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Abstract

We describe a version of randomization technique within a general
framework of Euclidean Jordan algebras. It is shown how to use this
technique to evaluate the quality of symmetric relaxations for several non-
convex optimization problems.

1 Introduction

Starting with a seminal paper [goemans], a randomization technique plays a
prominent role in evaluating the quality of semidefinite relaxations for difficult
combinatorial and other optimization problems. In this paper we introduce a
framework for one type of such a technique within a general context of Euclidean
Jordan algebras. Within this framework the original problem is in conic form
with conic constraints defined by general symmetric cones with additional con-
straints on the (Jordan-algebraic) rank of the solution. The symmetric (convex)
relaxation is obtained from the original problem by omitting rank constraints.
More precisely, we prove several measure concentration results (tail estimates)
on manifolds of nonnegative elements of a fixed rank (and their closures) in
a given Euclidean Jordan algebra. We illustrate a usefulness of these results
by a number of examples. In particular, we consider Jordan-algebraic gener-
alizations of several relaxation results described in [barvinok],[Ye], [Zhang2].
Jordan-algebraic technique proved to be very useful for the analysis of opti-
mization problems involving symmetric cones [F1] and especially primal-dual
algorithms [F3],[F4],[M],[SA],[Ts]. In present paper we further expand the do-
main of applicability of this powerful technique.

2 Jordan-algebraic concepts

We stick to the notation of an excellent book [FK]. We do not attempt to de-
scribe the Jordan-algebraic language here but instead provide detailed references
to [FK]. Throughout this paper:
• V is a simple Euclidean Jordan algebra;
• rank(V ) stands for the rank of V ;
• x ◦ y is the Jordan algebraic multiplication for x, y ∈ V ;
• < x, y >= tr(x ◦ y) is the canonical scalar product in V ; here tr is the trace
operator on V ;
• Ω is the cone of invertible squares in V ;



• Ω̄ is the closure of Ω in V ;
• An element f ∈ V such that f2 = f and tr(f) = 1 is called a primitive
idempotent in V ;
• Given x ∈ V , we denote by L(x) the corresponding multiplication operator
on V , i.e.

L(x)y = x ◦ y, y ∈ V ;

• Given x ∈ V , we denote by P (x) the so-called quadratic representation of x,
i.e.

P (x) = 2L(x)2 − L(x2).

Given x ∈ V, there exist idempotents f1, · · · , fk in V such that fi ◦ fj = 0
for i 6= j and such that f1 +f2 · · ·+fk = e, and distinct real numbers λ1, · · · , λk

with the following property:

x =
k∑

i=1

λifi (1)

The numbers λi and idempotents fi are uniquely defined by x. (see Theorem
III. 1.1 in [FK]).

The representation (1) is called the spectral decomposition of x. Within the
context of this paper the notion of rank of x is very important. By definition:

rank(x) =
∑

i:λi 6=0

tr(fi). (2)

Given x ∈ V , the operator L(x) is symmetric with respect to the canonical
scalar product. If f is an idempotent in V , it turns out that the spectrum of
L(f) belongs to {0, 1

2 , 1}. Following [FK], we denote by V (1, f), V ( 1
2 , f), V (0, f)

corresponding eigenspaces.
It is clear that

V = V (0, f)⊕ V (1, f)⊕ V (
1
2
, f) (3)

and the eigenspaces are pairwise orthogonal with respect to the scalar prod-
uct <,>. This is the so-called Peirce decomposition of V with respect to an
idempotent f . However, eigenspaces have more structure (see [FK], Proposition
IV. 1.1). In particular, V (0, f), V (1, f) are subalgebras in V . Let f1, f2 be two
primitive orthogonal idempotents. It turns out that

dimV (
1
2
, f1) ∩ V (

1
2
, f2)

does not depend on the choice of the pair f1, f2 (see Corollary IV.2.6, p.71 in
[FK]). It is called the degree of V (notation d(V )).
Note that two simple Euclidean Jordan algebras are isomorphic if and only if
their ranks and degrees coincide.

We summarize some of the properties of algebras V (1, f).

