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Abstract

This paper deals with the problem of testing hypothesis when both the hypotheses and the available
data are fuzzy. First, four different kinds of fuzzy hypotheses are defined. Then, a procedure is developed
for constructing the fuzzy point estimation based on fuzzy data. Also, the concept of fuzzy test statistic
is defined based on the α-cuts of the fuzzy null hypothesis and the α-cuts of the constructed fuzzy point
estimation. Finally, by introducing a credit level, we propose a method to evaluate the fuzzy hypotheses
of interest. The proposed method is employed to test the fuzzy hypotheses for the mean of a normal
distribution, and the variance of a normal distribution. A practical example in lifetime testing is provided,
to show the applicability of the proposed method in applied studies.
c©2011 World Academic Press, UK. All rights reserved.
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1 Introduction and Motivation

In classical approaches to testing statistical hypotheses, it is assumed that both the underlying hypotheses
and the available data are crisp. For example, if the difference between two population means is to be tested,
the ordinary null hypothesis stipulates that the difference between two population means is precisely equal
to zero. In addition, it is usually assumed that the collected observations are precise. However, we would
sometimes like to test if two means are nearly equal or not. On the other hand, sometimes the available
observations are not precise. For instance, in economic studies we may wish to test if the means of incomes
of households of two interested populations are approximately equal or not. In such a case, the hypothesis of
exact equality of means seems to be unrealistic. As an example of imprecise data, consider the problem of
lifetime testing. In lifetime analysis, the data available are usually reported as imprecise data. For instance,
measuring the lifetime of a battery may not yield an exact result. A battery may work perfectly over a certain
period but be losing in power for some time, and finally go dead completely at a certain time. In this case,
the data may be reported as imprecise quantities such as: about 1000 (h), approximately 1400 (h), about
between 1000 (h) and 1200 (h), essentially less than 1200 (h), and so on. The classical procedures for testing
hypotheses are not appropriate for dealing with such imprecise cases. After the inception of the notion of
fuzzy sets by Zadeh [32], there have been attempts to analyze the problem of testing hypotheses for these
situations using fuzzy set theory. See Taheri [21] for a review of some related works.

In the present work, we consider the fuzzy hypotheses instead of crisp ones, and introduce a procedure to
test such hypotheses based on a fuzzy test statistic when the available data are fuzzy. Our proposed procedure
is an extension of Taheri and Arefi’s approach to testing statistical hypotheses [22], in which the data are
assumed to be crisp. But, here we consider testing fuzzy hypotheses when the available data are fuzzy, too. In
this extension, we construct a fuzzy test statistic using the α-cuts of the fuzzy null hypothesis and the α-cuts
of the fuzzy point estimation. Then, we introduce a procedure for testing the fuzzy hypotheses of interest.
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Testing statistical hypotheses under imprecise (fuzzy) constraints were investigated by some authors. The
problem of testing hypotheses with fuzzy data was considered by Casals and Gil [5], Casals et al. [6], Filzmoser
and Viertl [9], Grzegorzewski [12], and Wu [31]. This topic, using fuzzy random variables, was studied by
Körner [16] and Montenegro et al. [19]. Testing fuzzy hypotheses was discussed by Arnold [1, 2], Taheri and
Arefi [22], Taheri and Behboodian [23, 24], and Watanabe and Imaizumi [29]. Testing fuzzy hypotheses with
fuzzy data was investigated by Grzegorzewski [13], Kruse and Meyer [17], Taheri and Behboodian [25], and
Torabi et al. [27]. For some other recent works on testing hypothesis in fuzzy environment, see Buckley [3, 4],
Denoeux and Masson [7], Hryniewicz [14], Thompson and Geyer [26], and Viertl [28]. Also, the problem of
point estimation in the fuzzy environment has been investigated by some authors, e.g. Gil et al. [11] and Wu
[30].

This paper is organized as follows: In Section 2, we recall some preliminary concepts about fuzzy numbers
and interval arithmetic. In Section 3, we introduce different kinds of fuzzy hypotheses. A new method to test
fuzzy hypotheses based on fuzzy data is given in Section 4. In Section 5, we apply our method to test fuzzy
hypotheses for the mean and for the variance of a normal distribution. A practical example in lifetime testing
is provided in Section 6. In Section 7, we compare our method with some other works. A brief conclusion is
provided in Section 8.

2 Preliminary Concepts

In this section, we recall some preliminary concepts about fuzzy numbers and interval arithmetic. For details,
the reader can refer to standard texts, e.g. Klir and Yuan [15].

A fuzzy set Ã of the universe X is defined by a membership function Ã : X → [0, 1]. An α-cut of Ã,

written as Ã[α], is defined as Ã[α] = {x|Ã(x) ≥ α}, for 0 < α ≤ 1.

A fuzzy number M̃ is a fuzzy set of the real numbers satisfying:
i) M̃(x) = 1 for some x,

ii) M̃ [α] is a closed bounded interval for 0 < α ≤ 1.

A triangular fuzzy number T̃1 = (a1, a2, a3)T is defined by three numbers a1 < a2 < a3 as

T̃1(x) =

{ x−a1
a2−a1 a1 ≤ x < a2,
a3−x
a3−a2 a2 ≤ x < a3.

Also, the membership functions of fuzzy sets T̃2 = (a1, a2)EL and T̃3 = (a2, a3)ES for a1 < a2 < a3 are defined
as

T̃2(x) =

{ x−a1
a2−a1 a1 ≤ x < a2,

1 a2 ≤ x,
T̃3(x) =

{
1 x < a2,
a3−x
a3−a2 a2 ≤ x < a3.

Let I = [a, b] and J = [c, d] be two closed intervals. Then, based on the interval arithmetic, we have

I + J = [a+ c, b+ d],

I − J = [a− d, b− c],

I.J = [α1, β1], α1 = min{ac, ad, bc, bd}, β1 = max{ac, ad, bc, bd},

I ÷ J = [α2, β2], α2 = min{a
c
,
a

d
,
b

c
,
b

d
}, β2 = max{a

c
,
a

d
,
b

c
,
b

d
},

where, zero does not belong to J = [c, d] in the last case.

3 Fuzzy Hypotheses

In this section, we recall some models as fuzzy sets of real numbers for modelling the extensions of simple,
one-sided, and two-sided ordinary (crisp) hypotheses to fuzzy ones (see also [22]).

Definition 1 Let θ0 be a known real number.

i) Any hypothesis of the form (H : θ is approximately θ0) is called a fuzzy simple hypothesis.
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Figure 1: Three forms of fuzzy hypotheses in Example 1

ii) Any hypothesis of the form (H : θ is not approximately θ0) or, equivalently, (θ is away from θ0) is
called a fuzzy two-sided hypothesis.

iii) Any hypothesis of the form (H : θ is essentially smaller than θ0) is called a fuzzy left one-sided
hypothesis.

iv) Any hypothesis of the form (H1 : θ is essentially larger than θ0) is called a fuzzy right one-sided
hypothesis.

In the next section, we investigate some methods to test the following forms of hypotheses:

a)

{
H0 : θ is approximately θ0,
H1 : θ is not approximately θ0,

≡

{
H0 : θ is H̃0,

H1 : θ is H̃1,

b)

{
H0 : θ is approximately θ0,
H1L : θ is essentially larger than θ0,

≡

{
H0 : θ is H̃0,

H1 : θ is H̃1L,

c)

{
H0 : θ is approximately θ0,
H1S : θ is essentially smaller than θ0,

≡

{
H0 : θ is H̃0,

H1 : θ is H̃1S .

For the above hypotheses, we suppose that

H̃0 = (a1, θ0, a3)T , H̃1 = H̃c
0 , H̃1L = (a′1, θ0)EL, H̃1S = (θ0, a

′
3)ES ,

where a1 ≤ a′1 and a′3 ≤ a3.

Note 1 It should be mentioned that case (a) is a natural generalization of a crisp simple hypothesis versus a
two-sided hypothesis of the form: H0 : θ = θ0 v.s. H1 : θ 6= θ0. Moreover, case (b) is a natural generalization
of the crisp simple hypothesis H0 : θ = θ0 v.s. one-sided hypothesis H1 : θ > θ0. A similar argument holds for
case (c).

Example 1 In the above fuzzy hypotheses, suppose that a1 = 1, a′1 = 2, θ0 = 3, a′3 = 5, and a3 = 6, then we
have some fuzzy hypotheses in which the related membership functions are shown in Fig. 1: (a)− (c).

4 Testing Fuzzy Hypotheses Based on Fuzzy Data

Let X1, X2, ..., Xn be a random sample from a probability density function (or probability mass function)
f(x; θ), where the parameter θ is unknown. Suppose that the available data of the random sample are

observed as the fuzzy numbers X̃1, X̃2, ..., X̃n rather than the crisp data x1, x2, ..., xn. We can obtain a fuzzy
point estimation for θ as follows.

Definition 2 Let θ∗ = u(x1, x2, ..., xn) be a point estimation for θ. By substituting the α-cut of the fuzzy

numbers X̃i, i = 1, ..., n for xi, i = 1, ..., n into θ∗, the α-cut of the fuzzy point estimation θ̃∗ is obtained as
follows

θ̃∗[α] :=
{
u(x1, x2, ..., xn); xi ∈ X̃i[α], i = 1, 2, ..., n

}
.

In the following, we introduce a procedure for testing a fuzzy simple hypothesis against a fuzzy two-sided
hypothesis and a fuzzy one-sided hypothesis, respectively.
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4.1 Testing Fuzzy Simple Hypothesis against Fuzzy Two-sided Hypothesis

Suppose that we are interested in testing the following fuzzy hypotheses{
H0 : θ is approximately θ0,
H1 : θ is not approximately θ0,

≡

{
H0 : θ is H̃0,

H1 : θ is H̃1,

where H̃0 = (a1, θ0, a3)T is a triangular fuzzy number and its α-cuts are θ̃0[α] = [a1+(θ0−a1)α, a3−(a3−θ0)α].
In the crisp case, the decision rule for testing a crisp null hypothesis H0 : θ = θ0 against a crisp alternative
H0 : θ 6= θ0, at the significance level β, is{

Q0 ≥ Q1−β/2 or Q0 ≤ Qβ/2 ⇒ RH0 (Rejection of H0),
Qβ/2 < Q0 < Q1−β/2 ⇒ AH0 (Acceptance of H0),

where Q0 is the value of the crisp test statistic (under H0), and Qβ/2 and Q1−β/2 are the β/2 and 1 − β/2
quantiles of the crisp test statistic. Now, we introduce an approach for testing the above fuzzy hypotheses
based on the fuzzy data X̃1, X̃2, ..., X̃n.

i) First, we obtain a fuzzy point estimation θ̃∗ using Definition 2.

ii) By substituting α-cuts of the fuzzy point estimation θ̃∗ for the point estimation θ∗, and the α-cuts of H̃0

for θ0 in the crisp test statistic (Q0) and by using the interval arithmetic, we obtain the α-cuts of the

so-called fuzzy test statistic Z̃.

Subsequently, the obtained fuzzy test statistic is used to provide an approach for testing the fuzzy hy-
potheses based on the following quadruplet procedure [22] (see Fig. 2).

a) We calculate the total area under the graph of Z̃, denoted by AT .

b) We obtain the area under the graph of Z̃, but to the right of the vertical line through Q1−β/2 and to the
left of the vertical line through Qβ/2, denoted by AR.

c) We choose a value for the credit level φ from (0, 1].

d) Finally, we decide to reject or accept H0 in the following way{
AR/AT ≥ φ⇒ RH0,

AR/AT < φ⇒ AH0.

Remark 1: Note that, in the underlying current environment, we come across two kinds of uncertainty. The
first kind of uncertainty (probabilistic one) is related to the randomness of data and, in testing hypothesis, it
is controlled by the significance level β (or the confidence level 1 − β). But, the second kind of uncertainty
(possibilistic one) is due to the impreciseness (fuzziness) of the data as well as due to the impreciseness of the
hypotheses of interest. This kind of uncertainty may be controlled by credit level φ in making the decision
whether to accept or reject H0. It is obvious that the selected value of φ is more or less subjective so that,
by increasing the credit level φ (as by increasing the confidence level 1− β), we guard against the rejection of
H0.

Remark 2: As a special case, suppose that we want to test the following crisp hypothesis based on the fuzzy
data X̃1, X̃2, ..., X̃n: {

H0 : θ = θ0,
H1 : θ 6= θ0.

The α-cuts of the fuzzy test statistic Z̃ are obtained by the proposed approach, by substituting α-cuts of the
fuzzy point estimation θ̃∗ for the point estimation θ∗ in the crisp test statistic (Q0). Then, we can test these
hypotheses based on the quadruplet procedure provided.
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Figure 2: The related quantities in testing a fuzzy simple hypothesis versus a fuzzy two-sided hypothesis

4.2 Testing Fuzzy Simple Hypothesis against Fuzzy Right One-sided Hypothesis

Suppose that we wish to test the following fuzzy hypotheses{
H0 : θ is approximately θ0,
H1L : θ is essentially larger than θ0,

≡

{
H0 : θ is H̃0,

H1 : θ is H̃1L,

where H̃0 = (a1, θ0, a3)T is a triangular fuzzy number for which θ̃0[α] = [a1 + (θ0− a1)α, a3− (a3− θ0)α]. Let
θ∗ = u(x1, x2, ..., xn) be a point estimation for θ. In the ordinary case, the decision rule for testing a crisp
null hypothesis H0 : θ = θ0 against a crisp alternative H0 : θ > θ0, at the significance level β, is of the form{

Q0 ≥ Q1−β ⇒ RH0,

Q0 < Q1−β ⇒ AH0,

where Q0 is the value of the crisp test statistic (under H0), and Q1−β is the (1−β)-quantile of the distribution
of the crisp test statistic. Now, we introduce an approach for testing the above fuzzy hypotheses based on
the fuzzy data X̃1, X̃2, ..., X̃n.

i) First, using Definition 2, we obtain a fuzzy point estimation θ̃∗.

ii) By substituting the α-cuts of the fuzzy point estimation θ̃∗ for the point estimation θ∗, and the α-cuts of

H̃0 for θ0 in the crisp test statistic (Q0) and by using the interval arithmetic, we obtain the α-cuts of

the so-called fuzzy test statistic Z̃.

Now, we use the fuzzy test statistic thus obtained to provide an approach for testing fuzzy right one-sided
hypotheses based on the following quadruplet procedure [22] (see Fig. 3).

a) We calculate the total area under the graph of Z̃, denoted by AT .

b) We obtain the area under the graph of Z̃, but to the right of the vertical line through Q1−β , denoted by
AR.

c) We choose a value for the credit level φ from (0, 1].

d) Finally, we decide whether to reject or accept H0 in the following way{
AR/AT ≥ φ⇒ RH0,

AR/AT < φ⇒ AH0.

Remark 3: As a special case, suppose that we want to test the following crisp hypothesis based on the fuzzy
data X̃1, X̃2, ..., X̃n: {

H0 : θ = θ0,
H1 : θ > θ0.
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Figure 3: The related quantities in testing a fuzzy simple hypothesis versus a fuzzy right one-sided hypothesis

Figure 4: The related quantities in testing a fuzzy simple hypothesis versus a fuzzy left one-sided hypothesis

The α-cuts of the fuzzy test statistic Z̃ are obtained using the above approach, but only by substituting the
α-cuts of the fuzzy point estimation θ̃∗ for the point estimation θ∗ in the crisp test statistic (Q0). Finally, we
can test these hypotheses based on the proposed quadruplet procedure.

Remark 4: We can also apply the above procedure for testing a fuzzy simple hypothesis against a fuzzy left
one-sided hypothesis based on fuzzy data (see Fig. 4).

Remark 5: It is obvious that if in testing crisp hypotheses the value of the observed test statistic is close to
the related quantile, then the classical methods for making the decision whether to accept or reject the null
hypothesis are very sensitive. In such cases, we propose to use the following alternative methods:

I1) Testing crisp hypotheses with fuzzy test statistic based on Buckley’s approach [3].

I2) Substituting the fuzzy data for the crisp data and testing the crisp hypotheses based on the method
suggested in Remarks 2 and 3.

I3) Substituting the fuzzy hypotheses for the crisp hypotheses and testing them based on Taheri and
Arefi’s approach [22].

I4) Substituting the fuzzy hypotheses for the crisp hypotheses and using the fuzzy data instead of the
crisp data to test such hypotheses based on the method proposed in Subsections 4.1 and 4.2.

Let us now illustrate the above different cases through the following numerical example.

Example 2 Assume that, based on a random sample of size n = 100 from a population with the distribution
N(θ, σ2 = 9), we want to test some hypotheses about the mean θ at the significance level β = 0.05. The
observed value of the test statistic is z0 = x−θ0

σ/
√
n

.
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A1) Let the mean of the random sample be x = 2.4934. We want to test the following hypotheses{
H0 : θ = 2,

H1 : θ > 2.

