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Abstract

In this paper, nonlinear least squares (NLLS) estimators are proposed for semiparametric

binary response models under conditional median restrictions. The estimators can be identical

to NLLS procedures for parametric binary response models (e.g. Probit), and consequently

have the advantage of being easily implementable using standard software packages such as

Stata. This is in contrast to existing estimators for the model, such as the maximum score

estimator (Manski, 1975, 1985) and the smoothed maximum score (SMS) estimator (Horowitz,

1992). Two simple bias correction methods—a proposed jackknife method and an alternative

nonlinear regression function—result in the same rate of convergence as SMS. The results from

a Monte Carlo study show that the new estimators perform well in finite samples.
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1 Introduction

The binary response model studied in this paper is of the form

yi = I[x�iβ0 − �i ≥ 0]

where I[·] is the indicator function, yi is the observed response variable, taking the values 0 or 1,

and xi is an observed vector of covariates which affect the behavior of yi. Both the disturbance

term �i, and the vector β0 are unobserved, the latter often being the parameter estimated from a

random sample {yi, x�i}ni=1
.

The disturbance term �i is restricted in ways that ensure identification of β0. Parametric

restrictions specify the distribution of �i up to a finite number of parameters and assume it is

distributed independently of the covariates xi. The resulting models are often considered too

restrictive, as standard estimators are usually inconsistent if the distribution of �i is misspecified

or conditionally heteroskedastic.

Semiparametric, or “distribution-free,” restrictions have also been imposed in the literature,

resulting in a variety of estimation procedures for β0. For a thorough survey on the various re-

strictions and proposed estimators, see Powell (1994). In this paper we focus exclusively on the

conditional median restriction,

med(�i | xi) = 0,

which is widely regarded as the weakest restriction imposed in the literature (cf. Powell, 1994).

Several estimators of β0 have been proposed under this restriction. The first was the maximum

score estimator proposed by Manski (1975), which maximized the objective function

Mn(β) =
1

n

n�

i=1

�
I[yi = 1]I[x�iβ ≥ 0] + I[yi = 0]I[x�iβ < 0]

�
. (1.1)

Since yi is a binary variable, this is numerically equivalent to minimizing the least absolute devia-

tions (LAD) objective function:

M �
n(β) =

1

n

n�

i=1

��yi − I[x�iβ ≥ 0]
�� . (1.2)

Manski (1975, 1985) established the estimator’s consistency and Kim and Pollard (1990) showed

that its rate of convergence is n−1/3 and established its limiting distribution, which is non-standard

and non-Gaussian, making inference based on this distribution infeasible. As an alternative, Del-

gado, Rodŕıguez-Poo, and Wolf (2001) established that inference based on subsampling is possible

in such models, but Abrevaya and Huang (2005) showed that the bootstrap does not consistently

estimate the asymptotic distribution.

In an effort to improve the situation, Horowitz (1992) modified the maximum score procedure
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by “smoothing” the objective function in (1.1). Specifically, his approach was to maximize

Sn(β) =
1

n

n�

i=1

�
I[yi = 1]Kh(x

�
iβ) + I[yi = 0](1−Kh(x

�
iβ))

�
, (1.3)

where Kh(·) ≡ K(·/h) for some smooth kernel function K(·) and h denotes a smoothing parameter

which converges to 0 with the sample size. Under stronger smoothness conditions on the distri-

butions of �i and xi, Horowitz showed that the estimator converges at the rate1 of n−2/5 with an

asymptotically normal distribution. Although this makes it possible to carry out standard asymp-

totic inference with the smoothed maximum score (SMS) estimator, Horowitz (2002) showed that

the bootstrap provides asymptotic refinements and provides Monte Carlo evidence of improved

finite sample performance relative to first-order asymptotic approximations.

Both Manski and Horowitz assume that at least one component of xi has full support on the

real line to ensure that β is point identified. More recently, Komarova (2008) has developed set

estimators based on the maximum score objective function for the case when xi is discrete, and

thus β may only be partially identified. Blevins (2010) extends this idea to the case of fixed effects

panel data models where xi may be either discrete or continuous but bounded.

Although both the maximum score and smoothed maximum score estimators have desirable

asymptotic properties, they are difficult to implement in practice. The maximum score estima-

tor has a discontinuous objective function, ruling out gradient-based optimization methods. The

smoothed maximum score estimator is also difficult to implement, as the objective function can

have several local maxima. Horowitz (1992) suggested using the simulated annealing algorithm

(Corana, Marchesi, Martini, and Ridella, 1987; Goffe, Ferrier, and Rogers, 1994) to search for a

global maximum. Unfortunately, such an algorithm, which requires the selection of several “tuning”

parameters by the researcher, is not available in standard econometric software packages.2

The difficulty in implementing the maximum score and smoothed maximum score estimators

in practice is precisely what motivates the estimators introduced in this paper. Specifically, we

propose procedures that are analogous to NLLS estimators of parametric models such as Probit,

and can thus be easily implemented using standard software packages such as Stata.

The rest of the paper is organized as follows. The following section describes the new procedures

in detail and explores their asymptotic properties. Section 3 discusses bias correction procedures

for improving the asymptotic properties of the estimators. Section 4 explores the finite sample

properties of the estimator by ways of a small scale simulation study, and Section 5 concludes by

summarizing and discussing areas for future research. The proofs of the asymptotic properties of

the estimators are left to the appendix.

1
Horowitz (1993a) showed that this is the fastest possible rate of convergence under these conditions.

2
Furthermore, even in cases where such algorithms are readily available, the local NLLS estimator developed in

this paper still has the advantage that standard gradient-based optimization methods can be used, which generally

converge much faster than stochastic search algorithms.
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2 Local NLLS Estimators

The estimators proposed herein combine ideas from the maximum score and smoothed maximum

score objective functions in (1.2) and (1.3). First, note that the maximum score objective function

in (1.2) is equivalent to the quadratic loss objective function

1

n

n�

i=1

�
yi − I[x�iβ ≥ 0]

�2
,

since both yi and the indicator function are binary. Next, we replace the indicator function above

with a smooth kernel function. Just as the smoothed maximum score estimator employs a kernel

function to smooth the indicator in (1.2), we replace the indicator function above with a kernel

function. In the case of SMS, the kernel function serves to approximate a cumulative distribution

function (cdf). We take the same approach here and use the standard normal distribution3 with

cdf Φ(·) and probability density function (pdf) φ(·).
Formally, let hn be a positive sequence of real numbers which decreases to zero with the sample

size. The sequence hn can be viewed as a bandwidth sequence used in nonparametric kernel

estimation. Because β is only identified up to scale, we use the customary scale normalization

used in semiparametric models (e.g. Horowitz, 1992), where we fix βk, the coefficient on the last

regressor, equal to one, and consider estimation of θ0 only, where β0 = (θ�
0
, 1)�. Our NLLS estimator

is defined as

β̂ = arg min
β∈Θ×1

1

n

n�

i=1

�
yi − Φ

�
x�iβ

hn

��2

(2.1)

where β̂ = (θ̂�, 1)�. The primary advantage of this estimator is that it is a simple modification

of the standard NLLS objective function. Aside from imposing the scale normalization on β and

rescaling the index x�iβ, the objective function is identical to that of the NLLS probit estimator

which is widely used to estimate parametric binary choice models. As such, the estimator can be

readily computed using standard software packages such as Stata.4

As with other semiparametric estimators for the binary choice model, and even the parametric

Probit and Logit models, the estimated coefficients must be interpreted in light of the required scale

normalization. That is, only relative magnitudes of the coefficients are identified and the sign of the

coefficient βk is the same as the sign of the partial effect of xk on the response probability. Thus,

all coefficients should be interpreted relative to the coefficient on a particular chosen component of

x. Note that for the NLLS estimator above, these relative magnitudes are unchanged when scaling

by the inverse of the bandwidth hn.

3
Actually, the cdfs of other random variables can be used as well, so for example NLLS Logit can also be used as

an estimator. We only use the normal cdf since its values can be easily computed using standard software packages.
4
For example, in Stata, the nl command fits an arbitrary nonlinear function by least squares. The Probit regression

function can be constructed using Stata’s norm command, which returns cumulative probabilities from the standard

normal distribution.
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Our first result regarding the asymptotic properties of the estimator is based on the following

assumptions:

A1 The vectors (x�i, �i)
� are i.i.d.

A2 θ0 ∈ Θ, a compact subset of Rk−1.

A3 The support of xi, denoted X , is not contained in any proper linear subspace of Rk.

A4 The density function of x�iβ0 conditional on x̃i (the first k − 1 components of xi), denoted

fZ|X̃(·), is positive in a neighborhood of 0.

A5 med(�i | xi) = 0.

First, the following theorem, whose proof appears in the appendix, establishes the consistency

of the estimator.

Theorem 2.1. Under Assumptions A1–A5, if hn → 0, then θ̂ − θ0
p→ 0.

Next, we consider the rate of convergence and limiting distribution. We strengthen our as-

sumptions to be able to draw comparisons to the smoothed maximum score estimator and impose

conditions that are identical to those in Horowitz (1992).

A1’ The vectors (yi, x�i)
� are i.i.d.

A2’ The support of xi, denoted X , is not contained in any proper linear subspace of Rk, and

0 < P (yi = 1|xi) < 1 almost surely. The density of the last component of xi conditional on

x̃i is positive on the real line.