Proposition 1 Let f be an idempotent in a simple Euclidean Jordan algebra
V . Then V (1, f) is a simple Euclidean Jordan algebra with identity element f .
Moreover,

rank(V (1, f)) = rank(f)

d(V (1, f)) = d(V ).

The trace operator on V (1, f) coincides with the restriction of the trace oper-
ator on V . If Ω̃ is the cone of invertible squares in V (1, f) then ¯̃Ω = Ω̄∩V (1, f).
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Proposition 1 easily follows from the properties of Peirce decomposition on V
(see section IV.2 in [FK]). Notice that if c is a primitive idempotent in V (1, f),
then c is primitive idempotent in V . For a proof see e.g [F1].

Let f1, · · · , fr, where r = rank(V ), be a system of primitive idempotents
such that fi ◦fj = 0 for i 6= j and f1 + · · · fr = e. Such system is called a Jordan
frame. Given x ∈ V , there exists a Jordan frame f1, · · · , fr and real numbers
λ1, · · · , λr (eigenvalues of x) such that

x =
r∑

i=1

λifi.

The numbers λi (with their multiplicities) are uniquely determined by x. (See
Theorem III. 1.2 in [FK]). We will need the spectral function x → λ(x) : V →
Rr, where λ1(x) ≥ λ2(x) ≥ . . . λr(x) are ordered eigenvalues of x with their
multiplicities. The following inequality holds:

‖λ(x)− λ(y)‖2 ≤ ‖x− y‖, ∀x, y ∈ V. (4)

Here ‖λ‖2 is the standard Euclidean norm in Rr and ‖x‖ =
√
〈x, x〉, x ∈ V. For

a proof (4) see e.g [F1],[LKF].
It is clear that

tr(x) =
r∑

i=1

λi, rank(x) = card{i ∈ [1, r] : λi 6= 0}.

Let
Ωl = {x ∈ Ω̄ : rank(x) = l}, l = 0, . . . r.

Notice that the closure
Ω̄l = ∪l

k=0Ωk

for any l.
Since primitive idempotents in V (1, f) remain primitive in V , it easily follows
that the rank of x ∈ V (1, f) is the same as its rank in V .

3 Tail estimates

In this section we collected several measure concentration results on manifolds
of nonnegative elements of a fixed rank in a simple Euclidean Jordan algebra.

Proposition 2 For any l = 1, 2, . . . , r − 1, there exists a positive measure µ̃l

on Ω̄ which is uniquely characterized by the following properties:
a) the support of µ̃l is Ω̄l.
b)

∫

Ω̄

e−〈x,y〉dµ̃l(x) = det(y)−ld/2 (5)

for any y ∈ Ω; µ̃l(Ω̄l−1) = 0 (l ≥ 1).

This Proposition immediately follows from Corollary VII.1.3 and Proposition
VII.2.3 of [FK].

It will be convenient to introduce another set of measures:

µl = e−tr(x)µ̃l.
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We immediately derive from Proposition 2 that µl(Ω̄l) = 1 and
∫

Ω̄l

e−〈x,y〉dµl(x) = det(e + y)−ld/2

for any y ∈ Ω̄. Since µl is a probability measure on Ω̄l, we can introduce standard
probabilistic characteristics of measurable functions on Ω̄l:

E[ϕ] =
∫

Ω̄l

ϕ(x)dµl(x),

V ar(ϕ) =
∫

Ω̄l

(ϕ(x)− E[ϕ])2dµl(x).

Proposition 3 Let f1, . . . fr be a Jordan frame in V . Consider random vari-
ables ϕ1 . . . , ϕr, where

ϕi(x) = 〈fi, x〉, i = 1, 2, . . . , r.

Then ϕ1, . . . ϕr are mutually independent identically distributed random vari-
ables having Gamma distribution with parameters (1, χ), where

χ =
dl

2
.

Proof Let us compute the joint moment generating function Φ(t1, . . . , tr) for
ϕ1, . . . , ϕr. We have:

Φ(t1, . . . , tr) = E[et1ϕ1+t2ϕ2+...+trϕr ] =

=
∫

Ω̄l

exp(〈
r∑

i=1

tifi, x〉)dµl =

= det(e−
r∑

i=1

tifi)−χ =
r∏

i=1

(1− ti)−χ =

r∏

i=1

E[etiϕi ]

for | t1 |< 1, | t2 |, . . . | tr |< 1. The Proposition follows.