Here, z0 = 1.6447 < z1−β = 1.6448. Hence, we accept the null hypothesis H0.

A2) In case A1, let the mean of the random sample be x = 2.4935. Here, z0 = 1.6450 > z1−β = 1.6448 and,
therefore, we reject the null hypothesis H0.

A3) In case A2, let the mean of the random sample be x = 2.4935, but we want to test the following hypotheses{
H0 : θ = 2.0001,

H1 : θ > 2.0001.

Here, z0 = 1.6447 < z1−β = 1.6448. Hence, we accept the null hypothesis H0.

A4) Consider the case A1. Let the mean of the random sample be x = 2.4936. We want to test the following
hypotheses {

H0 : θ = 2.0001,

H1 : θ > 2.0001.

Here, z0 = 1.6450 > z1−β = 1.6448. Hence, we reject the null hypothesis H0.

Consider the above cases. The pairs (A1,A2) and (A3,A4) have different results with respect to accepting
or rejecting the null hypothesis H0 with a small change in the sample mean. The pair (A2,A3) has different
results with respect to accepting or rejecting the null hypothesis H0 with a small change in the hypotheses. The
pair (A1,A4) have different results for accepting or rejecting the null hypothesis H0 with a slight change in
the sample mean and the hypotheses.

For testing the pairs (A1,A2) and (A3,A4), we can use Buckley’s approach and the method proposed in
Remarks 2 and 3. For the pair (A2,A3) (and also for the pairs (A1,A2) and (A3,A4)), we can define the
fuzzy hypotheses in a suitable manner, and then test such hypotheses based on Taheri and Arefi’s approach.
For the pair (A1,A4) (and also for the pairs (A1,A2), (A2,A3), and (A3,A4)), we can define the fuzzy
hypotheses in a suitable manner, and then test such hypotheses with fuzzy data based on the method proposed
in Subsections 4.1 and 4.2.

5 Testing Fuzzy Hypotheses in the Normal Distribution

5.1 Testing Fuzzy Hypotheses for the Mean

Suppose that we have taken a random sample of size n from a N(θ, σ2) (σ2 known) and we have further

observed the fuzzy numbers X̃1, X̃2, ..., X̃n. Now, we want to test the following fuzzy hypotheses at the
significance level β: {

H0 : θ is approximately θ0,
H1L : θ is essentially larger than θ0,

≡

{
H0 : θ is H̃0,

H1 : θ is H̃1L.

The usual point estimation for θ is θ∗ = x. By substituting the α-cuts of X̃i, i = 1, ..., n, (X̃i[α] = [X̃L
i , X̃

U
i ])

for xi in the point estimation, the α-cuts of the fuzzy point estimation X̃ will be obtained as

X̃[α] =
1

n

n∑
i=1

[X̃L
i , X̃

U
i ] =

[
1

n

n∑
i=1

X̃L
i ,

1

n

n∑
i=1

X̃U
i

]
= [X̃

L

, X̃
U

].

Under the crisp null hypothesis H0 : θ = θ0, the value of the crisp test statistic is z0 = θ∗−θ0
σ/
√
n

. By substituting

the α-cuts of the fuzzy point estimation X̃ for θ∗ and the α-cuts of H̃0 for θ0 in z0, and using the interval
arithmetic, the α-cuts of the fuzzy test statistic are obtained to be

Z̃[α] =
X̃[α]− H̃0[α]

σ/
√
n

=

X̃L

− a3 + (a3 − θ0)α

σ/
√
n

,
X̃
U

− a1 − (θ0 − a1)α

σ/
√
n

 .
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Figure 5: Fuzzy hypotheses in Example 3

For example, let X̃i = (xi−ri, xi, xi+ri)T =: (xi, ri)T , i = 1, ..., n, be the symmetric triangular fuzzy numbers

with X̃i[α] = [xi−(1−α)ri, xi+(1−α)ri]. Then, the fuzzy point estimation is obtained as X̃ = (x−r, x, x+r)T

obeying X̃[α] = [x− (1− α)r, x+ (1− α)r]. Hence, the α-cuts of the fussy test statistic are obtained as

Z̃[α] = X̃[α]−H̃0[α]
σ/
√
n

=
[
x−(1−α)r−a3+(a3−θ0)α

σ/
√
n

, x+(1−α)r−a1−(θ0−a1)α
σ/
√
n

]
=
[
z0 − (1− α)(r + a3 − θ0)

√
n
σ , z0 + (1− α)(r + θ0 − a1)

√
n
σ

]
,

where x = 1
n

∑n
i=1 xi and r = 1

n

∑n
i=1 ri. Now, using the above fuzzy test statistic, we can apply the

quadruplet procedure (proposed in Subsection 4.2) for testing the fuzzy hypotheses of interest.

Example 3 Assume that, based on a random sample of size n = 50 from a population N(θ, σ2 = 9), we
observe the fuzzy data in Table 1.

Table 1: The fuzzy data from a normal population in Example 3

(xi, ri)T (xi, ri)T (xi, ri)T (xi, ri)T (xi, ri)T (xi, ri)T
(1.8, 0.2)T (2.8, 0.3)T (−3.4, 0.4)T (−2.1, 0.2)T (2.1, 0.2)T (−0.4, 0.2)T
(2.9, 0.4)T (−4.6, 0.3)T (2.4, 0.1)T (1.0, 0.2)T (1.4, 0.1)T (0.9, 0.2)T
(0.9, 0.2)T (6.8, 1.4)T (1.9, 0.3)T (0.8, 0.1)T (3.0, 0.6)T (−1.2, 0.2)T
(3.7, 0.7)T (3.8, 0.4)T (6.0, 0.8)T (5.0, 1.0)T (0.3, 0.1)T (−2.8, 0.4)T
(1.2, 0.2)T (4.4, 0.4)T (3.1, 0.4)T (3.0, 0.6)T (1.6, 0.2)T (1.6, 0.3)T
(1.7, 0.3)T (6.0, 1.2)T (7.3, 1.5)T (6.9, 1.2)T (6.9, 1.0)T (0.9, 0.2)T
(0.5, 0.1)T (1.3, 0.3)T (5.1, 1.0)T (6.2, 1.1)T (1.8, 0.2)T (5.7, 1.0)T
(3.4, 0.5)T (3.4, 0.4)T (1.3, 0.2)T (5.8, 1.1)T (4.9, 1.0)T (−0.7, 0.1)T

(−1.3, 0.2)T (5.8, 1.0)T

A) Suppose that we want to test the following fuzzy hypotheses at the significance level β = 0.05{
H0 : θ is approximately 2,
H1L : θ is essentially larger than 2,

≡

{
H0 : θ is H̃0,

H1 : θ is H̃1L,

where H̃0 = (1.75, 2, 2.25)T and H̃1L = (1.80, 2)EL (see Fig. 5).

The fuzzy point estimation is X̃ = (1.924, 2.416, 2.908)T and the fuzzy test statistic is obtained as Z̃ =

(−0.326
√
50
3 , 0.416

√
50
3 , 1.158

√
50
3 )T = (−0.7684, 0.9805, 2.7294)T with the following α-cuts

Z̃[α] =

[
(0.416− 0.742(1− α))

√
50

3
, (0.416 + 0.742(1− α))

√
50

3

]
.
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Figure 6: The related quantities in Example 3 for the fuzzy hypotheses

Figure 7: The related quantities in Example 3 for the crisp hypotheses

Based on the fuzzy test statistic, we obtain AT = 0.742
√
50
3 = 1.7489 and AR = 0.6202. Since AR/AT =

0.3546, we reject H0 for every credit level φ ∈ (0, 0.3546] (see Fig. 6).
B) Consider the above fuzzy data. Now, suppose that we want to test the following crisp hypotheses (which

is equivalent to the case a1 = θ0 = a3 in the above fuzzy hypotheses):{
H0 : θ = 2,

H1 : θ > 2.
(1)

Based on Remark 3, the α-cuts of fuzzy test statistic are calculated as

Z̃[α] = X̃[α]−θ0
σ/
√
n

=
[
x−(1−α)r−θ0

σ/
√
n

, x+(1−α)r−θ0
σ/
√
n

]
=

[
z0 − (1− α) r

√
n
σ , z0 + (1− α) r

√
n
σ

]
=

[
(0.416− 0.492(1− α))

√
50
3 , (0.416 + 0.492(1− α))

√
50
3

]
.

Hence, the fuzzy test statistic is Z̃ = (−0.076
√
50
3 , 0.416

√
50
3 , 0.908

√
50
3 )T = (−0.1791, 0.9805, 2.1402)T , and we

obtain AT = 0.492
√
50
3 = 1.1597, AR = 0.1058, and AR/AT = 0.0912. The null hypothesis in (1) is, therefore,

rejected for every credit level φ ∈ (0, 0.0912] (see Fig. 7). Since r ≤ (r + θ0 − a1) and r ≤ (r + a3 − θ0), it is
concluded that in this case, under the fuzzy hypotheses, we may reject H0 with a higher credit level than we
would the crisp hypotheses case.
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Figure 8: Z̃ and AR in Example 4

Example 4 Consider the fuzzy data in Example 3. Suppose that we wish to test the following fuzzy hypotheses
at the significance level β = 0.05:

{
H0 : θ is approximately 2,
H1 : θ is away from 2,

≡

{
H0 : θ is H̃0,

H1 : θ is H̃1,

where H̃0 = (1.5, 2, 2.5)T and H̃1 = H̃c
0. The α-cuts of the fuzzy test statistic are calculated as

Z̃[α] =
[
z0 − (1− α)(r + a3 − θ0)

√
n
σ , z0 + (1− α)(r + θ0 − a1)

√
n
σ

]
=

[
(−0.576 + 0.992α)

√
50
3 , (1.408− 0.992α)

√
50
3

]
.

Hence, the fuzzy test statistic is Z̃ = (−0.576
√
50
3 , 0.416

√
50
3 , 1.408

√
50
3 )T = (−1.3576, 0.9805, 3.3187)T , and we

obtain AT = 0.992
√
50
3 = 2.3382 and AR = AR1

+ AR2
= 0 + 0.3948 = 0.3948. Since AR/AT = 0.1688, we

reject H0 for every credit level φ ∈ (0, 0.1688] (see Fig. 8).

5.2 Testing Fuzzy Hypotheses for the Variance

Assume that we have taken a random sample of size n from a population N(µ, θ) (µ is unknown) and we

have observed the fuzzy numbers X̃1, X̃2, ..., X̃n. Suppose further that we want to test the following fuzzy
hypotheses at the significance level β:{

H0 : θ is approximately θ0,
H1L : θ is essentially larger than θ0.

The usual point estimation for θ is θ∗ = s2 = 1
n−1

∑n
i=1(xi−x)2. By substituting the α-cuts of X̃i, i = 1, ..., n,

(X̃i[α] = [X̃L
i , X̃

U
i ]) for xi in the point estimation θ∗, and using the interval arithmetic, the α-cuts of the

fuzzy point estimation S̃2 are obtained as follows

S̃2[α] = 1
n−1

∑n
i=1

(
[X̃L

i , X̃
U
i ]− [X̃

L

, X̃
U

]

)
.