A3’ med(�i | xi) = 0 almost surely.

A4’ θ0 is in the interior of a compact set Θ ⊂ Rk−1.

A5’ Letting � · � denote the Euclidean norm, we have E[�x̃i�4] < ∞.

A6’ The density function of x�iβ0 conditional on x̃i, denoted fZ|X̃(·), is positive and continuously

differentiable with bounded derivative.

A7’ The conditional probability function of yi, expressed as a function of x̃i and x�iβ0, is twice

continuously differentiable with respect to x�iβ0 with bounded derivatives for x�iβ0 in a neigh-

borhood of 0, for all x̃i.

A8’ The matrix

Q = E[P̃2(x̃i, 0)x̃ix̃
�
ifZ|X̃(0|x̃i)]

is nonsingular, where P̃ (x̃i, x�iβ0) denotes the conditional probability of yi = 1 given xi, which

has been reparametrized as a function of x̃i, x�iβ0, and P̃2(·, ·) denotes the partial derivative

of P̃ (·, ·) with respect to its second argument.
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The following theorem characterizes the rate of convergence and limiting distribution of the

estimator as a function of hn. The proof of the theorem is left to the appendix.

Theorem 2.2. Suppose that A1’–A8’ hold and hn → 0.

1. If nh3n → ∞, then h−1
n (θ̂ − θ0)

p→ κ where κ is a k-dimensional vector of constants.

2. If hn = O(n−1/3), then n1/3(θ̂ − θ0)
d→ B where the random vector B has non-standard (i.e.

non-Gaussian) distribution.

Thus, the asymptotic properties of the NLLS estimator are similar to that of the maximum score

estimator Manski (1975, 1985). In particular, the rate of convergence can be as fast as the n−1/3

and the limiting distribution is non-Gaussian, as is the case with the maximum score estimator.5

Note that although the point estimates will be correct, the standard errors reported by a local

nonlinear least squares routine are not correct. Furthermore, because of the complicated nature

of the limiting distribution, inference based directly on Theorem 2.2 appears to be infeasible.

Alternative methods are necessary, such as the bootstrap, which performs well for the closely-

related smoothed maximum score estimator. See, for example, Section 4.3.3 of Horowitz (2009) on

the use of the bootstrap for SMS.

The rate of convergence is slow, relative to the smoothed maximum score estimator of Horowitz

(1992), due to the fact that the bias of the estimator converges at the rate hn, in contrast to the rate

h2n for the smoothed maximum score estimator. Thus, given the different rates of convergence, the

situation is similar to the differing rates for one- and two-sided kernel estimators in nonparametric

density and regression estimation.

Fortunately, the rate of convergence of the local NLLS estimator can be improved by correcting

the bias. The following section considers two procedures that result in the same rate of convergence

as SMS while remaining easily implementable in standard statistical software packages.

3 Bias Correction Procedures

To motivate the bias correction procedures we propose, the following theorem, whose proof is left

to the appendix, establishes a linear representation for the local NLLS estimator.

Theorem 3.1. Assume Assumptions A1’–A8’ hold, hn → 0, and nh3n → ∞. Then

θ̂ − θ0 = Q−1 1

nhn

n�

i=1

(ψni − E[ψni]) +Q−1E[ψni]

hn
+ op

�
1/
�
nhn

�

where

ψni =

�
yi − Φ

�
x�iβ0
hn

��
φ

�
x�iβ0
hn

�
x̃i

5
For the NLLS estimator, the non-Gaussianity stems from the result that the Hessian term in its linear represen-

tation converges to a random matrix, implying the estimator has an asymptotically mixed normal distribution (cf.

van der Vaart and Wellner, 1996, Section 9.6).
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It can be shown by a standard change of variables argument that the “bias term” in the linear

representation, Q−1 E[ψni]

hn
, is only of order hn. As alluded to in the previous section, this is why

the local NLLS probit estimator can only achieve a maximum rate of convergence of cube-root

consistency. We propose simple methods for ensuring that the bias of the estimator is O(h2n), which

will enable a rate of convergence of θ̂ of O(n−2/5), as with the SMS estimator, if hn = O(n−1/5).

3.1 Jackknifed Local NLLS

The first method we propose for reducing the order of bias for the local NLLS estimator is analogous

to the “jackknife” method used in nonparametric estimation (Schucany and Sommers, 1977; Bierens,

1987). Our method involves constructing an estimator for θ0 by simply taking a weighted average

of two local NLLS estimators that involve two distinct constants in the smoothing parameter. We

note that this procedure can still be performed using standard software packages such as Stata—it

just involves computing the local NLLS estimator twice.

To construct our proposed jackknife estimator, let h1n = κ1n−1/5 and h2n = κ2n−1/5 denote

two smoothing parameters, where κ1 and κ2 are positive constants. Let w1 and w2 denote the

weights that will be assigned to the two estimators obtained by using smoothing parameters h1n

and h2n. We impose the following conditions6 on w1,w2,κ1, and κ2:

w1 + w2 = 1,

w1κ1 + w2κ2 = 0.

Let θ̂1 and θ̂2 denote the local NLLS estimators obtained using h1n and h2n as smoothing parame-

ters, respectively. We define the jackknife NLLS estimator as

θ̂jk = w1θ̂1 + w2θ̂2.

The following theorem, whose proof can be found in the appendix, characterizes the asymptotic

properties of the jackknife NLLS estimator.

Theorem 3.2. Under Assumptions A1’–A8’, if hn = O(n−1/5), then

n2/5(θ̂jk − θ0)
d−→ N(Bjk, Q

−1VjkQ
−1)

where

Q = E[P̃2(x̃i, 0)x̃ix̃
�
ifZ|X̃(0|x̃i)],

Vjk = V1(c1w
2
1κ

−1

1
+ c1w

2
2κ

−1

2
+ 2w1w2c2κ

−1

1
),

6
We note that w1, w2, κ1, κ2 need not be constants—they can all be functions of xi and the arguments used in

this section still carry through. We only assume they are constants for ease of exposition.
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and

V1 = E[x̃ix̃
�
ifZ|X̃(0|x̃i)],

with

c1 =

�
Φ2(u)φ2(u) du,

rκ = κ1/κ2,

c2 =

�
φ(u)φ(u/rκ) (0.5(1− Φ(u)− Φ(u/rκ)) + Φ(u)Φ(u/rκ)) du,

and

Bjk = (w1κ
2
1 + w2κ

2
2)
1

2
E

�� ��
1

2
− Φ(u)

�
fZ|X̃(0|x̃i) + 2P̃2(x̃i, 0)f

�
Z|X̃(0|x̃i)

+P̃22(x̃i, 0)fZ|X̃(0|x̃i)
�
u2φ(u) du x̃i

�

where P̃22(·, ·) denotes the second derivative of P̃ (·, ·) with respect to its second argument.

Thus the jackknifed local NLLS estimator can achieve the same rate of convergence as the

smoothed maximum score estimator and has an asymptotic normal distribution. In standard non-

parametric estimation, the jackknife is used to achieve bias reduction and attain the optimal rate of

convergence for estimating a density or regression function. Here the motivation of combining NLLS

estimators is to achieve bias reduction and attain the same rate of convergence as the smoothed

maximum score estimator, which is the optimal rate under assumptions A1’–A8’ (Horowitz, 1993a).

Furthermore, the form of the limiting distribution, which depends on the weights and constants,

suggests choice of those parameters to minimize the asymptotic mean squared error. The optimal

choices are discussed in Section A.5 of the appendix, as is a procedure to construct a feasible

optimal jackknife estimator.

3.2 A Different Nonlinear Regression Function

As discussed in the proofs of Theorems 2.2 and 3.1, the bias problem of the local NLLS is associated

with the fact that the normal cdf is used. An alternative bias correction procedure would be to use

a function F (·) in the NLLS objective function as opposed to using the normal cdf Φ(·). The bias

term of the NLLS probit was of order hn because
�
Φ(u)φ(u)u du �= 0 and the function F (·) will

have to be chosen so the analogous integral
�
F (u)f(u)u du, with f(·) = F �(·), is 0.

Importantly, it is no more difficult to implement the estimator using a general function F than

with the normal cdf because NLLS procedures in common statistical packages such as Stata allow

the user to provide a generic regression function.
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The restrictions preclude F (·) from being a cumulative distribution function, making this ap-

proach analogous to the use of higher order kernel functions7 which are not density functions in

nonparametric density/regression estimation. Let θ̂F denote the NLLS estimator with F (·) re-

placing Φ(·) in (2.1). The theorem below, whose proof can be found in the appendix, establishes

that the following conditions on F (·) are sufficient for θ̂F to converge at the rate of n−2/5 with an

asymptotic Gaussian distribution.

F1
�
(1
2
− F (u))f(u) du = 0

F2
�
f(u)u du = 0

F3
�
F (u)f(u)u du = 0

F4
� �

[1
2
− F (u)]f �(u)− f2(u)

�
du = 0

F5 0 <
��� f �(u)u du

�� < ∞

F6
��� �

[1
2
− F (u)]f �(u)− f2(u)

�
u du

�� < ∞

Theorem 3.3. Suppose that A1’–A8’ hold, that F (·) satisfies F1–F6, and that hn = O(n−1/5).

