo

!
ZEVx
ZEVy

"
(44)

where the ZEM and ZEV are obtained by subtracting the predicted
terminal states (with no further control accelerations) from the
required terminal states, as follows:

!
ZEMx

ZEMy

"
!
!
xc − ~xF
yc − ~yF

" !
ZEVx
ZEVy

"
!
!
vxc − ~vxF
vyc − ~vyF

"
(45)

B. Numerical Simulation Example

An orbit transfer example from Earth toMars is considered here to
evaluate the performance of the generalized ZEM/ZEV algorithm.
Feedback guidance control is not generally needed for such an orbital
transfer mission, because an open-loop optimal trajectory can easily
be generated during the longmission time.We examine this case here
only as an illustrative example to demonstrate the applicability of the
ZEM/ZEV feedback guidance concept.
For ease of analysis, canonical (or normalized) units will be used.

For Earth’s orbit, the mean distance to the sun is 1 AU (astronomical
unit), 1.4959965 × 1011 m. Defining 1 TU (time unit) as 58.132821
days gives the Earth a circular orbital velocity of 1 AU∕TU. Mars
orbit is at a radius of 1.54 AU, with a velocity of 0.8059 AU∕TU. In
these units, the gravitational parameter μ is 1 AU3∕TU2.
For this mission, the spacecraft starts at (1, 0) AU with velocity of

(0, 1) AU∕TU. The terminal position is (−0.3986, 1.4875) AU, the
terminal velocity is (−0.7784, −0.2086) AU∕TU. The flight time is
144 days, or 2.4771 TU.
Finding the optimal control with GPOPS is straightforward in this

case, as the initial and final position and velocity are fully specified,
as is the mission time. Again, generous limits on the states and
controls are given to maintain a finite search space.
Figure 6 shows the position, velocity, and acceleration histories for

both the ZEM/ZEV algorithm and the optimal open-loop solution
determined by GPOPS. Figure 7 shows the transfer orbits for both
cases. The direction and normalized magnitude of the acceleration
commands are also shown every 1∕10 of the mission.
The plots of position and velocity from the ZEM/ZEV algorithm

nearly overlap the optimal plots. Overall, then, the ZEM/ZEV
algorithm drives the spacecraft to result in the near-optimal trajectory.
Recall that the plots use canonical units, and the differences may
seemmore significant inmore familiar units. The acceleration history
plots show more of a difference between the two guidance schemes.
The acceleration histories vary the most at the beginning and the end
of the mission. At the beginning of the mission the calculated ZEM
and ZEVare large, while at the end the time-to-go is small. Evenwith

a) Flight time comparison b) Performance comparison
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Fig. 5 Performance comparison between ZEM/ZEV and open-loop optimal (tmax ! 40 s).
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these differences, the performance index J is 0.0926, only 1.76%
larger than the open-loop optimal J of 0.0910.
In the scenario examined, the ZEM/ZEValgorithm achieves near-

optimal performance. The performance is better for shorter missions,
and gets worse for longer missions. For longer missions, the
prediction error increases, and nonlinearities build up. This technique
is not applicable for very low-thrust transfer missions where the
spacecraft makes more than one-half of a revolution around the sun.
Most of the approaches presented in the literature for such missions
are open-loop techniques.

VII. Orbit-Raising Problem
The objective of an orbit-raising problem is to transfer a spacecraft

from one orbit to another orbit. For an orbital transfer to a circular
orbit, the terminal constraints are that the spacecraft should be placed
at a specified distance from the sun with circular orbital velocity. The
final radial velocity is zero, while the true anomaly (or any equivalent
angular position) is free. Due to the nature of the constraints, polar
coordinates are used. The standard dynamical models for this type of
orbit-raising problem are described by
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Fig. 6 144-day orbit transfer from Earth to Mars.
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_r ! u _u ! v
2

r
−

μ
r2
$ ar _v ! −

uv

r
$ at (46)

where r,u, and v represent the distance of the spacecraft from the sun,
the radial velocity, and transverse velocity, respectively, andar and at
are control accelerations in the radial and transverse directions,
respectively. The just described required terminal states are

r"tf# ! rf; u"tf# ! 0; v"tf# !
#####
μ
rf

r
(47)

