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Abstract 

The linear-quadratic control model is one of the most widely used control models in both 
empirical and theoretical economic modeling. In order to obtain the equilibrium solution 

of this control model, the so-called algebraic matrix Riccati equation has to be solved. In 
this note we present a numerical solution method for solving this equation. Our method 
solves the Riccati equation as a multidimensional fixed-point problem. By establishing 

the analytical derivative of the Riccati equation we have been able to construct a very 
efficient Newton-type solution method with quadratic convergence properties. Our method 
is an extension for the Newton-Raphson method described in Kwakemaak and Sivan 
( 1972) and does not require any special conditions on the transition rn3 as inthe 
nonrecursive method of Vaughan (1970). 
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1. Introduction 

One of the most widely used control models in economics is the Linear- 
Quadratic control model. Recent examples are found in McGratten (1994) 

Amman and Kendrick (1995), and many more. Generally, the solution of this 
control model for finite-horizon problems is obtained by solving the so-called 

* Corresponding author. 

Our special thanks go to Ken Judd and Benz Rustem, who gave us valuable advice on an earlier 

version of the paper. 

0165-1889/97/$15.00 0 1997 Elsevier Science B.V. All rights reserved 

PI2 SO1 65-l 889(96)00936-O 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357554533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


364 H. M. Amman, H. Neudecker I Journal of Economic Dynamics and Control 21 (1997) 363-369 

Riccati matrix equation backward in time from the terminal date to an initial date. 
Solving the Riccati equation recursively in time is a simple operation which 
generally does not pose any difficulties. The procedure is different, however, 
for infinite-horizon problems. In that case the algebraic matrix Riccati equation 
has to be solved. Unfortunately, there seems to be no analytical solution 
to this equation. 

Bertsekas ( 1976) pointed out that under certain restrictions the algebraic ma- 
trix Riccati equation could be solved by using successive substitutions and that 
it has a unique solution. Successive substitutions are quite inefficient, however, 
and it may take many iteration steps before a solution is reached. In this note 
we will present a fast method for solving the algebraic Riccati equation numer- 
ically, using a Newton-type solution method. The advantage of such a method, 
as generally known, is that it has quadratic convergence properties ensuring a 
rapid solution. Our method deviates from the newer approaches in the engineer- 
ing literature, see Lainiotis et al. (1994) and Stoorvogel and Weeren (1994). ’ 
These algorithms are of a recursive nature and do not exploit derivative 
information. 

A nonrecursive method for solving the algebraic Riccati equation, popular in 
economics, is the method of Vaughan (1970). Unfortunately this method is only 
applicable to a limited set of problems as it requires that the transition matrix 
should be nonsingular. For most applications in economics this condition does 
not hold and an alternative method should be used. In the next paragraph we 
present such a method that does not require any additional assumptions on the 
matrices in the linear-quadratic control model. Our method is an extension of the 
Newton-Raphson method described in Kwakemaak and Sivan (1972) in the sense 
that we use derivative information for solving the Riccati equation. Also, it does 
not require any special conditions on the transition matrix as in the nonrecursive 
method of Vaughan (1970). 

2. The Riccati equation 

Following Kendrick (198 1 ), a commonly used form of the linear-quadratic 
control model is to minimize 

T-l 

J = $[XT - .+]‘WT[XT - 2~1 + i C{[xr - Zt]‘W,[xt - Zt] 

t=O 

+rut - t%]‘Rt[ut - tit] + [Xl - xIt]‘Ft[ut - I.&]}, (1) 

’ We would like to thank one of the anonymous referees for bringing to our attention a number of 

recent references in this area. 
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subject to the constraints 

x1+1 = AI& + B&l + CI 

x0 given, (2) 

with t E (0, 1, .., T}, xt E P as the state vector, ut E !I? as the control vector, 

ct E W the vector of exogenous variables, it E 8” and li, E 8” as target vectors, 
AI E ?R(nxn) and BI E !R(nxm) as system matrices, and IV, E !R(“x”), RI E !R(mxm), 

FI E !J8”xm) as penalty matrices. Normally IV, and RI are assumed to be positive 

semi-definite and positive definite, respectively. In this general form of the linear- 
quadratic control model, the Riccati equation has the form 

x, = W,+I + A:X+,A - (A:&+& + F,)(R, + B:X,+tW’ 

x(&&+,A + F:), 

with the fixed-end condition 

(3) 

x, = w,. (4) 

Following Sargent (1987) or Lancaster and Rodman (1995), the infinite-horizon 
equilibrium solution of the Riccati equation, if the matrices are time-invariant, 

leads to the algebraic matrix Riccati equation 

X = W + A’XQ - (A’XB + F)(R + B’XB)-‘(B’XA + F’). (5) 

Let us now define the following function: 

G(X) =X - W - A’XA + (A’XB + F)(R + B’XB)-‘(B’M + F’). (6) 

This leads to the first derivative 

ag/az’ = D+[Z - {(A%3 + F)(R + B’XB)-‘B’ - A’} 

@{(A’XB + F)(R + B’XB)-‘B’ - A’}]D, (7) 

with g = D+vec G and z = D+vec X. The second derivatives have the form 

Hi = a2gklazaz’ 

= D’[AEijA’ @ B(R + B’XB)-‘B’] D 

-D’[A&(A’XB + F)(R + B’XB)-‘B’ @ B(R + B’XB)-‘B’]D 

-D’[B(R + B’XB)-‘(B’XQ + F’)EijA’ @ B(R + B’XB)-‘B’]D 

+D’[B(R + B’XB)-‘(B/X4 + F’)Eij(A’XB + F) 

x (R + B’XB)-‘B’ @ B(R + B’XB)-‘B’] D, (8) 
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where the matrix I is the identity matrix, @ denotes the Kronecker product 
and I?ij = Ei/ + