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Abstract—This paper presents shared-control algorithms for the
kinematic and the dynamic models of a mobile robot with a
feasible configuration set defined by means of linear inequalities.
The shared-control laws based on a hysteresis switch are designed
in the case in which absolute positions are not available. Instead,
we measure the distances to obstacles and angular differences.
Formal properties of the closed-loop systems with the shared-
control are established by a Lyapunov-like analysis. Simulation
results and experimental results are presented to show the
effectiveness of the algorithm.

I. INTRODUCTION

Mobile robots are machines with the ability of locomotion
[1]. They are widely used in industry, search and rescue,
military and domestic fields. For instance, mobile robots are
used in many warehouses to transfer materials from shelves
to loading/unloading areas and vice-versa. Modern troops are
equipped with mobile robots for reconnaissance missions and
to attack the enemy. We are also able to find domestic robots
that perform certain housekeeping tasks, such as vacuuming,
window washing and gardening, being sold on the market.
Furthermore, wheelchairs and other assistive devices can also
be regarded as mobile robots.

Our study is motivated by the design of smart wheelchairs
that are used to help people with mobility disabilities to
move safely in their daily life [2]. The shared-controller that
combines the user input and the feedback control input is
installed to reduce the number of accidents and to correct
the user’s “perilous” behaviours. Note that the name “shared-
control” has the same meaning as that in [3] and as in the
anti-lock braking system. The wheelchair is mostly “driven”
by the operator except for “dangerous” situations, in which
the feedback controller takes charge of the system. It aims to
integrate the best of both worlds: the reliable performance of a
feedback controller and the adaptive, interactive and inventive
task execution ability of a human operator. Therefore it is very
helpful to the disabled.

Numerous studies and experiments have been performed on
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mobile robots: we only list here a few of them. Proportional-
Integral-Derivative (PID) controllers are widely used in the
industry as well as in the control of mobile robots. The paper
[4] has introduced a laser guidance control based on a PD
controller to inspect the welds in a nuclear power plant. To
avoid collisions, the potential field method is used as discussed
in [5], where an attractive force and a repulsive force applied to
the robot are generated by the target position and the obstacles,
respectively. This may not work well in circumstance in which
the combination of a global path generation and a local reactive
trajectory generation, based on a focused D* search and an
obstacle avoider, respectively, can be used to control the robot
[6]. Even though the robot is able to avoid hitting obstacles,
it is unable to reach them. Model Predictive Control (MPC)
is another popular method utilized in the design of tracking
controller for mobile robots as explained in [7] and [8]. These
MPC designs rely on full information on the environment to
build the artificial potential and may need large computation
for complex environments. H∞ control and sliding mode
control have also been implemented in the control of mobile
robots. For instance, [9] has used nonlinear H∞ control
via quasi-linear parameter varying representation to control
wheeled robots and [10] has presented an implementation
of integral sliding mode controller on a two-wheeled mobile
robot. Other control methods, such as back-stepping control
[11], adaptive control [12], [13], fuzzy control [14], [15] and
control based on the representation as chained system [16],
[17], [18], have also been explored and implemented.

The references introduced in the previous paragraph are on
how to design a feedback controller for the automatic navi-
gation of a mobile robot. However, if the human operator is
included in the closed-loop system, the situation becomes more
complicated. To combine the human input and the feedback
control input together, a shared-control algorithm based on the
hysteresis switch has been introduced in [19]. The paper [20]
has proposed steering-like and brake-like functions according
to the distance to the obstacles to avoid collisions, while
the human operator drives the robot with a joystick and the
stability of the system is analyzed through a linear model. The
shared-control problem for a mobile robot has been studied in
[21], where the shared controller is used to cope with low-
level navigations and thus reduces the operator’s workload.
However, the human’s competence is not improved. Human-
Robot bilateral shared-control has been used in [22], where the
robot is able to move autonomously according to the operator’s
order and a haptic force feedback is available to the human
operator indicating the deformation on the desired path. One
way to generate the haptic force has been introduced in [23].



Note that high requirements on the human operator is essential
for commanding direct motion inputs in a cluttered environ-
ment. To reduce the burden of directly driving the robot, the
paper [24] has proposed a semi-autonomous algorithm at the
planning level. Furthermore, a reactive planning approach to
bilaterally teleoperate an Unmanned Aerial Vehicle (UAV) has
been presented in [25]. Therein the human operator is allowed
to modify the path and an autonomous feedback controller
is used to assist the human in reaching the target position.
A semi-autonomous UAV platform has been presented in
[26], in which the hapic feedback reflecting the environment
and the system states is available to the human operator. A
shared-control law for the kinematic model of a mobile robot
with knowledge of the absolute positions is given in [27].
This paper extends the results of [27] to the cases in which
absolute positions are not measurable and the shared-control
algorithm has to deal with both static and (non-predefined)
dynamic environments. It provides formal proofs of all techni-
cal statements, includes additional theoretical results and case
studies. Both the simulation results and the experimental ones
demonstrate that the robot with the shared-controller moves
“safely” without hitting any obstacle. If the feedback controller
shares the same objective as the operator, it is used to help
the robot tracking the trajectory safely (Cases I and II in
Section V). Otherwise, the feedback controller would regard
the predicted human behaviour as its goal (Case III in Section
V).

The rest of the paper is organized as follows. The shared-
control problem is formulated in Section II, which also pro-
vides a few definitions and assumptions. Novel algorithms
to solve the shared-control problem for the kinematic model
and the dynamic model of the mobile robot are given in
Section III and IV, respectively. Formal properties of the
closed-loop systems with the shared-control algorithm are also
established. Section V presents three case studies to illustrate
the performance of the shared-control law through simulation
and experiments. Finally, conclusions and suggestions for
future work are given in Section VI.

II. PROBLEM FORMULATION, DEFINITIONS AND
ASSUMPTIONS

This section formulates the shared-control problem for the
kinematic and the dynamic models of a unicycle robot. The
kinematic model, a simple and common way to study the
motion of a wheeled robot, is widely used in the navigation in
combination with some low-level controls. It is also the basis
of the dynamic model, the control of which is more difficult.
However, robots are driven by motors which produce torques,
directly relative to the acceleration rather than the velocity of
the robots. The dynamic model may be used to describe the
situations in which the kinematic model has to complemented
with some additional dynamics, for example those due to
the presence of actuators. Therefore, this paper studies both
the kinematic and the dynamic models and provides shared-
control algorithms for these models.
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Fig. 1. Definitions of d1, d2l, d2r and θe (shadowed region: unfeasible
region, vr : reference forward velocity).

The kinematic and the dynamic models of a wheeled mobile
robot can be described by the equations

ẋ = vs cos θ,

ẏ = vs sin θ, (1)

θ̇ = ωs,

and

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = ω, (2)
v̇ = u1s/m,

ω̇ = u2s/I,

respectively, where (x, y) denotes the Cartesian coordinates
of the center of mass of the robot, θ denotes the angle
between the (positive) heading direction and the x-axis, m
and I represent the mass and the moment of the inertia of
the robot, respectively. vs, the linear forward velocity, and
ωs, the angular velocity, are external inputs for the system
(1), while v and ω are states for the system (2), although still
describing the linear forward velocity and the angular velocity,
respectively. In addition, u1s and u2s represent the generalized
force variable and the steering torque for the system (2).

In [27] a shared-control algorithm for a mobile robot with the
knowledge of absolute positions has been given. This paper
focuses on the shared-control problem without measurement
of absolute positions. Instead, the measurements are distances
to obstacles along (i.e. d1) and orthogonal to (i.e. d2 defined at
the end of this paragraph) the direction of vr and the difference
between the real and the reference heading angle (i.e. θe =
θ − θr) (see Figure 1). Note that vr is the reference linear
velocity of the robot. The definition of d2 is given as

d2 =

{
d2l if | log d2l

dr2l
| ≤ | log d2r

dr2r
|,

d2r if | log d2l
dr2l
| > | log d2r

dr2r
|, (3)



Shared Controller
us

Robot Sensors

H

uh

Feedback Controller

uf

k

Fig. 2. The proposed control architecture for the closed-loop system with
shared control.
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Fig. 3. The sharing function k: k = 1 (green, dashed) and k = 0 (red,
dotted).

where dr2l and dr2r are defined in what follows in equation
(8).

In the rest of this paper we use the subscripts h, f and s to
denote the control inputs generated by the human operator, the
feedback controller and the shared-controller, respectively.

Definition 1: We use the name h-control and f-control, de-
noted as uh and uf , to describe the human action and the
feedback control action, respectively. In addition, the sharing
function, denoted as k, is used to quantify how the control
authority is shared between uh and uf .

The control architecture is given in Fig. 2, where ’H’ describes
the human action. Note that the function k ∈ [0, 1] can be used
as a feedback signal to the human operator indicating how
dangerous the situation is: this is helpful to the human operator
in improving his/her behaviours. One possible selection for k
is a hysteresis switch, as illustrated in Fig. 3. The overall set
describing the feasible values of the state can be divided into
three subsets, the safe subset, the hysteresis subset and the
dangerous subset. The variable k = 1 if the state belongs to the
safe subset or if the state enters the hysteresis subset from the
safe subset; k = 0 if the state belongs to the dangerous subset
or if the state enters the hysteresis subset from the dangerous
subset. In addition, as illustrated in Fig. 2 the external input
of the mobile robot is the shared control signal us which is a
combination of the feedback control input uf and the human
input uh.

Definition 2: The s-closed-loop and the h-closed-loop for the
kinematic model of a mobile robot are used to denote the

system described by (1) and

ẋ = vh cos θ,
ẏ = vh sin θ,

θ̇ = ωh,

respectively, where vh and ωh are the inputs generated by the
human operator. Similarly, the s-closed-loop and the h-closed-
loop for the dynamic model of a mobile robot are used to
denote the system described by (2) and

ẋ = v cos θ,
ẏ = v sin θ,

θ̇ = ω,
v̇ = u1h/m,
ω̇ = u2h/I,

respectively, where u1h and u2h are the human inputs. In
addition, Ωh and Ωs denote the Ω-limit set of the h-closed-
loop and s-closed-loop, respectively.

Definition 3: The function f(y(t), x(t), t) = atg(y(t), x(t), t)
is a continuous function defined as

atg(y(t), x(t), t) = atan(y(t), x(t)) + 2α(t)π,

where atan is the four quadrant arctan function, α(0) = 0 and

α(t) =

 α(t− δt) + 1, if a = −2π
α(t− δt)− 1, if a = 2π
α(t− δt), else

with a = lim
δt→0+

atan(y(t), x(t)) − atan(y(t − δt), x(t − δt))
for all t > 0.

Note that Definition 3 is similar to the definition of the
standard four quadrant arctan function except that the func-
tion atg(·) takes values in (−∞,∞) rather than in [−π, π).
The following example can be used to help understand-
ing Definition 3. Suppose the robot is tracking a unity
circle centered at the origin with angular speed equals
to 1, i.e. x(t) = cos(t), y(t) = sin(t). Then for any
t ∈ [0, π], atan(y(t), x(t)) = t and α(t) = 0. How-
ever, lim

δt→0+
atan(y(π + δt), x(π + δt)) = −π indicating

lim
δt→0+

atan(y(π+ δt), x(π+ δt))− atan(y(π), x(π)) = −2π.

Therefore, α(π + δt) = 1. It is therefore easy to conclude
that, in the example, α(t) = i if t ∈ (2i− π, 2i+ π], with i a
positive integer.

Assumption 1: The admissible Cartesian configuration set for
the robot, denoted as Pa, is non-empty.

Assumption 2: The function dd(t) = [dd1(t), dd2(t)]T , rep-
resenting the desired distances to the relative obstacles (the
obstacles along and orthogonal to the direction of vr), is
continuous.

Assumption 3: To simplify the calculation, we assume that the
mass m and the moment of inertia I of the mobile robot are
equal to 1.

The above assumptions hold for the rest of the paper.



Suppose Pa ⊂ P = R2 is a given, closed and compact
set describing the admissible Cartesian configurations for the
system (1) and uh is a given h-control. The shared-control
problem for the kinematic model of a mobile robot can be
formulated as follows.

Given the system (1), an admissible configuration set Pa and
an h-control, find (if possible)

• an f-control uf ;
• a sharing function k;
• a safe set Rs , Pa ×As ⊂ Pa ×A , R;

where A and As are the set of all heading angles and the
set of all heading angles with which the robot is unable
to reach the boundary of Pa within some arbitrary small
time respectively, such that the s-closed-loop system has the
following properties.

P1) The set R is forward invariant.
P2)

Ωs =

Ωh if Ωh ⊂ Rs,

ΠRs(Ωh) if Ωh 6⊂ Rs,

where ΠRs
(Ωh) is the projection of Ωh into the set Rs,

which will be defined in Section III-A.
P3) us = uh if the state of the s-closed-loop system is in Rs.

Note that the problem statement for the dynamic model (2)
is similar to the above one except for that the safe set Rs is
defined as Rs , Pa×As×Vs×W ⊂ Pa×A×V×W∫ , R
and ΠRs

(Ωh) will be defined in Section IV-A. V and W are
the sets of linear velocities and angular velocities, respectively.
In addition, for any fixed θ and any (x, y) ∈ Pa, Vs and Ws

are the sets of all linear velocities and angular velocities with
which the robot is unable to reach the boundary of Pa within
some arbitrary small time, respectively.

III. SHARED-CONTROL FOR THE KINEMATIC
MODEL OF A MOBILE ROBOT

This section gives a solution to the shared-control problem for
the kinematic model of a mobile robot described by (1) with
any non-empty Pa.

A. Design of the f-control

Since measurements of the absolute positions are not available
and we can only measure the distances to obstacles and the
angular differences between the actual and the reference head-
ing angles, the dynamics of the system (1) can be rewritten
using the variables d = [d1, d2]T and θe defined in Section
II. If d2 = d2l, then the system controlled by the feedback

ddj

drj

drj = ε

(1−
√

2)r + ε (1−
√

2
2 )r + ε

45◦

Fig. 4. The graph of the function drj given by (8).

controller can be described by the equations

ḋ1 =− vf cos θe,

ḋ2 =− vf sin θe,

θ̇e =ωf .

(4)

Otherwise, if d2 = d2r, then the system controlled with the
feedback controller can be described by the equations

ḋ1 =− vf cos θe,

ḋ2 = vf sin θe,

θ̇e =ωf .

(5)

Without loss of generality, we only discuss how to design the
feedback controller in the case d2 = d2l. Since we regard the
mobile robot as a point, the position constraint (x, y) ∈ Pa
can be rewritten as

dj ≥ 0 ∀j ∈ {1, 2}. (6)

Define the variable z = [z1, z2]T as

zj = log
dj
drj

, (7)

for all j ∈ {1, 2}, where drj , describing the reference
trajectory for the state dj , is defined as

drj =


ddj , if ddj ≥ (1−

√
2

2 )r + ε,

ε, if ddj ≤ (1−
√

2)r + ε,

mj , otherwise ,
(8)

for all j ∈ {1, 2}, with mj = (r + ε) −√
r2 − [(

√
2− 1)r − ε+ ddj ]2 and a positive constant

ε. Note that the variable drj , instead of ddj , is used in the
definition of zj , since ddj may be unfeasible, i.e. there may
exist a t > 0 such that ddj (t) < 0.

Fig. 4 illustrates the definition of drj , from which it is clear
that drj is a smooth function with positive values. As a result,
˙drj exists and

ḋr1 = −vir, θr = atg(−dr2 ,−dr1)), θ̇r = ωr. (9)



Note that the definition of the safe set Rs for the system states
of the kinematic model of the mobile robot given in Section
II are relative to the (x, y) coordinates. However, it can be
transfered into the (d1, d2, θ) coordinates as follows.

Suppose (dd, θd) is a point of the Ω-limit set of the h-closed-
loop system, i.e. (dd, θd) ∈ Ωh, and define the projection of
(dd, θd) into Rs as

ΠRs(dd, θd) = (dr, θr),

where dr = [dr1 , dr2 ]T and θr are defined by (8) and (9),
respectively. Then the projection of Ωh into the safe set Rs is
defined by

ΠRs
(dd, θd) = {s ∈ Rs|s = ΠRs

(dd, θd),∀(dd, θd) ∈ Ωh}.

Let θ∗e = atg(γ2d2z2, d1(
vr
dr1

+ γ1z1)), where γ1 > 0 and

γ2 > 0. Note that θ∗e(t) is calculated from the back-stepping
method and it describes the desired value for θe at the time
instant t. Consider the Lyapunov function relative to d2 = d2l

L(z1, z2, θe) given as

L(z1, z2, θe) =
1

2
[z1

2 + z2
2 + (θe − θ∗e)2], (10)

and choose vf and ωf such that L̇ < 0 for all (z1, z2) 6= (0, 0)
and θe 6= θ∗e . One such a choice is given by

vf =

√
d1

2(
vr
dr1

+ γ1z1)2 + γ2
2d2

2z2
2,

ωf =θ̇∗e − γ3(θe − θ∗e)−
z1vf sin

θe + θ∗e
2

sinc
θe − θ∗e

2
d1

+ ωr +
z2vf cos

θe + θ∗e
2

sinc
θe − θ∗e

2
d2

,

yielding

L̇ = −γ1z1
2 − γ2z2

2 − γ3(θe − θ∗e)2 ≤ 0.

This can be pushed back to the (d1, d2, θe) coordinates yield-
ing

vf =

√
d1

2(
vr
dr1

+ γ1 log
d1

dr1
)2 + γ2

2d2
2(log

d2

dr2
)2,

ωf =−
log

d1

dr1
vf sin

θe + θ∗e
2

sinc
θe − θ∗e

2

d1

+

log
d2

dr2
vf cos

θe + θ∗e
2

sinc
θe − θ∗e

2

d2

+ θ̇∗e − γ3(θe − θ∗e) + ωr,

(11)

where

θ∗e = atg(γ2d2 log
d2

dr2
, d1(

vr
dr1

+ γ1 log
d1

dr1
).

We are now ready to present a preliminary result.

Lemma 1: Consider the f-closed-loop system (1) with
[vs, ωs]

T = [vf , ωf ]T , dr and (vr, ωr) given by (11), (8) and
(9), respectively. Assume (x(0), y(0)) ∈ Pa. Then the closed-
loop system has the following properties.

• d1(t) > 0, d2(t) > 0 for all t ≥ 0;
• lim
t→∞

(d1(t)− dr1(t)) = lim
t→∞

(d2(t)− dr2(t)) = 0.

Proof: According to the definition of zj given in (7),
dj(t) > 0 for all t ≥ 0 and j ∈ {1, 2}. The first claim thus
holds.

Consider the Lyapunov function (10) and note that L̇(t) < 0
for all z 6= 0 and θe 6= 0. As a result z and θe asymptotically
converge to 0 and θr, respectively, which proves the second
property.

B. Shared Control

For any given human input vh, the safe, hysteresis and
dangerous subsets, Rs,Rh and Rd, are defined in equations
(12) at the top of the next page where D is the distance
to the obstacle along the direction of vh (see Figure 1) and
b2 > b1 > 0 are user selected parameters. The three subsets
have the following properties.

• For any fixed vh, the union of the safe, the hysteresis and
the dangerous set coincides with the overall feasible state
space, i.e. Rs(vh) ∪Rh(vh) ∪Rd(vh) = R(vh).

• For any fixed vh, there is no intersections between the
safe subset and the dangerous subset, i.e. Rs(vh) ∩
Rd(vh) = ∅.

For each group of constraints, the sharing function k can be
defined as (see [28])

k(D, vh) =


1, (d1, d2, θe) ∈ Rs(vh),

l, (d1, d2, θe) ∈ Rh(vh),

0, (d1, d2, θe) ∈ Rd(vh),

(13)

where

l =

{
1, if (d1, d2, θe) enters Rh(vh) from Rs(vh),

0, if (d1, d2, θe) enters Rh(vh) from Rd(vh).

Finally, the overall shared-control for the system (4) is given
by

us = (1− k(D, vh))uf (d, dr, θr, ωr, vr) + k(D, vh)uh.
(14)

Theorem 1: Consider the kinematic model of a mobile robot
(1) with the shared-control law given by (11)-(13)-(14). As-
sume p(0) = [x(0), y(0)]T ∈ Pa and uh is a given h-
control. Then there exist γi > 0, for all i ∈ {1, 2} and
b2 > b1 > 0 such that the s-closed-loop system has the
following properties.



Rs(vh) =

{
(d1, d2, θe + θr) ∈ R+ × R+ × S : vh ≤

1

b2 −D
− 1

b2
if D ≤ b2

}

Rh(vh) =


(d1, d2, θe + θr) ∈ R+ × R+ × S :

1

b2 −D
− 1

b2
< vh <

1

b1 −D
− 1

b1
and D ≤ b1

or vh >
1

b2 −D
− 1

b2
and b1 ≤ D ≤ b2

 (12)

Rd(vh) =

{
(d1, d2, θe + θr) ∈ R+ × R+ × S : vh ≥

1

b1 −D
− 1

b1
and 0 ≤ D ≤ b1

}

i) p(t) stays in Pa for all t ≥ 0.
ii) Ωs = ΠRs

(Ωh).
iii) us(t) = uh(t) if the system state belongs to the safe

subset at time t .
iv) The feedback-control input uf is bounded.

Proof: To begin with, as detailed in Section III-A, the
f-control uf is such that the configuration of the system stays
in the admissible region Pa. Consider the Lyapunov function
candidate L given by (10). Due to the definition of d2 given
in (3) the switch from d2 = d2l to d2 = d2r (or vise versa)
does not cause any discontinuity in the value of it. If us does
not switch from one feedback controller to the other, i.e. if
(d1, d2, θ) leaves the dangerous subset Rd at t = t1 and enters
it again at t = t2, then due to the existence of the hysteresis
subset, there exists a positive δt such that us(t) = uf (t) for all
t ∈ [t1, t1 + δt]. Let ∆t be the smallest time period, in which
one of the feedback controller is active. Note that ∆t > 0.
Then it is always possible to find positive constants γ1, γ2

and γ3 such that∫ t2+∆t

t2

L̇dt ≤ L(t1)− L(t2),

i.e. L(t2 + ∆t) ≤ L(t1). Let ui1f , u
i2
f , . . . , u

in
f be a series

of active feedback controllers and let uijf be active for the
time interval (tij , Tij ], where ij ∈ {1, 2, . . . , in} for all j ∈
{1, 2, . . . , n}. Note that tij+1 ≥ Tij for all j ∈ {1, 2, . . . , n−
1}. Therefore 0 ≤ Lin(Tin) ≤ · · · ≤ Li2(Ti2) ≤ Li1(Ti1).
Define the overall Lyapunov function L(t) as

L(t) = Lij (t), if t ∈ (tij , Tij ].