Corollary 1 Let c be a primitive idempotent. Then for ϕc(x) = 〈c, x〉, we have:

E[ϕc] = V ar(ϕc) = χ.

Let q ∈ V,

q =
r∑

i=1

λici

be its spectral decomposition. Consider ϕq(x) = 〈q, x〉. Then

E[ϕq] = χtr(q),

V ar(ϕq) = χ‖q‖2 = χ

r∑

i=1

λ2
i .

The Corollary immediately follows from Proposition 3.
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Proposition 4 Let q ∈ Ω̄. Consider

Γ = {x ∈ Ω̄l : 〈q, x〉 ≤ χ(tr(q)− τ‖q‖)}.

Then

µl(Γ) ≤ exp(
−χτ2

2
), τ ≥ 0. (6)

Remark 1 Compare this with [barvinok],Proposition 5.6.

Proof For any λ > 0 we have:

Γ = {x ∈ Ω̄l : exp(−λ〈q, x〉) ≥ exp(−λχ(tr(q)− τ‖q‖)}.

By Markov’s inequality:

µl(Γ) ≤ E[e−λ〈q,x〉]
exp(−λχ(tr(q)− τ‖q‖)) . (7)

Let

q =
r∑

i=1

µici (8)

be the spectral decomposition of q. Then, using (5),

E[e−λ〈q,x〉] =
r∏

i=1

(1 + λµi)−χ.

Hence, by (7)

µl(Γ) ≤ exp(−χ(
r∑

i=1

[ln(1 + λµi)− λµi] + λτ‖q‖)).

Using an elementary inequality

ln(1 + x) ≥ x− x2

2
, x ≥ 0,

we obtain:

µl(Γ) ≤ exp(χ(
λ2‖q‖2

2
− λτ‖q‖)).

Taking λ = τ
‖q‖ , we obtain (6).

Proposition 5 Let q ∈ Ω̄ have the spectral decomposition (8) and set δ =
max{µi : 1 ≤ i ≤ r}. Consider

Γ = {x ∈ Ω̄l : 〈q, x〉 ≥ χ(tr(q) + τ‖q‖)}.

Then

µl(Γ) ≤ exp{−χ

4
min{‖q‖

δ
, τ}τ} (9)

for any τ ≥ 0.

Remark 2 Compare this with [Zhang1], Lemma 5.1 .
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Proof Clearly, for any λ > 0

Γ = {x ∈ Ω̄l : exp(λ〈q, x〉 ≥ exp(λχ(tr(q) + τ‖q‖))}.
Using Markov’s inequality, we obtain:

µl(Γ) ≤ E[eλ〈q,x〉]
exp(λχ(tr(q) + τ‖q‖)) =

exp(−χ(
r∑

i=1

(ln(1− λµi) + λµi) + τλ‖q‖)).

Using an elementary inequality ln(1− x) ≥ −x− x2, x ≤ 1
2 , we obtain:

µl(Γ) ≤ exp(χ(λ2‖q‖2 − τλ‖q‖),
provided λµi ≤ 1

2 for all i. Take

λ =
1
2

min{1
δ
,

τ

‖q‖}.

Then λµi ≤ 1
2 for all i. Notice that λ‖q‖ ≤ τ/2. Hence,

µl(Γ) ≤ exp(λχ‖q‖(λ‖q‖ − τ)) ≤

exp(
−χλ‖q‖τ

2
) = exp(−χ

4
min{‖q‖

δ
, τ}τ).

Proposition 6 Let q ∈ Ω̄ have a spectral decomposition:

q =
s∑

i=1

λici,

where λ1 ≥ λ2 ≥ . . . ≥ λs > 0. Let

Γ = {x ∈ Ω̄l : 〈q, x〉 ≤ χβtr(q)}

for some β > 0. Then

µl(Γ) ≤ (
5eβ

2
)χ

provided eβ ln s ≤ 1
5 .

Remark 3 Compare this result with [Ye], Proposition 2.2.

Proof We know that

tr(q) =
s∑

i=1

λi.

Let

λ̄i =
λi∑s

j=1 λj
.

Then

Γ = {x ∈ Ω̄l :
s∑

i=1

λ̄i〈ci, x〉 ≤ χβ}.
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Denote µl(Γ) by p(s, λ̄1, . . . , λ̄s, β). We clearly have:

p(s, λ̄1, . . . λs, β) ≤ µl{x ∈ Ω̄l :
s∑

i=1

λ̄s〈ci, x〉 ≤ χβ}

= µl{x ∈ Ω̄l : 〈
s∑

i=1

ci, x〉 ≤ χβ

λ̄s
}.

Lemma 1 Let c be an idempotent in V and rank(c) = s. Then for any β ∈
(0, 1) :

µl{x ∈ Ω̄l : 〈c, x〉 ≤ sχβ} ≤ exp(χs(1− β + ln β)) ≤

exp(χs(1 + ln β)) = (eβ)χs

.

Proof of Lemma 1 Let
Γ{x ∈ Ω̄l : 〈c, x〉 ≤ sχβ}.

Then for any λ > 0

Γ = {x ∈ Ω̄l : exp(−λ〈c, x〉 ≥ exp(−λsχβ)}.
Using Markov’s inequality, we obtain

µl(Γ) ≤ E[exp(−λ〈c, x〉)]
exp(−λsχβ)

=

(1 + λ)−χs exp(λsχβ) =

exp(−χs(ln(1 + λ)− λβ)). (10)

Consider the function

ϕ(λ) = λβ − ln(1 + λ), λ > 0.

One can easily see that ϕ attains its minimum at the point

λ∗ =
1
β
− 1.

Notice that λ∗ > 0 if and only if β ∈ (0, 1). Moreover, ϕ(λ∗) = 1− β + ln β. We
have from (10) that

µl(Γ) ≤ exp(χsϕ(λ∗))

and the result follows.
We return to the proof of Proposition 6. By Lemma 1 we obtain:

µl{x ∈ Ω̄l : 〈
s∑

i=1

ci, x〉 ≤ χβ

λ̄s
} ≤ (

eβ

λ̄ss
)χs. (11)

Notice that Lemma 1 requires that

β

λ̄ss
< 1.

However, if it does not hold true, the estimate (11) is trivial, since the left-hand
side of (11) is less or equal than one. We thus obtain:

p(s, λ̄1, . . . , λ̄s, β) ≤ (
eβ

λ̄s
)χs.

7



Notice, further, that

p(s, λ̄1, . . . λ̄s, β) ≤ µl{x ∈ Ω̄l :
s−1∑

i=1

λ̄i〈ci, x〉 ≤ χβ} =

µl{x ∈ Ω̄l :
s−1∑

i=1

λ̄i

1− λ̄s
〈ci, x〉 ≤ χβ

1− λ̄s
} =

p(s− 1,
λ̄1

1− λ̄s
, . . .

λ̄s−1

1− λ̄s
, β) ≤ [

( eβ
1−λ̄s

)
λ̄s−1(s−1)

1−λ̄s

]χ(s−1) =

[
eβ

λ̄s−1(s− 1)
]χ(s−1),

where the last inequality follows by (11). Continuing in this way, we obtain:

p(s, λ̄1, . . . λ̄s, β) ≤ min{( eβ

iλ̄i
)iχ : 1 ≤ i ≤ s}. (12)

Let δ = p(s, λ̄1, . . . λ̄s, β)
1
χ . Notice that 0 < δ < 1 and by (12):

δ ≤ min{( eβ

iλ̄i
)i : i = 1, . . . , s}.

Hence,

λ̄i ≤ eβ

δ1/ii
, i = 1, . . . s.

Taking into account that
r∑

i=1

λ̄i = 1,

we obtain:
s∑

i=1

1
iδ

1
i

≥ 1
eβ

. (13)

Reasoning now exactly as in [Ye], we obtain:

1
eβ

≤ 2
δ

+ ln s.

Hence, if eβ ln s ≤ 1
5 , then

δ ≤ 5eβ

2
.

4 Sample of results

In this section we show how measure concentration results of section 3 can be
used to estimate the quality of symmetric relaxations for a variety of nonconvex
optimization problems.

Theorem 1 Let ai ∈ Ω̄, αi ≥ 0, i = 1, 2, . . . k. Suppose that the system of linear
equations

〈ai, x〉 = αi, (14)

i = 1, 2, . . . k, has a solution x̄ ∈ Ω̄. Then, given 1 > ε > 0, there exists x0 ∈ Ω̄l

such that
| 〈ai, x〉 − αi |≤ εαi, (15)

i = 1, 2, . . . , k, provided

l ≥ 8 ln(k)
ε2d

.
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Remark 4 Theorem 1 generalizes the result of A. Barvinok who considered
the case, where Ω is the cone of positive definite real symmetric matrices. See
[barvinok], Proposition 6.1.

Lemma 2 Let a, b ∈ Ω̄. Then

rank(P (a)b) ≤ min(rank(a), rank(b))

.

Proof of Lemma 2 Let

a =
s∑

i=1

λici

be the spectral decomposition of a with λ1 ≥ λ2 ≥ . . . λs > 0. Then ImP (a) =
V (c1 +c2 + . . . cs, 1). Hence, the maximal possible rank of an element in ImP (a)
does not exceed rankV (c1 + c2 + . . . cs, 1) = s. Hence, rank(P (a)b) ≤ s =
rank(a). If a is invertible in V , then P (a) belongs to the group of automorphisms
of the cone Ω and consequently preserves the rank (see [[FK]], ). In general, if
a ∈ Ω̄ and ε > 0, then a+εe ∈ Ω and consequently P (a+εe) preserves the rank,
i.e.

r(ε) = rank(P (a + εe)b) = rank(b)

for any ε > 0. Notice that P (a)b = lim P (a + εe)b, ε → 0. It suffices to prove
the following general fact. Let ai, i = 1, 2, . . . be a sequence in Ω̄ such that
rank(ai) does not depend on i and is equal to s. Let, further, ai → a∗, i →∞.
Then rank(a∗) ≤ s. Let x ∈ Ω̄ and λ(x) = (λ1(x), λ2(x), . . . λr(x)) be the
spectrum of x with λ1(x) ≥ λ2(x) ≥ . . . λr(x). Notice that rank(x) is equal the
largest k such that λk(x) > 0. Let k be the largest k such that λk(a∗) > 0.
Then k = rank(a∗). Since λk(ai) → λk(a∗), i → ∞, (see 4 ), we conclude that
λk(ai) > 0 for sufficiently large i. Hence, k ≤ rank(ai) = s. The result follows.
Proof of Theorem 1 Consider the following system of linear equations:

〈P (x̄1/2)ai, y〉 = αi, (16)

i = 1, 2, . . . k, y ∈ Ω̄. Notice that y = e satisfies (16). More generally if

| 〈P (x̄)1/2ai, y0〉 − αi |< εαi,

i = 1, 2, . . . k, y0 ∈ Ω̄, then

| 〈ai, P (x̄1/2)y0〉 − αi |< εαi,

i = 1, . . . k, P (x̄1/2)y0 ∈ Ω̄ and rank(P (x̄1/2y0) ≤ rank(y0) by Lemma 2. Hence,
without loss of generality we can assume that x̄ = e is a solution to (14) and
consequently tr(ai) = αi, for i = 1, 2, . . . k. Consider

Al = {x ∈ Ω̄l :| 〈ai, x〉 − χtr(ai) |≤ εχtr(ai), i = 1, . . . k}.