Then

n2/5(θ̂F − θ0)
d−→ N(BF , Q

−1

F VFQ
−1

F )

where

BF =
1

2

�

X̃

� ��
1

2
− F (u)

�
fZ|X̃(0|x̃i) + 2P̃2(x̃i, 0)f

�
Z|X̃(0|x̃i)

+P̃22(x̃i, 0)fZ|X̃(0|x̃i)
�
u2f(u) dux̃i dPX̃(x̃i),

QF = E
��

cF2P̃2(x̃i, 0)fZ|X̃(0|x̃i) + cF3f
�
Z|X̃(0|x̃i)

�
x̃ix̃

�
i

�
,

and VF = cF1 · E[x̃ix̃�ifZ|X̃(0|x̃i)], with cF1 =
�
F 2(u)f2(u) du, cF2 =

�
f �(u)u du, and cF3 =

� �
[1
2
− F (u)]f �(u)− f2(u)

�
u du.

Remark 3.1. When the function F (·) satisfies the following two symmetry properties, then the

integral in condition F6 and cF3 is zero:

F7 F (−u) = 1− F (u),

F8 f(u) = f(−u).

In this case, QF simplifies to QF = E
�
cF2P̃2(x̃i, 0)fZ|X̃(0|x̃i)x̃ix̃�i

�
. The particular family of regres-

sion functions we propose below satisfies these properties.
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Figure 1: Nonlinear regression functions F compared to the normal cdf Φ

Functions satisfying the required conditions can be constructed using the error function, defined

as erf(u) = 2√
π

� u
0
e−t2 dt. For example, functions of the form

F (u) =
1

2
+ α · erf

�
u√
2

�
+ β · erf(u) (3.1)

with α = −1

2

�
1−

√
2 +

√
3
�
β and β �= 0 satisfy the main conditions F1–F6 as well as the symmetry

properties F7–F8.

This family of functions is plotted in Figure 1 for several values of β alongside the standard

normal cdf Φ(u). Note that Φ(u) has the form above, but with α = 1/2 and β = 0, so it is not a

member of the same family of functions because the coefficient β is zero, violating the conditions

required for unbiasedness, which cdfs do not satisfy. This family of alternative regression functions

is examined in the following section, which discusses a series of Monte Carlo experiments designed

to shed light on the small-sample properties of the estimator.

With the more standard rate and limiting distribution of the NLLS estimator, a natural exten-

sion to consider is then a weighted NLLS procedure. It is well known that in parametric settings,

the efficiency of the NLLS Probit estimator can be improved by weighting the observations, and

one can make the NLLS estimator as efficient as the MLE using optimal weights. For the problem

at hand, the weight function can be chosen to minimize the asymptotic mean squared error of the

estimator. The appendix provides the form of this optimal weighting matrix and further discusses

implementation of a feasible weighted NLLS approach.

7
See, for example, Newey, Hsieh, and Robins (2004) on “twicing kernels”, which are higher order.
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4 Monte Carlo Results

In this section, we investigate the small-sample performance of the estimators introduced in this

paper by ways of a small-scale Monte Carlo study. The model used in this simulation study is

yi = I[α0 + x1iβ0 + x2i + �i > 0]

where x1i has a chi-square distribution with 1 degree of freedom (minus its mean of 1), x2i has

a standard normal distribution, α0 was set at -0.5 and β0 at -1. Three different distributions

for �i were simulated: standard normal, chi-square with 1 degree of freedom minus its median,

and Cauchy. Both homoskedastic and heteroskedastic designs were simulated, the heteroskedastic

designs involved a multiplicative scale factor of the form exp(x1i · |x2i|).
Tables I–VI report results for comparing the performance of the estimators discussed in this

paper: the local NLLS (NLLS), jackknifed local NLLS (JKNLLS), local NLLS with an alternative

regression function (NLLSF), and smoothed maximum score (SMS) estimators. For NLLSF, we

use the regression function in (3.1) with β = 1. Reported are the mean bias, median bias, root

mean square error (RMSE), and median absolute deviation (MAD) for sample sizes n = 100, 200,

and 400, with 4001 replications each.

For each estimator, we select the bandwidth for each sample as follows. For NLLS, we choose

hn using cross-validation to minimize the leave-one-out sum of squared residuals. For JKNLLS, the

weights and bandwidth constants are chosen for each sample according to the procedures outlined

in the appendix. JKNLLS-1 indicates the first method, which chooses w1, w2, κ1, and κ2 to

minimize the constant portion of the asymptotic mean square error. For JKNLLS-2, we choose

these constants to minimize an estimate of the asymptotic mean square error using a finite sample

estimate of the asymptotic variance matrix. For NLLSF, we use the optimal bandwidth selection

procedure suggested by Horowitz (1992) for SMS since both estimators have a similar asymptotically

linear structure, which yields asymptotic normality with bias on the order of h2n in both cases. For

SMS, a normal kernel function was used and we compared three bandwidth selection procedures.

For SMS-1, we use the same optimal SMS bandwidth selection procedure described above.8 For

SMS-2, we select the bandwidth using Silverman’s rule of thumb, hn = 1.06 · σ̂ ·n−1/5 where σ̂ is the

sample standard deviation of yi. Finally, for SMS-3 we choose the bandwidth using leave-one-out

least absolute deviations cross-validation.

All the estimators were computed9 using the Nelder-Mead simplex algorithm with multiple

starting values, including the OLS and LAD estimates and zero.

As the results indicate, the finite sample performance is mostly, but not entirely in accordance

8
For both NLLSF and SMS-1 we iterate this procedure, as suggested by Horowitz (1992). For each sample, we

first obtain an estimate of θ̂(0) using the bandwidth h(0)
n = n−1/5

. We then estimate the optimal bandwidth h(1)
n ,

which we use obtain a second estimate θ̂(1). Then, using the second estimate, we obtain a second estimate of the

optimal bandwidth, h(2)
n . Finally, we report the estimate θ̂(2) obtained using the bandwidth h(2)

n .
9
The simulation study was performed in Fortran, despite the fact that the new estimators were motivated by the

fact that they could be computed with Stata. Fortran was used so all estimators could be computed using a common

random number generator, as SMS cannot be computed with Stata.
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with the asymptotic theory. The biggest surprise is that in terms of RMSE, for some designs, the

standard NLLS performs as well as, if not better than the other estimators despite its slower rate

of convergence. The jackknife bias correction procedure (JKNLLS) generally results in a lower bias

than the NLLS, but it appears this sometimes comes at the expense of a larger variance, leading

to a higher finite-sample RMSE in some designs. Furthermore, the alternative regression function

(NLLSF) achieves a relatively low RMSE uniformly across the experiments, having the lowest or

second-lowest RMSE in all but two experiments. In all of the normal and Cauchy designs, and

in all but the largest sample size chi-square specifications, it is second only to the baseline NLLS

estimator. For the chi-square design with our largest sample size, the SMS-1 and SMS-2 estimators

have the lowest RMSE, followed by NLLSF.

The NLLS estimators appear to perform better in the homoskedastic designs. The situation

here is similar to that of parametric NLLS estimators, for which weighting can improve efficiency

under heteroskedasticity. For example, in the probit model, an optimally weighted NLLS estimator

is asymptotically equivalent to MLE. We discuss a weighted NLLS extension in the appendix.

Interestingly, both estimators proposed outperform the SMS in many designs, especially for

the smaller sample sizes, though it may well be the case that relative performance depends on the

bandwidth choice. Again, it is quite surprising that the standard NLLS sometimes outperforms

SMS, as the latter converges at a faster rate.

Overall, these results indicate that the NLLS estimators introduced in this paper are a viable

alternative to the smoothed maximum score estimator in empirical applications, since it appears

that their ease in implementation does not come at the expense of finite sample performance.

5 Conclusions

In this paper, new estimation procedures for the binary response model under conditional median

restrictions were proposed. The estimators were based on applying NLLS procedures for parametric

models to this semiparametric model. Their primary advantage is their relative computational

simplicity, as they can be applied using standard software packages such as Stata. A simulation

study indicates these estimators perform adequately well in finite samples.

The work here suggests areas for future research. First we note that variations of the (smoothed)

maximum score estimator have been developed for the analysis of binary choice in panel data (Man-

ski, 1987; Charlier, Melenberg, and van Soest, 1995) and choice-based sampling model (Manski,

1986; Horowitz, 1993b, 2009), so the NLLS approach proposed in this paper can be extended to

those settings as well. Thus, future work can derive the asymptotic properties of these estimators.

Second, the relative efficiency of the procedures introduced here needs to be explored, specifically

in comparison to the SMS and its more efficient variant in Kotlyarova and Zinde-Walsh (2002).

Related to this, efficiency gains of the NLLS estimator, either by optimally selecting the weights in

the proposed jackknife or by a weighted nonlinear least squares (WNLLS) estimator, needs to be

studied.
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Furthermore, it would be useful to explore whether rates of convergence arbitrarily close to

root-n can be attained by the proposed estimators under stronger smoothness conditions,10 as is

the case with the smoothed maximum score estimator.
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A Appendix

A.1 Proof of Theorem 2.1

We first establish consistency using the standard consistency theorem of Newey and McFadden

(1994, Theorem 2.1). The proof is similar to those found in Manski (1985) and Horowitz (1992).