(
[X̃L

i , X̃
U
i ]− [X̃

L

, X̃
U

]

)

=

[
S̃2

L
[α], S̃2

U
[α]

]
,
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where

X̃[α] = [X̃
L

, X̃
U

] = 1
n

∑n
i=1[X̃L

i , X̃
U
i ] =

[
1
n

∑n
i=1 X̃

L
i ,

1
n

∑n
i=1 X̃

U
i

]
,

S̃2
L

[α] = max

[
0,min

[
1

n−1

∑n
i=1(X̃L

i − X̃
U

)2, 1
n−1

∑n
i=1(X̃L

i − X̃
U

)(X̃U
i − X̃

L

), 1
n−1

∑n
i=1(X̃U

i − X̃
L

)2
]]
,

S̃2
U

[α] = max

[
1

n−1

∑n
i=1(X̃L

i − X̃
U

)2, 1
n−1

∑n
i=1(X̃L

i − X̃
U

)(X̃U
i − X̃

L

), 1
n−1

∑n
i=1(X̃U

i − X̃
L

)2
]
.

Under the crisp null hypothesis H0 : θ = θ0, the crisp test statistic (n−1)S2

θ0
is distributed according to χ2

n−1

with Q0 = (n−1)θ∗
θ0

= (n−1)s2
θ0

as its observed value. By substituting the α-cuts of the fuzzy point estimation

S̃2 for θ∗ = s2 and the α-cuts of H̃0 = (a1, θ0, a3)T (in this case a1 > 0) for θ0 in Q0, and using the interval
arithmetic, the α-cuts of the fuzzy test statistic are obtained to be

Z̃[α] =
(n− 1)S̃2[α]

H̃0[α]
=

(n− 1)

[
S̃2

L
[α], S̃2

U
[α]

]
[a1 + α(θ0 − a1), a3 − α(a3 − θ0)]

=

 (n− 1)S̃2
L

[α]

a3 − α(a3 − θ0)]
,

(n− 1)S̃2
U

[α]

a1 + α(θ0 − a1)

 .
Now, based on the above fuzzy test statistic, we can test the hypotheses of interest by employing the quadruplet
procedure proposed in Subsection 4.2.

Example 5 Suppose that, based on a random sample of size n = 20 from a population N(µ, θ), we observe
the symmetric triangular fuzzy numbers in Table 2 as fuzzy observations.

Table 2: The fuzzy data from a normal population in Example 5

(r1i, xi, r2i)T (r1i, xi, r2i)T (r1i, xi, r2i)T (r1i, xi, r2i)T (r1i, xi, r2i)T

(1.03, 1.29, 1.55)T (1.21, 1.51, 1.81)T (2.10, 2.63, 3.16)T (2.82, 3.53, 4.24)T (1.80, 2.25, 2.70)T

(0.18, 0.23, 0.28)T (2.18, 2.72, 3.26)T (1.10, 1.37, 1.64)T (2.46, 3.08, 3.70)T (0.43, 0.54, 0.65)T

(0.56, 0.70, 0.84)T (1.69, 2.11, 2.53)T (1.30, 1.62, 1.94)T (2.44, 3.05, 3.66)T (1.29, 1.61, 1.93)T

(2.83, 3.54, 4.25)T (2.63, 3.29, 3.95)T (3.13, 3.91, 4.69)T (2.08, 2.60, 3.12)T (3.88, 4.85, 5.82)T

Here, the α-cuts of the fuzzy point estimation are obtained as follows (see Fig. 9)

S̃2[α] =

[
S̃2

L
[α], S̃2

U
[α]

]
,

where

S̃2
L

[α] =

{
1
19 [28.09086α2 + 56.18171α(1− α) + 9.70434(1− α)2] 0 ≤ α ≤ 0.6942,
1
19 [28.09086α2 + 44.93578α(1− α) + 35.23144(1− α)2] 0.6942 < α ≤ 1,

and

S̃2
U

[α] =
1

19
[28.09086α2 + 67.42764α(1− α) + 57.72330(1− α)2].

Now, suppose that we want to test the following hypotheses at the significance level β = 0.05:{
H0 : θ is approximately 2,
H1L : θ is essentially larger than 2,

≡

{
H0 : θ is H̃0,

H1 : θ is H̃1L,

where H̃0 = (1.5, 2, 2.5)T and H̃1L = (1.75, 2)EL. The α-cuts of the fuzzy test statistic are
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Figure 9: The fuzzy point estimation in Example 5

Figure 10: Z̃ and AR in Example 5 for the fuzzy hypotheses

Z̃[α] =

 (n− 1)S̃2
L

[α]

a3 − α(a3 − θ0)
,

(n− 1)S̃2
U

[α]

a1 + α(θ0 − a1)

 =

 19S̃2
L

[α]

2.5− 0.5α
,

19S̃2
U

[α]

1.5 + 0.5α

 =
[
Z̃L[α], Z̃U [α]

]
,

where

Z̃L[α] =


28.09086α2+56.18171α(1−α)+9.70434(1−α)2

2.5−0.5α 0 ≤ α ≤ 0.6942,

28.09086α2+44.93578α(1−α)+35.23144(1−α)2
2.5−0.5α 0.6942 < α ≤ 1,

and

Z̃U [α] =
28.09086α2 + 67.42764α(1− α) + 57.72330(1− α)2

1.5 + 0.5α
.

Using the trapezoidal rule [10], we obtain AT = 13.4699 and AR = 0.8425. Since AR/AT = 0.0625, we reject
H0 for every credit level φ ∈ (0, 0.0625] (see Fig. 10).