It is clear that if Al 6= ∅, then x/χ satisfies (16). Consider also

Bil = {x ∈ Ω̄l : 〈ai, x〉 − χtr(ai) > εχtr(ai)},

Cil = {x ∈ Ω̄l : 〈ai, x〉 − χtr(ai) < −εχtr(ai)},
i = 1, . . . , k. Notice that

Ω̄l \Al = ∪k
i=1(Bil ∪ Cil).
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Hence,

1− µl(Al) ≤
k∑

i=1

[µl(Bil) + µl(Cil)]

and consequently

µl(Al) ≥ 1−
k∑

i=1

[µl(Bil) + µl(Cil)]. (17)

Since tr(ai) ≥ ‖ai‖, i = 1, . . . k, (ai ∈ Ω̄), we have:

Bil ⊂ {x ∈ Ω̄l : 〈ai, x〉 − χtr(ai) > εχ‖ai‖},

Cil ⊂ {x ∈ Ω̄l : 〈ai, x〉 − χtr(ai) < −εχ‖ai‖},
i = 1, . . . , l. Hence,

µl(Bil) ≤ exp(−ε2χ

2
), i = 1, . . . , k, (18)

by Proposition 4 and

µl(Cil) ≤ exp(−ε2χ

4
), i = 1, . . . , k, (19)

by Proposition 5 (notice that 0 < ε < 1 and ‖q‖/δ ≥ 1 in Proposition 5). Take

l ≥ 8 ln(2k)
ε2d

.

Then

χ ≥ 4ln(2k)
ε2

.

By (18), (19):

µl(Bil) ≤ 1
4k2

, µl(Cil) ≤ 1
2k

,

i = 1, . . . , k. By (17)

µl(Al) ≥ 1− (
1
2

+
1
4k

) > 0.

Thus , Al 6= ∅ and the result follows.
Consider the following optimization problem:

〈c, x〉 → max, (20)

〈ai, x〉 ≤ 1, i = 1, . . . k, (21)

x ∈ Ω̄l. (22)

Notice that the case l = 1 corresponds to homogeneous quadratic constraints
in case where Ω is one of the cones of positive definite Hermitian matrices
over real, complex or quaternion numbers. See [F1]. Here we assume that
c, a1, . . . ak ∈ Ω̄. We wish to compare the optimal value for (20)-(22) with its
symmetric relaxation:

〈c, x〉 → max, (23)

〈ai, x〉 ≤ 1, i = 1, . . . , k (24)

x ∈ Ω̄. (25)

10



We assume that (23)-(25) has an optimal solution x0. Let vmax and vR be
optimal values for (20)-(22) and (23)-(25), respectively. Then, of course, vmax ≤
vR. Consider the optimization problem

〈c̃, y〉 → max, (26)

〈ãi, y〉 ≤ 1, i = 1, . . . k, (27)

y ∈ Ω̄, (28)

where c̃ = P (x1/2
0 )c, ãi = P (x1/2

0 )ai, i = 1, . . . k. Then y = e is an optimal
solution to (24)-(26). Indeed, ãi, e〉 = 〈ai, x0〉 ≤ 1, i = 1, 2, . . . k, 〈c̃, e〉 = tr(c̃) =
〈c, x0〉 = vR. On the other hand, if y is feasible for (26)-(28), then P (x1/2

0 )y
is feasible for (23)-(25) and 〈c, P (x1/2

0 )y〉 = 〈c̃, y〉. Thus, if ṽR is an optimal
value for (26)-(28), we have ṽR ≤ vR. Since 〈c̃, e〉 = vR, the result follows and
ṽR = vR. Consider now the problem

〈c̃, y〉 → max, (29)

〈ãi, y〉 ≤ 1, (30)

y ∈ Ω̄l. (31)

If ṽmax is an optimal value for the problem (29)-(31), then the reasoning above
shows that ṽmax ≤ vmax. ( Notice that P (x1/2

0 )Ω̄l ⊂ Ω̄l by Lemma 2). Thus,

ṽmax ≤ vmax ≤ vR = ṽR. (32)

Lemma 3 Let γ > 0, µ > 0 be such that the set

A = {y ∈ Ω̄l : 〈ãi, y〉 ≤ χγ, i = 1, . . . , m, 〈c̃, y〉 ≥ χµtr(c̃)} 6= ∅.

Then
vmax ≥ γ

µ
vR. (33)

Proof of Lemma 3 Let y ∈ A. Then y
χγ is feasible for (29)-(31). Consequently,

ṽmax ≥ 〈c̃, y

χγ
〉 ≥ χµ

χγ
tr(c̃) =

µ

γ
vR.