Compactness follows from Assumption A2. Uniform convergence follows by the boundedness of

the objective function and the law of large numbers, which follows from Assumption A1. Continuity

of the limiting objective function follows from Assumption A4. We note by the assumption that

hn → 0, that the component of the limiting objective function that depends on β is:

E[(1− 2P̃i)(I[x
�
iβ > 0]− I[x�iβ0 > 0])]

where P̃i denotes P̃ (x̃i, x�iβ0) ≡ P (yi = 1|xi). The above expectation is clearly 0 for β = β0. By the

strict monotonicity of Φ(·), which is > (<)1/2 if its argument is > (<)0, and Assumptions A3, A4,

A5, it follows that this component of the objective function is strictly positive if β �= β0, implying

it is uniquely minimized at β0. This establishes consistency. �

A.2 Proof of Theorems 2.2 and 3.1

This section derives the asymptotic theory for the NLLS estimator. The strategy adopted is to

expand the first order condition as is typically done in standard parametric distributional theory,

and separately derive the asymptotic properties of the “Hessian” and “score” terms. This approach

permits the proof of both theorems in a common setting.

Before proving asymptotic theory, we briefly discuss some additional conditions imposed as well

as notation used throughout. Throughout this section � ·� will denote the Euclidean norm. Ranges

of integration are denoted by subscripts, or otherwise meant to be the real line. Also, here we

assume x̃i, whose distribution function will be denoted by PX̃(·), has bounded support, denoted by

X̃ . This can be relaxed at the expense of longer proofs, either by decomposing the support of x̃i

and using Assumption A5’, or along the lines of the proofs in de Jong and Woutersen (2011).

Furthermore, the following notation will also be adopted: let

Φni, φni, φ�
ni, Φ̂ni, φ̂ni, φ̂�

ni,Φ
∗
ni, φ∗

ni, φ
�∗
ni denote

Φ(x�iβ0/hn), φ(x
�
iβ0/hn), φ

�(x�iβ0/hn), Φ(x
�
iβ̂/hn), φ(x

�
iβ̂/hn), φ

�(x�iβ̂/hn),

Φ(x�iβ
∗/hn), φ(x�iβ

∗/hn), φ�(x�iβ
∗/hn),

respectively, where β∗ denotes an intermediate value.

Throughout the proofs, we will use the following properties of the standard normal distribution11

(all integrals below are from −∞ to +∞ and φ�(·) denotes the derivative of the standard normal

density function):

•
�
φ�(u) du = 0

11
Note the list of properties is not minimal in the sense that some on the list follow from others. They are listed

in this fashion with the hope of making arguments in the proofs easier to follow.
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•
�
uφ�(u) du = −1

•
�
(Φ(u)φ�(u) + φ2(u)) du = 0

•
�
Φ(u)φ(u) du = 1

2

•
� �

(1
2
− Φ(u))φ�(u)− φ2(u)

�
du = 0

•
� �

(1
2
− Φ(u))φ�(u)− φ2(u)

�
u du = 0

•
�
φ(u)2

�
1

2
− Φ(u)

�
du = 0

Proceeding with the proof, we will let ε > 0 denote an arbitrarily small constant such for

|x�iβ0| < ε, the smoothness conditions in Assumptions A6’ and A7’ hold.

The first order condition can now be expressed as

1

n

n�

i=1

(yi − Φ̂ni)φ̂nix̃i = 0.

The usual mean value expansion yields

θ̂ − θ0 =

�
1

nh2n

n�

i=1

�
(yi − Φ∗

ni)φ
�∗
ni − φ2∗

ni

�
x̃ix̃

�
i

�−1

1

nhn

n�

i=1

(yi − Φni)φnix̃i. (A.1)

Before proceeding with the remainder of the proofs, we first establish the following preliminary

results which will be used in the remainder. The first two results will be used to establish limits of

several integrals we encounter in the main proof. The third result is similar to (A16) in Horowitz

(1992).

Lemma A.1. Let φ denote the standard normal pdf and let the functions gzx : R × X → R and

gx : X̃ → R and the vector δ ∈ Rk−1
be given. Suppose that A6’ holds, that x̃i has bounded support,

and that there is a constant M < ∞ such that sup |gzx| < M and sup |gx| ≤ M . Let φniδ denote

φ( zi
hn

+ x̃�iδ). Then,

h−1
n

�

X̃

�

|zi|≥ε
gzx(zi, x̃i)φniδfZ|X̃(zi | x̃i) dzi gx(x̃i) dPX̃(x̃i) = o(hn). (A.2)

Proof. Because fZ|X̃(·|·) is bounded for |zi| > ε by A6’, the Euclidean norm of (A.2) is bounded

above by a constant times h−1
n

�
X̃
�
|zi|>ε φniδ dzigx(x̃i) dPX̃(x̃i). With the change of variables u =

zi
hn

+ x̃�iδ, noting that x̃i is bounded, this term is bounded by a constant times
�
|u|>ε/hn

φ(u) du,

which is o(hn) by the tail behavior properties of the normal pdf. �

Lemma A.2. Let φ denote the standard normal pdf and let the functions gu : R → R and gx :

X̃ → R and the vector δ ∈ Rk−1
be given. Suppose that x̃i has bounded support and that there is a
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constant M < ∞ such that sup |gu| < M and sup |gx| ≤ M . Then,

�

X̃

�

|u−x̃�
iδ|≤ε/hn

gu(u)φ(u) du gx(x̃i) dPX̃(x̃i) = E[Cgx(x̃i)] + o(hn) (A.3)

where C =
�∞
−∞ gu(u)φ(u) du.

Proof. Let In denote the left hand side of (A.3). We note that if the range of the above integral

were u ∈ (−∞,+∞), then the integral would evaluate to E[Cgx(x̃i)]. Intuitively, the range of

integration approaches the real line as n → ∞, however, we need to formally establish that the

difference is o(hn).

Note that we can write In = I1 + I2n where

I1 =

�

X̃

� ∞

−∞
gu(u)φ(u) du gx(x̃i) dPX̃(x̃i) = E[Cgx(x̃i)].

and

I2n =

�

X̃

�

|u−x̃�
iδ|>ε/hn

gu(u)φ(u) du gx(x̃i) dPX̃(x̃i).

Note that by the fact that �x̃i� is bounded and consequently |hnx̃�iδ| can be made arbitrarily small,

we have that

h−1
n

�

|u−x̃�
iδ|>ε/hn

gu(u)φ(u) du ≤ h−1
n M

�

|u|>ε/hn

φ(u) du.

The right hand side term converges to 0 as n → ∞ by the tail behavior properties of the normal

pdf. Thus h−1
n I2n = o(1) by the dominated convergence theorem, which permits us to exchange

limits and integrals, as gx is bounded over the support of x̃i. �

Lemma A.3. Under Assumptions A1’–A8’, if hn → 0 and nhn → ∞, then θ̂ − θ0 = Op(hn).

Proof. Let zi = x�iβ0, let δ be any (k − 1) × 1 vector, let Φniδ and φniδ denote Φ( zi
hn

+ x̃�iδ) and

φ( zi
hn

+ x̃�iδ), respectively, and define the random process

Tn(δ) =
1

nh2n

n�

i=1

(yi − Φniδ)φniδx̃i.

We will first show that

�E[Tn(δ)]−Qδ� = O(1) +O(hn�δ�) +O(hn�δ�2). (A.4)

Before proving (A.4), we explain why it is being shown. If we let δ = h−1
n (θ̂− θ0), then by the first

order condition, Tn(δ) = op(1) and so the conclusion of Lemma A.3 will follow from the assumption

that Q is full rank (A8’).
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To show (A.4), we first note that:

E[Tn(δ)] = h−2
n

�

X̃

�

|zi|≤ε

�
P̃ (x̃i, zi)− Φniδ

�
φniδfZ|X̃(zi|x̃i)dzix̃idPX̃(x̃i) (A.5)

+ h−2
n

�

X̃

�

|zi|>ε

�
P̃ (x̃i, zi)− Φniδ

�
φniδfZ|X̃(zi|x̃i)dzix̃idPX̃(x̃i) (A.6)

The integral in (A.6) converges to zero by Lemma A.1.

Turing attention to (A.5), since the integral is over zi in a neighborhood of 0, we take a second

order expansion of P̃ (x̃i, zi) and fZ|X̃(zi|x̃i) around zi = 0. Note this is permitted by Assumptions

A6’ and A7’. This gives us the sum of three terms and a remainder term.

h−2
n

�

X̃

�

|zi|≤ε

�
1

2
− Φniδ

�
φniδfZ|X̃(0|x̃i)dzix̃idPX̃(x̃i) (A.7)

h−2
n

�

X̃

�

|zi|≤ε
P̃2(x̃i, 0)φniδfZ|X̃(0|x̃i)zidzix̃idPX̃(x̃i) (A.8)

h−2
n

�

X̃

�

|zi|≤ε

�
1

2
− Φniδ

�
φniδf

�
Z|X̃(0|x̃i)zidzix̃idPX̃(x̃i) (A.9)

In A.8, P̃2 denotes the partial derivative of P̃ with respect to the second argument, zi. The

remainder term involves all second order derivatives and will be dealt with after deriving the

properties of each of the above three terms.

We first show (A.7) is o(1). We do the change of variables u = zi
hn

+ x̃�iδ, and get

h−1
n

�

X̃

�

|u−x̃�
iδ|≤ε/hn

�
1

2
− Φ(u)

�
φ(u)fZ|X̃(0|x̃i) dux̃idPX̃(x̃i).