Now, suppose that, based on the fuzzy data in Example 5, we want to test the following crisp hypotheses
instead of the above fuzzy ones (which is equivalent to the case a1 = θ0 = a3 in the above fuzzy hypotheses){

H0 : θ = 2,

H1 : θ > 2.
(2)

Based on Remark 3, the α-cuts of the fuzzy test statistic are calculated as follows

Z̃[α] =

 (n− 1)S̃2
L

[α]

θ0
,

(n− 1)S̃2
U

[α]

θ0

 =

[
9.5S̃2

L
[α], 9.5S̃2

U
[α]

]
= 9.5S̃2[α].

Using the trapezoidal rule [10], we obtain AR = 0. Hence AR/AT = 0, and we accept the null hypothesis in
(2) for every credit level (see Fig. 11). Since θ0 ≤ a3 − α(a3 − θ0) and a1 + α(θ0 − a1) ≤ θ0 for 0 < α ≤ 1, it
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Figure 11: Z̃ and AR in Example 5 for the crisp hypothesis

is concluded that, in this case, for the fuzzy hypotheses, we may reject H0 with a higher credit level than we
did in the crisp hypotheses case.

6 Testing Fuzzy Hypotheses for Mean of an Exponential Distribu-
tion

Assume that we have taken a random sample of size n from an exponential distribution Exp(θ) with the
following density

f(x) =
1

θ
e−x/θ, x > 0, θ > 0.

Suppose that we observe the fuzzy numbers X̃1, X̃2, ..., X̃n. We want to test the following fuzzy hypotheses{
H0 : θ is approximately θ0,
H1L : θ is essentially larger than θ0,

≡

{
H0 : θ is H̃0,

H1 : θ is H̃1L.

The usual point estimation for θ is θ∗ = x. By substituting the α-cuts of X̃i, i = 1, ..., n, (X̃i[α] = [X̃L
i , X̃

U
i ])

for xi in the point estimation, we obtain the fuzzy point estimation X̃ with the α-cuts X̃[α] = [X̃
L

, X̃
U

] =

[ 1n
∑n
i=1 X̃

L
i ,

1
n

∑n
i=1 X̃

U
i ]. Under the crisp null hypothesis (H0 : θ = θ0), the crisp test statistic 2nX

θ0
is

distributed according to χ2
2n with Q0 = 2nθ∗

θ0
= 2nx

θ0
as its observed value. By substituting the α-cuts of the

fuzzy point estimation X̃ for θ∗ and the α-cuts of H̃0 for θ0 in Q0, and using the interval arithmetic, the
α-cuts of the fuzzy test statistic are obtained as follows

Z̃[α] =
2nX̃[α]

H̃0[α]
=

 2nX̃
L

a3 − (a3 − θ0)α
,

2nX̃
U

a1 + (θ0 − a1)α

 .
Now, based on the above fuzzy test statistic, we can test the hypotheses of interest using the quadruplet
procedure proposed in Subsection 4.2.

Example 6 Lifetime testing: The following data (the centers of fuzzy numbers, xi) show the lifetimes (in
1000 km) of front disk brake pads on a randomly selected set of 40 cars (same model) that were monitored by
a dealer network (see, [18], pp. 337). But, in practice measuring the lifetime of a disk may not yield an exact
result. A disk may work perfectly over a certain period but be braking for some time, and finally be unusable
at a certain time. So, such data may be reported as imprecise quantities. Assume that the lifetimes of front
disk brake pads are reported as fuzzy numbers in Table 3. In fact, imprecision is formulated by fuzzy numbers
X̃i = (xi, si)R, with si = 0.05xi, i = 1, 2, . . . , 40, as follows

X̃i(t) =

{
1− t−xi

si
xi ≤ t ≤ xi + si,

0 otherwise.
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Figure 12: Z̃ and AR in Example 6

Table 3: The fuzzy data of the lifetimes (in 1000 km) of front disk brake pads in Example 6

X̃i = (xi, si)R X̃i = (xi, si)R X̃i = (xi, si)R X̃i = (xi, si)R X̃i = (xi, si)R

(86.2, 4.3)R (45.1, 2.3)R (52.1, 2.6)R (54.2, 2.7)R (59.0, 3.0)R

(38.4, 1.9)R (41.0, 2.1)R (56.4, 2.8)R (81.3, 4.1)R (62.4, 3.1)R

(45.5, 2.3)R (36.7, 1.8)R (42.2, 2.1)R (51.6, 2.6)R (34.4, 1.7)R

(22.7, 1.1)R (22.6, 1.1)R (40.0, 2.0)R (38.8, 1.9)R (50.2, 2.5)R

(48.8, 2.4)R (81.7, 4.1)R (61.5, 3.1)R (53.6, 2.7)R (50.7, 2.5)R

(42.8, 2.1)R (102.5, 5.1)R (42.7, 2.1)R (80.6, 4.0)R (64.5, 3.2)R

(73.1, 3.7)R (28.4, 1.4)R (46.9, 2.3)R (45.9, 2.3)R (33.8, 1.7)R

(59.8, 3.0)R (31.7, 1.6)R (33.9, 1.7)R (50.6, 2.5)R (56.7, 2.8)R

Suppose that the lifetime of the front disk brake pad has an exponential distribution with an unknown mean θ.

The fuzzy point estimation for the parameter θ based on the fuzzy data is X̃ = (x, s)R = (51.2750, 2.5575)R

with α-cuts X̃[α] = [51.2750, 51.2750 + (1 − α)2.5575]. Suppose that we want to test the following fuzzy
hypotheses at the significance level β = 0.10:{

H0 : θ is approximately 45,
H1L : θ is essentially larger than 45,

≡

{
H0 : θ is H̃0,

H1 : θ is H̃1L,

where H̃0 = (40, 45, 50)T and H̃1L = (43, 45)EL. The α-cuts of the fuzzy test statistic are calculated as follows

Z̃[α] =

[
4102

50− 5α
,

4306.6− 204.6α

40 + 5α

]
.