Combining this with (32), we obtain (33).
The result follows.

Theorem 2 For problem 20-(22) and its relaxation (23)-(25) the estimate (33)
holds with γ = ξ + 1 + 4 ln k

χ , µ = 1 − 1
2
√

χ , where ξ > 0 is chosen large enough

so that e−ξ/8 < 1− e−1/8, γ − 1 > 1.

Remark 5 Theorem 2 generalizes the results of [BN],[BN1], who considered
the case l = 1, Ω is the cone of positive definite real symmetric matrices. In
[Zhang1] the case l = 1,Ω is the cone of positive definite Hermitian complex
matrices was considered.

Proof We will show that with this choice of µ and γ the corresponding set A in
Lemma 3 is not empty. Let

Ai = {y ∈ Ω̄l : 〈ãi, y〉 > χγ},

C = {y ∈ Ω̄l : 〈c̃, y〉 < µχtr(c̃)}.
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Then
Ac = (∪k

i=1Ai) ∪ C

and consequently

µl(A) ≥ 1− µl(C)−
k∑

i=1

µl(Ai). (34)

Notice that γ > 1 and tr(ãi) ≤ 1, ∀i. Choose

τ =
γ − tr(ãi)
‖ãi‖ .

According to Proposition 5

µl(Ai) ≤ exp{−χ

4
min{‖ãi‖

δi
, τ}τ},

where δi is the maximal eigenvalue of ãi. Notice that

‖ãi‖
δi

≥ 1, τ ≥ γ − 1
‖ãi‖ .

Hence,

µl(Ai) ≤ exp{−χ

4
min{1,

γ − 1
‖ãi‖ }τ}.

Since γ − 1 > 1 and ‖ãi‖ ≤ tr(ãi) ≤ 1, we have:

µl(Ai) ≤ exp{−χ

4
τ}.

Notice that τ ≥ γ − 1. Hence, according to our choice of γ

µl(Ai) ≤ exp{−χ

4
(γ − 1)} =

exp(−χξ
4 )

k
.

Consequently,
k∑

i=1

µl(Ai) ≤ exp(−χξ

4
) ≤ e−ξ/8,

since χ ≥ 1/2. Since ‖c̃‖ ≤ tr(c̃), µ < 1, we have:

C ⊂ {y ∈ Ω̄l : 〈c̃, y〉 < χ(tr(c̃)− (1− µ)‖c̃‖)}.

Hence, by Proposition 4

µl(C) ≤ exp(−χ

2
(1− µ)2) = e−

1
8 .

Using (34), we obtain:

µl(A) > 1− e−
1
8 − e−

ξ
8 > 0

according to the choice of ξ.The result follows.
Consider the following optimization problem:

〈c, x〉 → min, (35)

〈ai, x〉 ≥ 1, i = 1, . . . , k, (36)

x ∈ Ω̄l (37)
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. We assume that c, a1, . . . ak ∈ Ω̄. Consider also a symmetric relaxation of
(35)-(37):

〈c, x〉 → min, (38)

〈ai, x〉 ≥ 1, (39)

x ∈ Ω. (40)

We will assume that (38)-(40) has an optimal solution. Using the same trick
as we used in analyzing (23)-(25), we can assume without loss of generality
that tr(ai) ≥ 1, i = 1, . . . , k, and vR = tr(c), where vR is an optimal value for
(38)-(40). We can also assume that rank(ai) ≤ ϕ−1

d (k) for all i. Here

ϕd(x) = x +
dx(x− 1)

2
.

The last remark easily follows from Lemma 2 and Theorem 3 in [F1].

Lemma 4 If

A = {x ∈ Ω̄l : 〈ai, x〉 ≥ χγ, i = 1, . . . k, 〈< c, x〉 ≤ χµtr(c)}

is not empty for some γ > 0 and some µ > 0, then

µ

γ
vR ≥ vmin ≥ vR, (41)

where vmin is the optimal value of (35)-(37).

The proof of Lemma 4 is quite similar to the proof of Lemma 3.