Then, we obtain the result by applying Lemma A.2 with gu(u) =
1

2
− Φ(u), gx(x̃i) = fZ|X̃(0|x̃i)x̃i,

and
�
gu(u)φ(u) du = 0, noting that the conditional density of zi is bounded near 0 by A6’, as is

x̃i over its support.

Turning attention to (A.8) the same change of variables as before yields:

�

X̃

�

|u−x̃�
iδ|≤ε/hn

P̃2(x̃i, 0)φ(u)fZ|X̃(0|x̃i)(u− x̃�iδ) dux̃idPX̃(x̃i)

We apply Lemma A.2 separately to the integrals involving u and x̃�iδ respectively, with gu(u) = u,
�
gu(u)φ(u) du = 0, gx(x̃i) = P̃2(x̃i, 0)fZ|X̃(0|x̃i)x̃i for the first integral and gu(u) = 1,

�
gu(u)φ(u) du =

1, gx(x̃i) = P̃2(x̃i, 0)fZ|X̃(0|x̃i)x̃ix̃�iδ for the second. Combining our results we may conclude that

(A.8) is Qδ + o(1).
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We now derive the limit of (A.9). With the same change of variables we get

�

X̃

�

|u−x̃�
iδ|≤ε/hn

�
1

2
− Φ(u)

�
φ(u)f �

Z|X̃(0|x̃i)(u− x̃�iδ) dux̃idPX̃(x̃i)

As before we deal with the integral involving u and x̃�iδ separately. We apply Lemma A.2 twice,

with gu(u) = (1/2 − Φ(u))u, gx(x̃i) = fZ|X̃(0|x̃i)x̃i, and
�
gu(u)φ(u) du = cφ ≈ 0.28 for the first

integral and gu(u) = (1/2 − Φ(u)), gx(x̃i) = fZ|X̃(0|x̃i)x̃ix̃�iδ, and
�
gu(u)φ(u) du = 0 for the

second. Combining our results we get that (A.9) is E[cφf �
Z|X̃(0|x̃i)x̃i] + o(1). This establishes the

asymptotic properties of the three terms (A.7), (A.8), (A.9). Combined, their sum converges to

Qδ + E[cφf �
Z|X̃(0|x̃i)x̃i] + o(1).

Finally, we deal with the remainder term, which involves the integral evaluated at second order

derivatives times z2i . Using the same change of variable and limit arguments as in establishing

the limits of (A.7), (A.8), (A.9), it follows that the Euclidean norm of the remainder term is

o(1) +O(hn�δ�) +O(hn�δ�2). Collecting all results establishes (A.4).

Therefore the conclusion of the lemma follows since by setting δ = h−1
n (θ̂ − θ0) as in this case

Tn(δ) = op(1) by the first order condition and the established consistency of the estimator. �

Hessian Term As mentioned at the beginning of this section, both Theorems 2.2 and 3.1 will be

proven by expanding the first order condition of the NLLS estimator. We first derive the probability

limit of the “Hessian” term in (A.1), which we denote by Ĥ:

Ĥ =
1

nh2n

n�

i=1

�
(yi − Φ∗

ni)φ
�∗
ni − φ2∗

ni

�
x̃ix̃

�
i (A.10)

To do so, we first evaluate

E
��
(yi − Φni)φ

�
ni − φ2

ni

�
x̃ix̃

�
i

�
/h2n. (A.11)

As before, decompose the support of zi into |zi| ≤ ε, |zi| > ε, where ε > 0 is small enough so the

smoothness assumptions in A6’, A7’ can be applied for |zi| ≤ ε. When |zi| > ε, the integral is

negligible (i.e., o(1)) as before by Lemma A.1. When |zi| ≤ ε, by the change of variables u = zi/hn,

and a first order expansion around hn = 0 (permitted by Assumptions A6’ and A7’), it follows that

(using Assumption A3’, A5’, and the properties of the normal integrals stated previously) this term

can be expressed as

E
�
P̃2(x̃i, 0)fZ|X̃(0|x̃i)x̃ix̃�i

�
+O(hn)

Note derivation of the above the above expectation is also using the property that
�
u2φ(u) du = 1,

and the term in the expansion involving f �
Z|X̃(0|x̃i) vanished because of the last property of the

normal distribution listed on the previous page. Now consider the expectation in (A.11) evaluated

at β = βn where βn − β0 = O(hn). We do this because the Hessian term is evaluated not at β0 but
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at the intermediate value β∗, and we have established that β̂ − β0 = O(hn).

Let zni denote x�iβn, let Φβni denote Φ(zni/hn), and define φβni and φ�
βni analogously. We will

evaluate

E
��
(yi − Φβni)φ

�
βni − φ2

βni

�
x̃ix̃

�
i

�
/h2n.

To do so we add and subtract P̃ (x̃i, zni) ≡ P (�i ≤ zni|xi) which here we will denote by P̃βi. So we

will evaluate

E
��

(yi − P̃βi)φ
�
βni

�
x̃ix̃

�
i

�
/h2n (A.12)

and

E
��

(P̃βi − Φβni)φ
�
βni − φ2

βni

�
x̃ix̃

�
i

�
/h2n (A.13)

Turning attention to (A.12), we express it as the integral:

h−2
n

�

X̃

�
(P̃i − P̃βni)φ

�
βnifZ|X̃(zni|x̃i)x̃ix̃�idznidPX̃ (x̃i)

where recall P̃i denotes P̃ (x̃i, zi). Now decompose the integral into the regions |zni| ≤ ε, |zni| > ε.

The integral in the latter region is negligible by Lemma A.1. In the former region, take a first order

expansion of P̃i around P̃βi, which yields:

h−2
n

�

X̃

�

|zni|≤ε
f�|X(x�iβ̃n)φ

�
βnifZn|X̃(zni|x̃i)x̃ix̃�idznidPX̃(x̃i)(β − β0) (A.14)

where f�|X denotes the density of �i conditional on xi evaluated at x�iβ̃n with β̃n denoting a value

in between βn and β0, and fZn|X̃(·) denotes the conditional density function of zni. We note that

since zni is in a neighborhood of 0, and β̃n is in a neighborhood of β0, with x̃i bounded and the

compactness of Θ it follows that x�iβ̃n is in a neighborhood of 0 as well, where the density of �i is

bounded by Assumption A7’. Therefore, since (βn − β0)/hn = O(1) from Lemma A.3, the above

integral in (A.14) will converge to 0 if we can show the integral

h−1
n

�

X̃

�

|zni|≤ε
φ�
βnifZn|X̃(zni|x̃i)(x̃ix̃�i)x̃�idPX̃(x̃i)

converges to 0.

Next, doing the change of variables ui = x�iβn/hn, we express this integral as:

�

X̃

�

|u|≤ε/hn

φ�(u) dufZn|X̃(uhn|x̃i)(x̃ix̃�i)x̃�idPX̃(x̃i)

take a first order expansion around hn = 0, and noting that
�
φ�(u) du = 0, we get the above
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integral converges to 0, again using the dominated convergence theorem.

Next, we deal with the term (A.13), which again we write as an integral decomposed into the

regions |zn| ≤ ε and |zn| > ε. We can show the integral over the latter region is asymptotically

negligible using Lemma A.1. In the former region, we make the same change of variables, yielding

the integral:

h−1
n

�

X̃

�

|u|≤ε/hn

�
(P̃ (x̃i, uhn)− Φ(u))φ�(u)− φ2(u)

�
fZn|X̃(uhn|x̃i)x̃ix̃�idPX̃(x̃i)

Take an expansion around hn = 0. The lead term is of the form

h−1
n

�

X̃

�

|u|≤ε/hn

�
(1/2− Φ(u))φ�(u)− φ2(u)

�
fZn|X̃(0|x̃i) dux̃ix̃�idPX̃(x̃i)

which converges to 0 as n → ∞, since the integral over |u| ≤ ε/hn converges to 0 faster than hn.

The first derivative term in the expansion, which involves the term uhn, is

�

X̃

�

|u|≤ε/hn

��
(1/2− Φ(u))φ�(u)− φ2(u)

�
uf �

Zn|X̃
(0|x̃i)

− P̃2(x̃i, 0)fZn|X̃(0|x̃i)φ�(u)u

�
dux̃ix̃

�
idPX̃(x̃i)

and converges to (by the stated normal integral properties and the tail behavior of the normal

distribution) to E
�
P̃2(x̃i, 0)fZ|X̃(0|x̃i)x̃ix̃�i

�
+ o(1). The second derivative term in the expansion is

O(hn) by similar arguments.

Therefore, collecting all our results we have the expectation in (A.11) evaluated at β = β∗

instead of β = β0 is E
�
P̃2(x̃i, 0)fZ|X̃(0|x̃i)x̃ix̃�i

�
+ o(1).

As a last step we deal with the average in (A.10) minus its expectation. Here we adopt the

notation that ψ̃ni(θ) denotes the term in the summation in (A.10) when the parameter is θ. We

will derive the asymptotic properties of

1

nh2n

n�

i=1

ψ̃ni(θ)− E[ψ̃ni(θ)] (A.15)

at θ = θ0. Since the above term is mean 0, we evaluate the variance, which is of the form:

1

nh4n
E
�
(ψ̃ni(θ)− E[ψ̃ni(θ)])

2

�
.