Also, the fuzzy test statistic is obtained as follows

Z̃(z) =



10z−820.4
z 82.040 < z ≤ 4102

45 ,

4306.6−40z
204.6+5z

4102
45 < z ≤ 107.665,

0 otherwise.

Hence, AT = 12.6486, AR = 3.4834, and AR/AT = 0.2754. Therefore, H0 is rejected for every φ ∈ (0, 0.2754]
(see Fig. 12).
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7 A Comparison Study

In this section, we compare our method with two well known methods proposed for testing statistical hy-
potheses in the fuzzy environment.

7.1 Comparison with Buckley’s Approach

Buckley [3] studied the problem of testing crisp hypotheses based on the fuzzy test statistic. He first considered
the confidence intervals for the parameter of interest as the α-cuts of a fuzzy point estimation. Then, the
fuzzy test statistic could be defined based on the α-cuts of the fuzzy point estimation. Finally, the statistical
hypotheses could be evaluated using a credit level.

Our proposed approach has the following two advantages over Buckley’s.

1) While Buckley considers the problem of testing based on crisp data and crisp hypotheses, we assume that
both the hypotheses and the data are fuzzy. Our method is, therefore, more convenient in real world
studies.

2) We introduce a fuzzy point estimation based on the α-cuts of fuzzy data for obtaining the fuzzy test
statistic, whereas Buckley uses a set of confidence intervals as the α-cuts of a fuzzy point estimation.
The fuzzy point estimation for α = 1 is reduced to the usual crisp point estimation in our method, but
Buckley’s sometimes does not yield a usual crisp point estimation. For instance, the confidence interval
for σ2 of a normal distribution is as follows[

(n− 1)s2

χ2
1−α/2,n−1

,
(n− 1)s2

χ2
α/2,n−1

]
.

For α = 1, using Buckley’s method, the point estimation of σ2 would be obtained as (n−1)s2
χ2
0.5,n−1

, which is

not a usual point estimation. On the other hand, based on our proposed method described in Subsection
5.2, we obtain s2 = 1

n−1
∑n
i=1(xi − x)2 as the point estimation of σ2, which is exactly the usual crisp

point estimator of σ2 (see also [8]).

7.2 Comparison with Wu’s Approach

Wu [31] proposed an approach for testing the fuzzy mean of a normal distribution based on fuzzy data. He

used the following notations for testing the fuzzy hypothesis H̃0 : µ̃ = µ̃0 against H̃1 : µ̃ � µ̃0 (where � is an
ordering between two fuzzy numbers)

xLα =
1

n

n∑
i=1

(x̃i)
L
α − core(µ̃0), xUα =

1

n

n∑
i=1

(x̃i)
U
α − core(µ̃0),

where (x̃i)
L
α = inf{t | x̃i(t) ≥ α} and (x̃i)

U
α = sup{t | x̃i(t) ≥ α}, and core(µ̃0) is the center of the fuzzy number

(e.g. core(µ̃0) = µ0 if µ̃0(µ0) = 1). Then, he proposed to accept H̃0 in the α-cut sense if xLα < z1−β
σ√
n

and

xUα < z1−β
σ√
n

, and to accept H̃1 in the α-cut sense if xLα ≥ z1−β
σ√
n

and xUα ≥ z1−β
σ√
n

. Then, he introduced

degrees of optimism and pessimism and also a degree of belief to evaluate the hypotheses of interest. Finally,
by transferring the basic problem to an optimization problem, and by solving the problem, one could decide
whether to accept or reject the hypotheses. He introduced a similar approach for testing a simple fuzzy
hypothesis against a two-sided fuzzy hypothesis.

Some of the advantages of our method over Wu’s method are as follows:

1) We use the α-cuts of the fuzzy null hypothesis for calculating the fuzzy test statistic while, Wu used the
center of the fuzzy null hypothesis (core(µ̃0)). Now, consider different fuzzy hypotheses with different
spreads and similar centers. Based on our proposed approach, one obtains different fuzzy test statistics
(and so, different results in testing the hypotheses), whereas, by applying Wu’s approach, one obtains
similar results for testing such different hypotheses.
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2) For testing fuzzy hypotheses, we obtain a fuzzy test statistic based on all the α-cuts of the fuzzy data,
but Wu’s approach is based only on (x̃i)

L
α = inf{t | x̃i(t) ≥ α} and (x̃i)

U
α = sup{t | x̃i(t) ≥ α} of the

fuzzy data.

3) In addition to the significant level β, we use one additional criterion (the credit level) to evaluate the fuzzy
hypotheses. However, Wu suggested three additional criteria which may confuse the decision maker in
evaluating the hypotheses of interest in practical problems.

8 Conclusion

We extended an approach to the problem of testing fuzzy hypotheses when the available data are fuzzy, too.
In the proposed approach, the fuzzy hypotheses are tested based on two criteria: a significance level (coming
derived from the randomness of data) and a credit level (stemming from the fuzzy viewpoint). This approach
is especially suitable for testing crisp/fuzzy hypotheses when the observed value of the test statistic is close
to the quantile of the distribution of the test statistic. The advantage of the proposed approach is that it is a
natural analogue of the usual approach to the problem of testing statistical hypotheses, since decision making
is essentially based on the so called fuzzy test statistic. The proposed approach is general and can be applied
for testing fuzzy hypotheses with any type of fuzzy data.

We illustrated the proposed approach through some numerical examples. In addition, the applicability of
the approach was explained by a practical example of lifetime testing.

Extensions of the proposed method to test the parameters of regression models can be considered for future
work. In addition, studying the problem of testing hypothesis within the framework of granular computing
[20, 33] is a potential subject for further research.
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