From the above analysis and [29] L(t) is a multiple Lyapunov
function and this implies that the configuration of the system
with the feedback controller stays in the admissible set for
all t ≥ 0. In addition, the definition of Rd indicates that any
trajectory enters the dangerous subset Rd before leaving R
where uf is active. Therefore, the set R is a forward invariant
set and claim i) holds.

If Ωh ⊂ Rs, then claim ii) is a consequence of the general
results in [28], and of the fact that Ωh is the Ω-limit set
of both the h-closed-loop and the f-closed-loop systems (by
assumption, the former, and by equations (7)-(10), the latter).
Otherwise, if Ωh 6⊂ Rs, Lemma 1 indicates that the Ω-limit
set of the f-closed-loop system is ΠRs

(Ωh). Furthermore,

equation (12) indicates that the trajectory of the system enters
Rd where the feedback controller is active, hence driving the
states of the system back to Rs, before leaving the admissible
set R. Therefore, property ii) holds.

Statement iii) is a direct consequence of the definition of us.

Finally, uf given by (11) is chosen such that z and θe
asymptotically converge to zero. Therefore, z is bounded. In
addition, drj (t) given by (8) for j ∈ {1, 2} is a function with
all positive values. This leads to the result d(t) ≥ ε for all
t ≥ 0 and some positive constant ε. Hence, uf is bounded.

Note that the third property in Theorem 1 is essential if
the shared-controller is applied to a training system, such
as a training wheelchair. In addition, this property allows
the human operator to do whatever he/she wants as long as
his/her behaviour is safe. This is important, for example in the
application to toy cars.

IV. SHARED-CONTROL FOR THE DYNAMIC
MODEL OF A MOBILE ROBOT

In this section we discuss how to design a shared-controller
for the dynamic model of the mobile robot satisfying all
the properties presented in Section II with any non-empty
admissible configuration set.

A. Design of the f-control

Consistently with Section III-A, we design the feedback con-
troller for the case d2 = d2l. Define variables z and dr as in
(7) and (8), respectively. Then system (2) with the variable z
and θe can be rewritten as

ż1 =
ḋ1

d1
− ḋr1
dr1

=
vr
dr1
− v cos θe

d1
,

ż2 =
ḋ2

d2
− ḋr2
dr2

= −v sin θe
d2

,

θ̇e =ωe,

v̇ =u1f ,

ω̇e =u2f − u2r,



where ur = [u1r, u2r]
T is the reference input signal and it is

calculated as

u1r = d̈r1 , u2r = θ̈r. (15)

Similarly to what stated in Section III-A, even though the
definition of the safe set Rs for the states of the dynamic
model of the mobile robot is given based on the (x, y) coordi-
nates, it can be mapped into the (d1, d2, θ, v, ω) coordinates.
Suppose (dd, θd, vd, ωd) is a point of the Ω-limit set of the h-
closed-loop system, i.e. (dd, θd, vd, ωd) ∈ Ωh, and define the
projection of (dd, θd, vd, ωd) into Rs as

ΠRs
(dd, θd, vd, ωd) = (dr, θr, vr, ωr),

where dr and θr, vr, ωr are defined as in (8) and (9), respec-
tively. Then the projection of Ωh into the safe setRs is defined
by

ΠRs
(dd, θd, vd, ωd) =

{
s ∈ Rs

∣∣∣∣ s = ΠRs
(dd, θd, vd, ωd),

∀(dd, θd, vd, ωd) ∈ Ωh

}
.

Let

θ∗e =atg(γ2d2z2, d1(
vr
dr1

+ γ1z1)),

v∗ =

√
(d1(

vr
dr1

) + γ1z1)2 + (γ2d2z2)2,

ω∗e =θ̇∗e −
z1v
∗

d1
sin

θe + θ∗e
2

sinc
θie − θ∗e

2

+
zi2v
∗

d2
cos

θe + θ∗e
2

sinc
θe − θ∗e

2
,

where γ1 > 0 and γ2 > 0. Consider the Lypunov function

L(z1, z2, θe, v, ωe) =
1

2

[
z2

1 + z2
2 + (θe − θ∗e)2 + (v − v∗)2

+(ωe − ω∗e)2

]
,

(16)

and choose uf = [u1f , u2f ]T such that L̇ ≤ 0 and L̇ ≡ 0
implies that (z1, z2, θe, v, ωe) = (0, 0, 0, 0, 0). One such a
choice is given by

u1f = v̇∗ +
z1

d1
cos θie +

z2

d2
sin θe − γ3(v − v∗),

u2f = u2r + ω̇∗e − θe + θ∗e − γ4(ωe − ω∗e),

yielding

L̇ = −γ1z1
2 − γ2z2

2 − γ3(v − v∗)2 − γ4(ωe − ω∗e)2.

This can be pushed back into the (d1, d2, θe, v, ωe) coordinates
yielding

u1f =v̇∗ +

log
d1

dr1
d1

cos θe +

log
d2

dr2
d2

sin θe − γ3(v − v∗),

u2f =u2r + ω̇∗e − θe + θ∗e − γ4(ωe − ω∗e),
(17)

where

θ∗e =atg(γ2d2 log
d2

dr2
, d1(

vr
dr1

+ γ1 log
d1

dr1
),

v∗ =

√
(d1(

vr
dr1

) + γ1 log
d1

dr1
)2 + (γ2d2 log

d2

dr2
)2,

ω∗e =θ̇∗e −
log

d1

dr1
v∗

d1
sin

θe + θ∗e
2

sinc
θe − θ∗e

2

+

log
d2

dr2
v∗

d2
cos

θe + θ∗e
2

sinc
θe − θ∗e

2
.