The lead term involves E[ψ̃ni(θ)2]/nh4n, which after a change of variables (after decomposing the

support of zi into |zi| ≤ ε, |zi| > ε and proceeding as before) has first term with the constant 1

nh3
n
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times the integral:

� ��
1/2 + Φ(u)2 − Φ(u)

�
φ�(u)2 + φ4(u)− 2(1/2− Φ(u))φ�(u)φ2(u)

�
du

and the above integral is not 0. So the variance of the demeaned sum is O(1/nh3n). Therefore, for

(A.15) to converge in probability to 0, we need nh3n → ∞. If nh3n → c �= 0, the demeaned sum

converges to a non-degenerate random variable.

Therefore, we will proceed as if nh3n → ∞. The last step is to account for the fact that the

demeaned sum is evaluated not at θ0 but at θ∗, an intermediate value, so we want to evaluate

1

nh2n

n�

i=1

ψ̃ni(θ
∗)− E[ψ̃ni(θ

∗)]

Here we will again use the established result that θ̂ − θ0 = Op(hn). Subtract from the above

term ψ̃ni(θ0) − E[ψ̃ni(θ0)]. The resulting term is still mean 0, so as before we only need evaluate

the variance. But by a mean value expansion of ψ̃ni(θn) around ψ̃ni(θ0) for any θn such that

θn − θ0 = O(hn), we get terms involving (θn − θ0)/hn which are O(1), implying that as before, the

variance is O(1/nh3n) which is o(1) under the assumption that nh3n → ∞. Therefore, it sufficed to

work with the asymptotic properties of

1

nh2n

n�

i=1

ψ̃ni(θ0)− E[ψ̃ni(θ0)].

This concludes the asymptotic theory for the Hessian term. To summarize what we have

shown, if nh3n → ∞, then Ĥ = Q + op(1), so by the invertibility of Q and Slutsky’s theorem, we

have Ĥ−1 = Q−1+ op(1). Also, if nh3n → c < ∞, Ĥ converges to a nondegenerate random variable.

Score Term We next turn attention to the “score” term

1

nhn

n�

i=1

(yi − Φni)φnix̃i.

We add and subtract the term E [(yi − Φni)φnix̃i] /hn. We note that this expected value is O(hn) by

the same change of variables argument (after decomposing the support of zi as before). Specifically,

by a second order expansion of P̃ (x̃i, zi) around zi = 0, permitted by Assumption A7’, it is of the

form:

−
�
E[f �

Z|X̃(0|x̃i)x̃i]
�

Φ(u)φ(u)u du

�
hn +O(h2n)
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Finally, we note that by the Lindeberg Theorem, when nhn → ∞,

1√
nhn

n�

i=1

{(yi − Φni)φnix̃i − E [(yi − Φni)φnix̃i]}

converges in distribution to N
�
0, c1 · E

�
fZ|X̃(0|x̃i)x̃ix̃�i

��
, where recall c1 =

�
Φ2(u)φ2(u) du.

However, since the bias is O(hn) and the variance of the score term is O( 1

nhn
) (using arguments

identical to evaluating the order of the variance in nonparametric density estimation) the optimal

rate of convergence (of the score term) in a mean squared error sense is hn = O(n−1/3). How-

ever, under this rate nh3n → c < ∞. Thus the Hessian term does not converge to a degenerate

distribution, and the NLLS estimator is not asymptotically Gaussian.

So by combining our results with the Hessian term Ĥ, we have the following representation (if

nh3n → ∞) in the conclusion in Theorem 3.1:

θ̂ − θ0 = (Q+ op(1))
−1

��
1

nhn

n�

i=1

(yi − Φni)φnix̃i − E[(yi − Φni)φnix̃i]

�

−
�
Q−1 E[f �

Z|X̃(0|x̃i)x̃i]
�

Φ(u)φ(u)u du

�
hn +O(h2n)

�
(A.16)

Furthermore, collecting all derived results regarding rates of convergence for the Hessian and

score terms as a function of hn, the conclusions of Theorem 2.2 follow. Specifically, if in the score

term, we equate the standard deviation which is O(1/
√
nhn) with the bias which is O(hn), we get

hn = O(n−1/3), but this violates our assumption that nh3n → ∞ that was needed in the Hessian

term. The Hessian condition is also violated if hn = o(n−1/3) which would also result in a slower

rate of convergence. If nh3n → ∞, then the Hessian term converges in probability to Q, but the

bias in the score term dominates the variance, and we get

h−1
n (θ̂ − θ0)

p→ −Q−1

��

X̃
fZ|X̃(0|x̃i)x̃idPX̃(x̃i)

�
Φ(u)φ(u)u du

�

�
Finally, as will be formally discussed in the next section, if the bias term in the linear component

of the representation is O(h2n) by some modified procedure, the optimal sequence is hn = O(n−1/5)

in which case the Hessian term converges to a constant matrix. In this case we may apply Slutsky’s

theorem to conclude that the bias-corrected estimators are asymptotically normal and converge at

the rate of Op(n−2/5).

A.3 Proof of Theorem 3.2

The theorem follows almost directly from the results in Theorem 3.1, and follows from establishing

that the bias of the jackknifed estimator is O(h2n).
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For the jackknifed estimator the bias term is of the form:

−
�
Q−1 E[fZ|X̃(0|x̃i)x̃i]

�
Φ(u)φ(u)u du

�
(w1κ1 + w2κ2)hn + Bjkh

2
n = O(h2n)

where here the second equality follows from the second condition imposed on w1, w2, κ1, and κ2,

and

Bjk = (w1κ
2
1 + w2κ

2
2)
1

2

�

X̃

� ��
1

2
− Φ(u)

�
fZ|X̃(0|x̃i) + 2P̃2(x̃i, 0)f

�
Z|X̃(0|x̃i)

+P̃22(x̃i, 0)fZ|X̃(0|x̃i)
�
u2φ(u) dux̃i dPX̃(x̃i)

Therefore, we have n2/5(θ̂jk − θ0) ⇒ N(Bjk, Q−1VjkQ−1) �

A.4 Proof of Theorem 3.3

As alluded to in Section 3.2, the function F (·) in the objective function:

1

n

n�

i=1

�
yi − F

�
x�iβ

hn

��2

cannot be a cumulative distribution function if bias reduction is to be achieved. Using the same

arguments as in deriving the linear representation, we impose conditions F1–F6 on F (·) and its first

and second derivatives, denote by f(·) and f �(·) respectively. Under these conditions, following the

arguments used in the linear representation derivation, the NLLS estimator using function F (·) will
converge at the rate of Op(n−2/5) which is the optimal rate as established in Horowitz (1993a). It

will have an asymptotic Gaussian distribution with asymptotic bias BF and an asymptotic variance

of the form Q−1

F VFQ
−1

F . �

A.5 Jackknife Weights

The form of the liming distribution of the jackknifed estimator is useful for providing guidance for

the form of the weights w1, w2. For example, with the analytic form of the asymptotic bias and

asymptotic variance, one could attempt to select the two weights that minimize the asymptotic

mean squared error subject to the constraints that w1 + w2 = 1, and w1κ1 + w2κ2 = 0, where,

recall, κ1 and κ2 denote the two constants for the two bandwidth sequences. Even treating these

two constants as given, the optimal values of w1 and w2 would depend on the unknown density and

distribution function (as well as their derivatives) appearing in the asymptotic bias and variance.

These would have to be estimated first, making implementation difficult and requiring the selection

of additional bandwidths.

An easier to implement approach would be to only minimize with respect to the constant terms
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in the asymptotic mean squared error. That is, to minimize the function

1

4
(w1κ

2
1 + w2κ

2
2)

2 + c1w
2
1κ

−1

1
+ c1w

2
2κ

−1

2
+ 2w1w2c2κ

−1

1

with respect to κ1 and κ2 subject to the constraints, which can be solved for κ1 and κ2 and

substituted in as w1 = κ2/(κ2−κ1) and w2 = 1−w1 = −κ1/(κ2−κ1). The values which minimize

this function are κ1 = 0.56334, κ2 = 1.0180, w1 = 2.2389, and w2 = −1.2389.

A second approach uses a simple “rule of thumb” estimate for the matrix Q−1V1Q−1 appearing

in the asymptotic variance given in Theorem 3.2. Let Ê[x̃ix̃�i] denote the sample analog estimator

of the expectation and let Ê[x̃ix̃�i]
−1 denotes its inverse. Then we could alter the above objective

function to

1

4
(w1κ

2
1 + w2κ

2
2)

2 + v̂ROT

�
c1w

2
1κ

−1

1
+ c1w

2
2κ

−1

2
+ 2w1w2c2κ

−1

1

�

where v̂ROT = 0.4−3 ·
���Ê[x̃ix̃�i]

−1

���
2

is a rule of thumb approximation of the norm of Q−1V1Q−1,

under simplifying normality and independence assumptions. Here 0.4 is the value of the standard

normal pdf evaluated at 0, φ(0), and �·�
2
denotes the Frobenius norm, the square root of the sum

of the squared elements of the matrix.

Both of these approaches are evaluated in the simulation studies, labeled JKNLLS-1 and

JKNLLS-2 respectively.

A.6 Weighted NLLS

With the limiting Gaussian distribution in hand, a natural extension of the local NLLS would

be consider a weighting observations to improve efficiency, analogous to generalized least squares.

In the parametric Probit model, it is well known that NLLS is not as efficient as MLE, but an

optimally weighted NLLS is asymptotically equivalent to MLE. For the local NLLS, a weighted

version would aim to minimize the asymptotic mean squared error (AMSE).

The weighted estimator, referred to here as WNLLS, would minimize the objective function:

1

n

n�

i=1

w(xi)

�
yi − F

�
x�iβ

hn

��2

where w(·) denotes the weight function. The limiting distribution follows immediately from our

linear representation. Let w̃(x̃i, x�iβ0) denote the reparametrized weight function, expressed as a

function of the subset of regressors x̃i and the index x�iβ0. Now the asymptotic bias is of the form:

Bw
F =

1

2

�

X̃

� ��
1

2
− F (u)

�
fZ|X̃(0|x̃) + 2P̃2(x̃i, 0)f

�
Z|X̃(0|x̃)

+P̃22(x̃i, 0)fZ|X̃(0|x̃)
�
u2f(u) duw̃(x̃i, 0)x̃i dPX̃(x̃i)
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and the components of the asymptotic variance matrix are of the form:

V w
F = cF1 · E[w̃2(x̃i, 0)x̃ix̃

�
ifZ|X̃(0|x̃i)]

and

Qw
F = E

��
cF2P̃2(x̃i, 0)fZ|X̃(0|x̃i) + cF3f

�
Z|X̃(0|x̃i)

�
w̃(x̃i, 0)x̃ix̃

�
i

�

This immediately suggests an infeasible weighting function. If we condition on a particular value

of x̃i, x̃, we can treat all the functions inside the expectations Bw
F , V

w
F , Qw

F as given, and minimize

the conditional mean squared error with respect to w(x̃, 0), which we refer to here as w∗(x̃, 0). This

minimized valued will obviously depend on the values of the other functions evaluated at x̃. Then

our infeasible estimator minimizes the objective function

1

n

n�

i=1

w̃∗(x̃i, 0)

�
yi − F

�
x�iβ

hn

��2

.

Of course what makes this approach infeasible is that the optimal function w∗(x̃, 0) depends on the

other functions, such as fZ|X̃(0|x̃) and P̃2(x̃i, 0) which are unknown. But analogous to feasible GLS

for the linear model, one can first estimate β0 using a suboptimal weighting function (say, w(xi) = 1)

and use that to nonparametrically estimate the unknown nuisance functions fZ|X̃(0|x̃), P̃2(x̃i, 0),

that can then be plugged into a feasible estimator of w̃∗(x̃i, 0).
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Table I: Homoskedastic Normal

α β
Estimator Mean Bias Med. Bias RMSE MAD Mean Bias Med. Bias RMSE MAD
100 obs.

NLLS -0.0648 -0.0238 0.2928 0.1564 -0.1015 -0.0402 0.4016 0.2160
JKNLLS-1 -0.0388 0.0161 0.5197 0.2491 -0.0558 0.0703 0.6806 0.3257
JKNLLS-2 -0.0069 0.0635 0.4503 0.2011 0.0274 0.1496 0.6062 0.2690
NLLSF -0.0393 0.0164 0.3503 0.1704 -0.0445 0.0540 0.4710 0.2350
SMS-1 -0.4078 -0.2073 1.0589 0.2760 -0.7302 -0.4125 1.7279 0.3908
SMS-2 -0.1229 -0.0476 0.5059 0.2320 -0.2111 -0.0747 0.6788 0.3104
SMS-3 -0.1220 -0.0367 0.7432 0.2340 -0.2336 -0.0565 1.5163 0.3134

200 obs.

NLLS -0.0292 -0.0094 0.1763 0.1072 -0.0483 -0.0222 0.2426 0.1425
JKNLLS-1 -0.0243 0.0175 0.3723 0.1975 -0.0327 0.0569 0.5076 0.2547
JKNLLS-2 0.0148 0.0562 0.3148 0.1599 0.0557 0.1347 0.4279 0.2138
NLLSF 0.0047 0.0356 0.2228 0.1234 0.0216 0.0732 0.3016 0.1679
SMS-1 -0.2260 -0.1495 0.5029 0.1834 -0.4370 -0.2995 1.8058 0.2625
SMS-2 -0.0748 -0.0302 0.3268 0.1801 -0.1292 -0.0432 0.4508 0.2373
SMS-3 -0.0656 -0.0240 0.3309 0.1798 -0.1205 -0.0437 0.4552 0.2430

400 obs.

NLLS -0.0136 -0.0088 0.1150 0.0750 -0.0242 -0.0142 0.1607 0.1017
JKNLLS-1 -0.0191 0.0181 0.2903 0.1582 -0.0141 0.0532 0.3877 0.2087
JKNLLS-2 0.0256 0.0501 0.2258 0.1289 0.0680 0.1180 0.3136 0.1710
NLLSF 0.0241 0.0366 0.1533 0.0911 0.0517 0.0746 0.2139 0.1276
SMS-1 -0.1387 -0.1108 0.2583 0.1272 -0.2665 -0.2239 0.4072 0.1835
SMS-2 -0.0514 -0.0253 0.2326 0.1373 -0.0860 -0.0375 0.3233 0.1935
SMS-3 -0.0423 -0.0223 0.2344 0.1439 -0.0758 -0.0283 0.3224 0.1904
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Table II: Heteroskedastic Normal

α β
Estimator Mean Bias Med. Bias RMSE MAD Mean Bias Med. Bias RMSE MAD
100 obs.

NLLS 0.0882 0.1370 0.3248 0.1812 0.1997 0.2563 0.4740 0.2726
JKNLLS-1 0.0243 0.1030 0.5040 0.2695 0.0980 0.2060 0.6729 0.3880
JKNLLS-2 0.0654 0.1508 0.4626 0.2284 0.1812 0.3019 0.6436 0.3296
NLLSF 0.0158 0.0800 0.3694 0.2122 0.0960 0.1712 0.5031 0.3038
SMS-1 -0.3029 -0.2115 0.6328 0.3084 -0.4358 -0.3245 0.8329 0.4101
SMS-2 -0.0573 0.0105 0.4478 0.2683 -0.0362 0.0389 0.5763 0.3669
SMS-3 -0.0334 0.0258 0.4575 0.2736 -0.0022 0.0824 0.5922 0.3692

200 obs.

NLLS 0.1106 0.1395 0.2419 0.1356 0.2285 0.2596 0.3783 0.2038
JKNLLS-1 0.0383 0.0959 0.4140 0.2331 0.0945 0.1751 0.5578 0.3297
JKNLLS-2 0.0747 0.1347 0.3621 0.2045 0.1755 0.2538 0.5142 0.2880
NLLSF 0.0463 0.0833 0.2669 0.1654 0.1326 0.1765 0.3782 0.2284
SMS-1 -0.2143 -0.1735 0.4171 0.2247 -0.2979 -0.2450 0.5514 0.2927
SMS-2 -0.0321 0.0129 0.3401 0.2197 -0.0092 0.0341 0.4418 0.2883
SMS-3 -0.0136 0.0265 0.3449 0.2219 0.0148 0.0571 0.4499 0.2958

400 obs.

NLLS 0.1247 0.1401 0.1967 0.0992 0.2477 0.2623 0.3285 0.1442
JKNLLS-1 0.0323 0.0806 0.3376 0.1956 0.0716 0.1270 0.4575 0.2736
JKNLLS-2 0.0676 0.1211 0.3027 0.1744 0.1511 0.2048 0.4310 0.2492
NLLSF 0.0612 0.0830 0.2025 0.1267 0.1507 0.1705 0.3042 0.1774
SMS-1 -0.1537 -0.1354 0.2891 0.1596 -0.2007 -0.1798 0.3788 0.2131
SMS-2 -0.0230 0.0004 0.2661 0.1769 -0.0029 0.0183 0.3473 0.2320
SMS-3 -0.0043 0.0174 0.2714 0.1824 0.0191 0.0304 0.3540 0.2384
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Table III: Homoskedastic Chi-Square

α β
Estimator Mean Bias Med. Bias RMSE MAD Mean Bias Med. Bias RMSE MAD
100 obs.

NLLS 0.1881 0.1974 0.3039 0.1537 -0.0186 0.0152 0.3266 0.1977
JKNLLS-1 0.0221 0.0371 0.3878 0.2287 0.0086 0.0875 0.5355 0.2872
JKNLLS-2 0.0662 0.0823 0.3262 0.1831 0.0903 0.1508 0.4591 0.2467
NLLSF 0.1078 0.1166 0.2848 0.1667 -0.0168 0.0270 0.5107 0.2174
SMS-1 -0.0314 0.0130 0.5779 0.2180 -0.5941 -0.3738 2.1150 0.2933
SMS-2 0.0222 0.0222 0.3350 0.1985 -0.1408 -0.0563 0.6420 0.2664
SMS-3 0.0331 0.0354 0.5306 0.2041 -0.1392 -0.0438 1.7658 0.2793

200 obs.

NLLS 0.1978 0.2019 0.2554 0.1062 0.0085 0.0204 0.2120 0.1385
JKNLLS-1 0.0115 0.0172 0.2996 0.1753 0.0258 0.0838 0.4064 0.2353
JKNLLS-2 0.0399 0.0490 0.2399 0.1479 0.0893 0.1231 0.3345 0.1968
NLLSF 0.1145 0.1238 0.2146 0.1174 0.0129 0.0244 0.2440 0.1543
SMS-1 0.0126 0.0260 0.2354 0.1402 -0.3234 -0.2841 0.4721 0.1942
SMS-2 0.0199 0.0119 0.2261 0.1464 -0.0661 -0.0385 0.3236 0.1904
SMS-3 0.0281 0.0194 0.2350 0.1492 -0.0584 -0.0352 0.3333 0.2033

400 obs.