A. Application of Zero-Effort-Miss/Zero-Effort-Velocity Feedback
Guidance

The orbit-raising problem is somewhat unusual in that the control
requirements are different along the radial and tangential axes. In the
radial direction, there are position and velocity requirements as usual.
In the tangential direction, we have the rare case where only the
velocity is specified. The feedback algorithm is a combination of
Eqs. (11) and (13), as follows:

ar !
6

t2go
ZEMr −

2

tgo
ZEVr at !

1

tgo
ZEVt (48)

where the ZEM and ZEV are, as before, the difference between the
required and predicted terminal states defined as

ZEMr ! rf − ~rF ZEVr ! − ~uF ZEVt !
#####
μ
rf

r
− ~vF (49)

Due to nonlinearities in the system, the ZEM/ZEV algorithm with
direct gravity compensation, Eq. (14), can be used as

ar !
6

t2go
"rf − "r$ tgou## −

2

tgo
"uf − u# −

$
v2

r
−

μ
r2

%

at !
1

tgo
"vf − v# −

$
−
uv

r

%
(50)

The first ZEM/ZEV algorithm, Eq. (48), works by numerically
predicting the final states, so it is called the ZEM/ZEV predicting
algorithm, or ZEM/ZEV-p. The second algorithm, Eq. (50), works by
directly compensating for the gravitational acceleration terms, so it is
called the ZEM/ZEV compensating algorithm, or ZEM/ZEV-c.

B. Numerical Simulation Example

The same initial conditions as the Mars orbit transfer problem are
considered, with the same flight time. In the polar coordinate system,
we have r"t0# ! 1 AU, u"t0# ! 0 AU∕TU, v"t0# ! 1 AU∕TU, and
tf ! 2.4771 TU. Both proposedZEM/ZEValgorithms, described by
Eqs. (48) and (50), are used, called ZEM/ZEV-p and ZEM/ZEV-c,
respectively. The optimal open-loop solution generated by GPOPS is
also shown.
Implementing GPOPS for the basic orbit-raising problem is

relatively simple. The flight time is fixed. The final radial and
tangential velocities are specified, as is the final radius. The final
rotation angle is free. Later, a more interesting implementation of a
multiphase optimal control problem with GPOPS will be described.
Figure 8 shows the position, velocity, and acceleration histories in

the radial and tangential directions for all three cases. The different
algorithms perform similarly in the radial direction, but are
noticeably different in the tangential direction.
Sharma et al. describes a waypoint method for the same orbit-

raising problem [9]. The problem was broken up into several
segments, where the terminal state for each segment is a waypoint in
the overall problem.A series solutionmethod (SSM)was then used to
connect the waypoints. The ZEM/ZEValgorithm can be used as part
of a waypoint method to improve performance. For this problem, the
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Fig. 8 144-day orbit raising from Earth orbit to Mars orbit.
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total flight time is divided into equal-length segments, and GPOPS is
used to generate waypoints, enforcing the control law during the
flight. These waypoints are then used as intermediate points for
control law simulation. The gravity compensation form ZEM/ZEV-c
is used for the waypoint method.
Optimal waypoints for the orbit-raising problem can be foundwith

GPOPS. The principle of optimality ensures that the optimal solution
in multiple phases is equivalent to the optimal solution as one phase.
To find waypoints, then, the problem is broken up into any number of
segments of equal duration. The six-dimensional waypoint (three
position components and three velocity components) is left as a set of
six parameters to be found by GPOPS. Parameter variables are
constant during each phase, but not known ahead of time. When
GPOPS solves the optimal control problem, the optimal parameters
(the optimal waypoints) are found. ZEM/ZEV control can then be
used, with each waypoint used as the final position and final velocity
for a given phase. A much more in-depth discussion of optimal
waypoint determination, applied to a Mars landing problem, is given
in [20].
Figure 9 shows the orbit-raising trajectories for all four methods

discussed, ZEM/ZEV-p, ZEM/ZEV-c, optimal open-loop, and the
waypoint method with 12 waypoints. The first three of these plots

show the normalized accelerations every one-tenth of the mission
time, while the last shows the locations of the waypoints. Table 2
compares the performance of the ZEM/ZEV waypoint method and
the SSM waypoint method. Four cases are considered, using 1, 2, 4,
and 12 total waypoints. The case with no waypoints, as well as the
open-loop optimal solution, are also shown for comparison.
The two ZEM/ZEV algorithms perform similarly, with a perfor-

mance index 50–60% larger than the open-loop optimal. The com-
pensating algorithm performs better than the predicting algorithm
due to the nonlinear coupled terms. The predicting algorithm does not
command as large of an angular change during the mission, as can be
seen in the rotation angle plot in Fig. 8. This plot shows that control
effort is wasted trying to overcome misleading terms in the dynamic
equations. The accelerationvectors in Fig. 9 show that the ZEM/ZEV
algorithms spend too much effort in the radial direction, which must
be made up for later. The ZEM/ZEV algorithms also show the
opposite trends in tangential control from the optimal. Because the
control directions are separated, the tangential control channel cannot
account for the effects of radial acceleration on tangential velocity.
One way to overcome these problems is to simply specify a terminal
position and velocity, changing the orbit-raising problem to an
orbital transfer problem. For the case of the orbital transfer problem

a) ZEM/ZEV-p b) ZEM/ZEV-c

c) Open-loop optimal d) Waypoint-optimized ZEM/ZEV & open-loop optimal
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Fig. 9 Orbit-raising trajectories using ZEM/ZEV and open-loop optimal methods.
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formulation, the ZEM/ZEV comes within 2% increase of the
open-loop optimal performance index value.
The ZEM/ZEValgorithm can also be improved by implementing a

waypoint scheme. The adverse effects from nonlinear terms and
coupled dynamics are reduced for shortermission times. By breaking
themission up intomany shorter segments, the feedback properties of
the ZEM/ZEValgorithm can be preservedwhile approaching optimal
performance. The ZEM/ZEValgorithm compares favorably with the
SSMmethod as the number of waypoints is increased, as can be seen
in Table 2.

VIII. Conclusions
Four different applications of the generalized zero-effort-miss/

zero-effort-velocity (ZEM/ZEV) feedback guidance algorithm have
been investigated in this paper. The application examples were the
ballistic missile intercept problem, the asteroid intercept and landing
problem, and the orbital transfer/raising problems. For cases when
the gravitational acceleration can be assumed to be independent
of the vehicle’s state, three different feedback-optimal ZEM/ZEV
algorithms are considered. For many practical missions, the
gravitational acceleration is a function of the vehicle’s state. By
numerically propagating the system state, corresponding generalized
ZEM/ZEValgorithms can be obtained.
Numerical simulations demonstrated that the generalized ZEM/

ZEV guidance algorithm can achieve intercept at a specified time.
When themission time is not specified, performance can be improved
with a flight-time adaptive approach. ZEM/ZEV feedback guidance
is conceptually simple, and is easy to implement. It works for many
different cases, as the gains are predefined and do not need to be
adjusted based on experience or on the specific problem.
The ZEM/ZEValgorithm can be used for a case, such as asteroid

landing, where the only the magnitude of the terminal position is
specified. Results of numerical simulations show the feasibility of the
approach, including autonomous landing site selection.
For highly nonlinear systems with coupled dynamics, such as the

orbital transfer/raising problem, numerical simulations have con-
firmed the effectiveness of the generalized ZEM/ZEValgorithm. For
some missions, the performance of the ZEM/ZEV algorithm is
significantly worse than the open-loop optimal solution. In these
cases, a series of waypoints can be found using commercially avail-
able optimization software. The ZEM/ZEV algorithm is then used
between each waypoint. The ZEM/ZEV waypoint algorithm
approaches the performance of the open-loop optimal solution, while
maintaining the robustness of a closed-loop feedback algorithm.
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