Lemma 2: Consider the f-closed-loop system (2) with
[vs, ωs]

T = [u1f , u2f ]T , dr and (vr, ωr) given by (17), (8)
and (9), respectively. Assume (x(0), y(0)) ∈ Pa. Then the
closed-loop system has the following properties.

• d1(t) > 0, d2(t) > 0 for all t ≥ 0;
• lim
t→∞

(d1(t)− dr1(t)) = lim
t→∞

(d2(t)− dr2(t)) = 0.

B. Shared Control

The definitions of the three subsets, the safe subset Rs, the
hysteresis subset Rh and the dangerous subset Rd, are similar
to that given in (12) except for that these three subsets are sets
in (d1, d2, θe+θr, v, ωe+ωr) ∈ R+×R+×S×R2. In addition,
the sharing function kd can be defined as in (13). Therefore,
the overall shared-control for the system (2) is given, similarly
to (14), by

us =(1− kd(D, vh))uf (d, dr, θe, v, ωeθr, ωr, vr, ur)

+ kd(D, vh) uh.
(18)

Theorem 2: Consider the dynamic model of the mobile robot
(2) with the shared-control law given by (13)-(17)-(18). As-
sume p(0) = [x(0), y(0)]T ∈ Pa and uh is a given h-control.
Then there exist γi > 0, for all i ∈ {1, 2, 3, 4} and b2 > b1 > 0
such that the s-closed-loop system has Property i) to iv) in
Theorem 1.

Proof: The proof is similar to that of Theorem 1, hence
it is omitted.

Remark 1: According to the shared-control law (12)-(13)-(14)
and (12)-(13)-(18) for the kinematic and the dynamic models
of the mobile robot, the feedback controller is active only if the
robot is “close” to an obstacle. Therefore, dj can be modified
by d̂j = min(dj ,B), for j ∈ {1, 2}, where B is a positive
constant selected by the user.

Remark 1 indicates that we are not interested in the cases in
which dj > B. This is very useful in applications, especially
in the cases in which the obstacle is exactly parallel or
perpendicular to the required direction, i.e. d1 or d2 equals
infinity.



V. CASE STUDIES

In this section we discuss three case studies: trajectory tracking
in a static environment and a dynamic environment, and free-
driving. In the first case the human is asked to drive the robot
along a given trajectory from the initial position to a final
target position in a static rectangular room, while in the second
case a person is walking across the room. Finally, in the third
case no task has been given to the operator and he/she “plays
freely” with the robot. By comparing the simulation results
and the experimental ones for the first and the second case
study, we demonstrate that the trajectory for the robot in the
experiment is close to that simulated, indicating the usefulness
of the simulation. We provide only experimental results for the
third case study. Note that we have only used the kinematic
controller in the experiment because the robots available in
the lab are all controlled directly by velocities.

Fig. 5. The Experimental Setup

Both experiments are performed with a Pioneer 3-AT robot
with the help of a robotic operative system named as Pioneer 2
Operative System (P2OS). We have used Inertial Measurement
Unit (IMU) to measure the angles, angular speed and magnetic
field and lasers together with a Madgwick filter to measure
the distances. 16 sonars (rate = 25 Hz, detection range ≈ 20◦)
are used in the experiments, their positions are fixed facing
outwards with 20 degree intervals. To estimate the positions,
an extended Kalman filter has been used to combine the
encoder data (which is inaccurate in long time) and the IMU
data. In addition, the human input has been generated by
the ’joystick’ controller placed on the top of the computer
in Figure 5. The overall system is illustrated in Fig. 5. The
projection of the robot in the (x, y)-plane is a square with side
length of 0.5m× 0.5m. We assume that the sensors are fixed
to the middle of the two front-wheels and Figure 6 illustrates
how the robot looks like in the (x, y)-plane.

The “Mobilerobots” platform uses a client-server mobile robot
control architecture managed by the Pioneer 2 Operative Sys-
tem (P2OS) to insulate the developers from the lowest level of
the motor control. In fact, it uses a PID controller with wheel
encoder feedback to adjust a pulse width modulated (PWM)
signal at the motor driver to control the power to the motors.

(x, y)

0.1m0.4m

0.5m

Fig. 6. Projection of the Robot in the (x, y)-Plane. Round mark: the sensor
fixed on the robot. The right edge and the left edge of the square represent
the front edge and the back edge of the robot, respectively.

It has been found that a fully loaded robot works best with
Kp = 85,Kv = 86,Ki = 87 and Kp = 82,Kv = 83,Ki =
84 for the translation and rotation movement, respectively. To
set up the experiment, we choose th sampling time to be 0.1s.
The distance to the obstacle is calculated as d = (ct)/2 where
c is the sound speed and t is the time for receiving the echo.

A. Case I: Trajectory Tracking

Consider the kinematic model and the dynamic model of
the mobile robot given by equation (1) and (2), respectively.
Assume the admissible configuration set Pa is defined by

Pa =

(x, y)

∣∣∣∣∣∣
−0.2 ≤ x ≤ 2.9, −0.25 ≤ y ≤ 1.75
y ∈ [−0.25, 0.2] ∪ [1.2, 1.75] if x ∈ [0.7, 2.4]
x ∈ [−0.2, 0.7] ∪ [2.4, 2.9] if y ∈ [0.2, 1.2]

 ,

(19)
and the reference trajectory is a straight line given by

pd(t) = [xd(t), yd(t)]
T = [0.067t, 0.044t]T . (20)

This models the task in which the human user is restricted to
drive the robot from its initial position (0, 0) to the final posi-
tion (3, 2) along a straight line with a constant speed 0.08m/s.
Note that the desired trajectory is not always feasible, i.e.
∃t > 0 such that pd(t)) 6∈ Pa.