NLLS 0.2070 0.2089 0.2344 0.0743 0.0239 0.0298 0.1461 0.0969
JKNLLS-1 0.0033 0.0028 0.2294 0.1409 0.0352 0.0686 0.3145 0.1947
JKNLLS-2 0.0215 0.0226 0.1813 0.1149 0.0846 0.0989 0.2583 0.1509
NLLSF 0.1181 0.1224 0.1752 0.0869 0.0239 0.0300 0.1761 0.1107
SMS-1 0.0275 0.0312 0.1474 0.0918 -0.2232 -0.2090 0.3022 0.1279
SMS-2 0.0094 0.0006 0.1684 0.1084 -0.0429 -0.0317 0.2390 0.1478
SMS-3 0.0134 0.0046 0.1790 0.1152 -0.0331 -0.0227 0.2462 0.1571
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Table IV: Heteroskedastic Chi-Square

α β
Estimator Mean Bias Med. Bias RMSE MAD Mean Bias Med. Bias RMSE MAD
100 obs.

NLLS 0.2472 0.2751 0.3811 0.1965 0.2052 0.2381 0.4428 0.2742
JKNLLS-1 0.0858 0.1146 0.4365 0.2674 0.1200 0.1958 0.5842 0.3553
JKNLLS-2 0.1118 0.1626 0.4107 0.2393 0.1567 0.2427 0.5592 0.3334
NLLSF 0.1366 0.1535 0.3465 0.2248 0.0906 0.1159 0.4320 0.2993
SMS-1 -0.0368 -0.0291 0.4965 0.2643 -0.4085 -0.3427 1.6540 0.3364
SMS-2 0.0536 0.0551 0.3662 0.2518 -0.0023 0.0242 0.5008 0.3326
SMS-3 0.0841 0.0769 0.4965 0.2573 0.0217 0.0545 1.0057 0.3378

200 obs.

NLLS 0.2420 0.2613 0.3290 0.1550 0.2072 0.2166 0.3610 0.2077
JKNLLS-1 0.0515 0.0781 0.3713 0.2335 0.0896 0.1540 0.4975 0.3029
JKNLLS-2 0.0848 0.1220 0.3396 0.2076 0.1358 0.1953 0.4656 0.2836
NLLSF 0.1327 0.1416 0.2762 0.1731 0.0941 0.0974 0.3300 0.2265
SMS-1 -0.0203 -0.0186 0.2769 0.1849 -0.2876 -0.2816 0.4561 0.2316
SMS-2 0.0396 0.0312 0.2775 0.1954 0.0071 0.0092 0.3635 0.2501
SMS-3 0.0596 0.0481 0.2905 0.2001 0.0353 0.0350 0.3825 0.2647

400 obs.

NLLS 0.2443 0.2526 0.2957 0.1159 0.2109 0.2147 0.3016 0.1496
JKNLLS-1 0.0324 0.0512 0.3095 0.1972 0.0759 0.1199 0.4146 0.2484
JKNLLS-2 0.0626 0.0875 0.2787 0.1771 0.1171 0.1559 0.3843 0.2289
NLLSF 0.1324 0.1388 0.2303 0.1334 0.0962 0.0951 0.2650 0.1712
SMS-1 -0.0071 -0.0075 0.1907 0.1283 -0.2212 -0.2198 0.3337 0.1665
SMS-2 0.0182 0.0074 0.2177 0.1530 -0.0021 -0.0097 0.2894 0.1936
SMS-3 0.0347 0.0224 0.2304 0.1564 0.0216 0.0119 0.3026 0.2085
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Table V: Homoskedastic Cauchy

α β
Estimator Mean Bias Med. Bias RMSE MAD Mean Bias Med. Bias RMSE MAD
100 obs.

NLLS -0.0719 -0.0079 0.4556 0.2147 -0.1249 0.0008 0.6835 0.2849
JKNLLS-1 -0.0253 0.0483 0.6761 0.2989 -0.0417 0.1237 0.9099 0.3763
JKNLLS-2 -0.0109 0.0856 0.6307 0.2548 0.0165 0.1866 0.8446 0.3329
NLLSF -0.0556 0.0425 0.5304 0.2163 -0.0703 0.0959 0.7139 0.2951
SMS-1 -0.6901 -0.2570 2.1614 0.3991 -1.4549 -0.5148 4.5397 0.5661
SMS-2 -0.1307 -0.0234 0.6687 0.2779 -0.2455 -0.0349 1.0376 0.3767
SMS-3 -0.1929 -0.0089 2.6848 0.2862 -0.4327 -0.0071 5.0340 0.3756

200 obs.

NLLS -0.0151 0.0117 0.2427 0.1480 -0.0375 0.0137 0.3354 0.2016
JKNLLS-1 -0.0120 0.0344 0.4442 0.2355 -0.0306 0.0764 0.5953 0.3102
JKNLLS-2 0.0183 0.0663 0.3901 0.2036 0.0425 0.1449 0.5255 0.2672
NLLSF 0.0021 0.0443 0.3066 0.1603 0.0160 0.0888 0.4080 0.2184
SMS-1 -0.3793 -0.1850 1.1447 0.2567 -0.6799 -0.3929 1.6257 0.3669
SMS-2 -0.0864 -0.0218 0.4387 0.2180 -0.1668 -0.0496 0.6013 0.3017
SMS-3 -0.0755 -0.0116 0.5213 0.2211 -0.1501 -0.0401 0.9456 0.3036

400 obs.

NLLS 0.0058 0.0171 0.1590 0.1011 0.0002 0.0224 0.2169 0.1370
JKNLLS-1 -0.0114 0.0255 0.3508 0.1922 -0.0206 0.0688 0.4690 0.2453
JKNLLS-2 0.0234 0.0598 0.2855 0.1591 0.0545 0.1236 0.3876 0.2097
NLLSF 0.0235 0.0487 0.2047 0.1119 0.0550 0.1012 0.2870 0.1507
SMS-1 -0.2003 -0.1320 0.4277 0.1736 -0.3762 -0.2718 0.6361 0.2424
SMS-2 -0.0513 -0.0186 0.2939 0.1630 -0.0990 -0.0355 0.4011 0.2184
SMS-3 -0.0440 -0.0127 0.3004 0.1673 -0.0926 -0.0313 0.4082 0.2294
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Table VI: Heteroskedastic Cauchy

α β
Estimator Mean Bias Med. Bias RMSE MAD Mean Bias Med. Bias RMSE MAD
100 obs.

NLLS 0.1730 0.2252 0.3974 0.1974 0.3280 0.4110 0.5856 0.2892
JKNLLS-1 0.0611 0.1479 0.6019 0.3023 0.1537 0.3011 0.7898 0.4231
JKNLLS-2 0.0580 0.1718 0.5885 0.2593 0.1678 0.3656 0.8043 0.3774
NLLSF 0.0408 0.1347 0.4715 0.2339 0.1422 0.2555 0.6387 0.3573
SMS-1 -0.4206 -0.2151 1.1512 0.3985 -0.6373 -0.3712 1.6244 0.5341
SMS-2 -0.0351 0.0557 0.5401 0.2914 -0.0085 0.1052 0.7004 0.4157
SMS-3 -0.0101 0.0830 0.6236 0.3046 0.0259 0.1662 0.8556 0.4275

200 obs.

NLLS 0.1921 0.2274 0.3162 0.1453 0.3547 0.4031 0.4989 0.2205
JKNLLS-1 0.0546 0.1309 0.4836 0.2545 0.1075 0.2154 0.6426 0.3613
JKNLLS-2 0.0782 0.1668 0.4451 0.2275 0.1748 0.3069 0.6235 0.3308
NLLSF 0.0736 0.1289 0.3386 0.1871 0.1807 0.2497 0.4772 0.2681
SMS-1 -0.2785 -0.1958 0.5972 0.2910 -0.4047 -0.3063 0.7841 0.3886
SMS-2 -0.0232 0.0340 0.4089 0.2423 0.0002 0.0695 0.5304 0.3357
SMS-3 -0.0053 0.0457 0.4331 0.2547 0.0234 0.0887 0.5594 0.3514

400 obs.

NLLS 0.2185 0.2401 0.2810 0.1083 0.3941 0.4231 0.4672 0.1603
JKNLLS-1 0.0303 0.0967 0.4142 0.2313 0.0717 0.1622 0.5570 0.3222
JKNLLS-2 0.0775 0.1490 0.3637 0.1960 0.1624 0.2545 0.5226 0.2924
NLLSF 0.0824 0.1241 0.2603 0.1529 0.1916 0.2358 0.3893 0.2202
SMS-1 -0.1964 -0.1583 0.3889 0.2137 -0.2735 -0.2162 0.5150 0.2732
SMS-2 -0.0131 0.0215 0.3156 0.1986 0.0107 0.0499 0.4150 0.2682
SMS-3 -0.0019 0.0295 0.3191 0.2036 0.0289 0.0662 0.4217 0.2722
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