Theorem 3 For problem (35)-(37) and its relaxation (38)-(40) the estimate
(41) holds with

µ =
1

0.99− ( e
5 )1/2

, γ =
1

25χk1/χ
.

Remark 6 Theorem 3 generalizes the results of [Zhang2] (Theorems 1,2), where
the cases l = 1, d = 1, 2 were considered.

Lemma 5 For any integers d ≥ 1, k ≥ 1 we have:

ϕ−1
d (k) ≤ 3

√
k.

Proof of Lemma 5
An easy computation shows that:

ϕ−1
d (k) = (

1
2
− 1

d
) +

√
(
1
2
− 1

d
)2 +

2k

d
.

Hence,

ϕ−1
d (k) ≤ 1

2
+

√
1
4

+ 2k =
1 +

√
1 + 8k

2
≤
√

1 + 8k ≤ 3
√

k.

Lemma 6 For x > 0, γ > 0, c > 1
eγ we have:

ln x ≤ cxγ .
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Proof of Lemma 6 Consider the function ϕ(x) = cxγ − ln x, x > 0. Notice that
ϕ(x) → +∞, when x → 0 or x → +∞. Furthermore, an easy computation
shows that ϕ

′
(x) = 0 if and only if

x =
1

(γc)1/γ
.

Hence, ϕ(x) has a global minimum at this point. An easy computation shows
that this minimum is equal to

1 + ln(γc)
γ

,

which is nonnegative precisely when

c ≥ 1
eγ

.

Proof of Theorem 3 Let

Ai = {x ∈ Ω̄l : 〈ai, x〉 < χγ}, i = 1, . . . k,

C = {x ∈ Ω̄l : 〈c, x〉 > χµtr(c)}.
Then one can easily see that

µl(A) ≥ 1−
k∑

i=1

µl(Ai)− µl(C),

where A is defined as in Lemma 4. Notice that

Ai ⊂ {x ∈ Ω̄l : 〈ai, x〉 ≤ χγtr(ai)}, i = 1, . . . k,

since tr(ai) ≥ 1. Hence, by Proposition 6

µl(Ai) ≤ (
5eγ

2
)χ

provided eγ ln(rank(ai)) ≤ 1/5. Due to our assumptions, it suffices to verify
that

eγ ln ϕ−1
d (k) ≤ 1/5.

One can easily see that ϕd(1) = 1 for any d. Hence, it suffices to consider
the case k ≥ 2. But then by Lemma 5:

ln ϕ−1
d (k) ≤ 5

2
ln k.

Using Lemma 6, we have:
ln k ≤ χ

e
k

1
χ .

Combining this with our choice of γ, we obtain:

eγ ln ϕ−1
d (k) ≤ 1/5.

Hence, taking into account our choice of γ, we obtain:

µl(Ai) ≤ (
e

10χ
)χ 1

k
≤ (

e

5
)1/2 1

k
, i = 1, . . . k,
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since χ ≥ 1/2. Hence,
k∑

i=1

µl(Ai ≤ (
e

5
)1/2.

Notice, further, that by Markov inequality:

µl(C) ≤ χtr(c)
χµtr(c)

=
1
µ

.

Now, with our choice of µ:

k∑

i=1

µl(Ai) + µl(C) ≤ 0.99 < 1

and the result follows.

5 Concluding remarks

In present paper we introduced a general randomization technique in the con-
text of Euclidean Jordan algebras. It enables us to generalize various results
related to quality of symmetric relaxations of difficult optimization problems.
In particular, all major results of [Ye] (including Theorem 1.1) can be general-
ized to the case of an arbitrary irreducible symmetric cone. Almost all results
in [Zhang1] can be generalized to the case of an arbitrary symmetric cone and
arbitrary rank (in [Zhang1] only cones of real symmetric and complex Hermitian
matrices and rank one constraints are considered).

The results of this paper have been reported in workshop ” Convex opti-
mization and applications in control theory, probability and statistics”, Luminy,
2007, and workshop ” Advances in Optimization”, Tokyo, 2007.

This work was supported in part by NSF grant DMS04-0270.
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