Simulation results are shown in Fig. 7 to Fig. 10. Fig. 7
demonstrates that the (x, y) trajectory of the h-closed-loop
system go through the non-admissible region (the grey shaded
rectangle), while that of the s-closed-loop system move along
the boundary of Pa until the reference trajectory becomes
feasible. It also shows that the configuration of the robot
without shared-control leaves Pa for a second time after 38s
as the red, dash-dotted and the yellow, solid, line indicate,
while the robot with shared-control stops at the boundary of
the admissible set. Fig. 8 and 9 show the time histories of the
states and inputs of the h-closed-loop system and s-closed-
loop system. The functions v(t) and ω(t) for the system (2)
are smoother than those for the system (1) as they are system
states rather than control inputs in the dynamic model of the
mobile robot. Due to the discontinuity of dr caused by the
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Fig. 7. (x, y) trajectories of the system for the set Pa given by (19): h-closed-
loop (red, dash-dotted) and s-closed-loop (green, dashed) for the system (1),
h-closed-loop (yellow, solid) and s-closed-loop (blue, dotted) for the system
(2). Round mark: the initial position of the robot. Square mark: the final
position of the robot with shared-control.
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Fig. 8. Time histories of the variables x, y, θ, v and ω for the system with set
Pa given by (19): h-closed-loop (red, dash-dotted) and s-closed-loop (green,
dashed) for the system (1), h-closed-loop (yellow, solid) and s-closed-loop
(blue, dotted) for the system (2).
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Fig. 9. Time histories of the inputs u1 and u2 for the system (2) with set Pa

given by (19): h-closed-loop (yellow, solid) and s-closed-loop (blue, dotted).
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Fig. 10. Time histories of the sharing function k for the system (1) (green,
dashed) and (2) (blue, dotted) with the set Pa given by (19).

concavity of Pa and the fact that v and ω change more gently
for the dynamic model of the robot, the error between the
configuration of the system (2) and its reference needs more
time to converge to zero. Fig. 10 indicates that the feedback
control is active for both system (1) and (2) at 5.5s as k
changes its value to 0. However, the control authority for the
system (2) is passed to the human operator after a short period
when the angular velocity of the robot is corrected by the
feedback controller. In addition, due to the concavity of the
feasible set Pa, the robot needs to change its forward direction
quickly to track the reference trajectory when t ≈ 16s. The
feedback controller is active for less than 1 second to adjust
the forward velocity and the angular velocity of the robot.
Yet, the situation is different for the system (1). The control
authority is hold by the feedback controller until the robot has
left the obstacle, because the human has direct control on the
velocities.

The experiment has been performed in a rectangular room with
a table in it. Therefore, the admissible configuration region can
be described as

Pa =

(x, y)

∣∣∣∣∣∣
−0.5 ≤ x ≤ 3, −0.5 ≤ y ≤ 2,

y ∈ [0, 0.2] ∪ [0.8, 2] if x ∈ [1, 2.5],
x ∈ [0, 1] ∪ [2.5, 4.5] if y ∈ [0.2, 0.8]

 ,

(21)
where (x, y) refers to every point of the robot. In other words,
all the points of the robot should be located in the set Pa given
by (21). Note that this set is equivalent to that described by
(19) since (x, y) in (19) refers to the center of the robot’s front
wheels.



In the experiments, the linear velocity v and the angular
velocity ω of the car can be controlled directly by changing
the left-wheel speed vL and the right-wheel speed vR as

v =
vR + vL

2
, ω =

vR − vL
l

,

where l is the length between the left-wheel and the right-
wheel and equals to 0.5m in the experiment. Therefore,
the shared-control algorithm developed in Section III can be
applied to control the robot.
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Fig. 11. The virtual path (green, dashed) generated in the simulation and the
experimental path (blue, solid) of the mobile robot with the shared-control
for the set Pa given by (21).
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Fig. 12. Measured time histories of the inputs v and ω for the h-closed-loop
system (red, dash-dotted) and the s-closed-loop system (green, dashed).
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Fig. 13. Time history of the sharing function k during the experiment.

Fig. 11 to 13 show the experimental results. Compared with
the simulation results we note that there are slight differences
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Fig. 14. (x, y) trajectories of the system for the set Pa given by (22):
h-closed-loop (red, dash-dotted) and s-closed-loop (green, dashed) for the
system (1), h-closed-loop (yellow, solid) and s-closed-loop (blue, dotted) for
the system (2). Round mark: the initial position of the robot. Square mark:
the final position of the robot with shared-control. Purple circle: the moving
obstacle. Purple, dotted curve: trajectory of the moving obstacle.

because in the simulation we assume that the h-control is a
controller making the robot moving towards the target point
following a straight line and at a constant speed, while in the
experiment this is done by the operator’s intuition which is
slightly different from the the h-control in the simulation. Fig.
13 shows that the time period when us = uf is shorter than the
simulation results for the system (1) illustrated in Fig. 10. This
is because in the experiment the human operator has noticed
that he/she has to change the direction of the robot to avoid
collisions after feedback from the signal k. In addition, the
average velocity in the experiment (approximately 0.12m/s)
is larger than that in the simulation (approximately 0.08m/s)
due to frictions.

B. Case II: Moving Obstacles

The second case study deals with moving obstacles. Consider
the kinematic model and the dynamic model of the mobile
robot given by equations (1) and (2), respectively. Assume the
robot is able to move within a rectangular room defined by

Pa = {(x, y) |x ≤ 3.25, y ≤ 1.65} , (22)

and there is moving obstacle, the shape of which is a circle
with radius of 0.2m, going along a straight line from (2.4, 1.5)
to (2.4, 0.3) with forward speed v = 0.1m/s. Suppose the
reference trajectory is a straight line described by

pd(t) = [xd(t), yd(t)]
T = [0.25 + 0.43t, 0.35 + 0.16t]T . (23)

This models the task in which the human is asked to drive
the robot from the initial position (0.25, 0.35) to its final
position(4.7, 2) along a straight line with the speed v =
0.45m/s. Note that the final target position is unfeasible, i.e.
(4.7, 2) 6∈ Pa.
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Fig. 15. Time histories of the variables x, y, θ, v and ω for the system
with set Pa given by (22): h-closed-loop (red, dash-dotted) and s-closed-loop
(green, dashed) for the system (1), h-closed-loop (yellow, solid) and s-closed-
loop (blue, dotted) for the system (2).
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Fig. 16. Time histories of the inputs u1 and u2 for the system (2) with
set Pa given by (22): h-closed-loop (yellow, solid) and s-closed-loop (blue,
dotted).
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Fig. 17. Time history of the sharing function k for the system (1) (green,
dashed) and (2) (blue, dotted) with the set Pa given by (22).

Simulation results are displayed in Fig. 14 to Fig. 17. From
Fig. 14 it is clear that the mobile robot with the shared-control
changes its direction to avoid hitting the moving obstacle
represented by the purple circle. Even though the purple circle
is moving, Fig. 14 only shows its position when it starts to
affect the robot (i.e. when it is close to the robot and force the
feedback-controller to be active). Fig. 15 and Fig. 16 show
the time histories of the states and inputs of the h-closed-
loop systems and the s-closed-loop systems. The blue time
histories in Fig. 15 are smoother than the green time histories,
especially for the function v(t) and ω(t), because v and ω
are system states rather than input signals in system (2). In
addition, the chattering in the control input ω illustrated in
the bottom plot in Fig. 15 is mainly caused by the moving
obstacle and can be reduced by predicting the trajectory of the
moving obstacle. Due to the unfeasibility of the final position,
the robot with the shared-control for both system (1) and (2)
stops at the boundary of the rectangular room. When t > 11s,
even if the human input uh is non-zero, the shared-control
input of the system is us = 0. Fig. 17 shows how the control
authority is allocated between the human operator (k = 1) and
the feedback controller (k = 0).
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Fig. 18. The virtual path (green, dashed) and the experimental path (blue,
solid) of the mobile robot with the shared-control for the set Pa given by
(24).
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Fig. 19. Measured time histories of the inputs v and ω for the h-closed-loop
system (red, dash-dotted) and the s-closed-loop system (green, dashed).

The experiment has been done in a rectangular room described
by

Pa = {(x, y) |x ≤ 3.35, y ≤ 1.9} , (24)
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Fig. 20. Time history of the sharing function k during the experiment.

where (x, y) refers to every point of the robot. During the
experiment a person is walking in the room with the speed
of 0.1m/s. Therefore, the experimental setting is the same
as that given in the simulation part. Experimental results are
demonstrated in Fig. 18 to Fig. 20. Fig. 18 shows that the robot
with the shared-controller successfully avoid the collision with
the pedestrian and walls, which meets our expectations and
proves the effectiveness of the shared-control law. Fig. 19
shows that the shared-control input vs drops to 0 rather than
decline gently according to its previous trend at t = 16s
because the human input uh falls to 0 suddenly. Fig. 20
illustrates the time period in which the feedback controller
is active in the experiment.

C. Case III: Free Driving

The third case study is motivated by application to a toy car:
the car is driven by the operator while away from “dangerous”
situations. In real applications it is usually difficult to define
the reference trajectory due to the unknown task and uncer-
tainties of the environment. Therefore, we need to predict the
desired trajectory based on the on-line measurement of the
human inputs and the states.

In the experiment, the human operator has been asked to drive
the robot freely without tracking any trajectory in a rectangular
room with a table in it. The room can be described as

Pa =

(x, y)

∣∣∣∣∣∣
−0.5 ≤ x ≤ 4.4, −0.5 ≤ y ≤ 2
y ∈ [−0.5, 0.2] ∪ [0.8, 2] if x ∈ [1, 2.5]
x ∈ [−0.5, 1] ∪ [2.5, 4.4] if y ∈ [0.2, 0.8]

 .

(25)
Fig. 21 shows the (x, y) trajectory of the robot with the shared-
controller, while Fig. 22 illustrates how the inputs of the h-
closed-loop system and the s-closed-loop system vary with
time. In addition, Fig. 23 indicates how the control authority
is shared between the human operator and the feedback
controller. The experiment demonstrates the fact that the robot
with the shared-control algorithm moves inside of the room
and does not hit any obstacle (including both the table and
the walls). Before any collision happens, the shared-controller
would drive the robot moving along the obstacle until the states
of the s-closed-loop system enter the safe region Rs, where
the human operator has the control authority. Fig. 22 shows
that vs drops down to zero before vh becomes zero, which
indicates that the robot stops in front of the wall even if the

human input is non-zero when it is close to the wall and tends
to hit the wall.
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Fig. 21. Paths of the mobile robot with the shared-control for the set Pa

(white area) given by (25).
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Fig. 22. Measured time histories of the inputs v and ω for the h-closed-loop
system (red, dash-dotted) and the s-closed-loop system (green, dashed).
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Fig. 23. Time history of the sharing function k during the experiment.

VI. CONCLUSIONS

We have developed a solution to the shared-control problem
for the kinematic model and the dynamic model of a mo-
bile robot without the knowledge of its absolute position. A
hysteresis switch is built to integrate the human input and
the feedback control input. The shared-control algorithm is
developed for general admissible configuration sets with the
assumption that dd is continuous. Both simulation results and
experimental results with a Pioneer 3-AT robot show the
effectiveness of the shared-control law. Future research will
focus on the shared-control design for cars and multi-agent
systems.
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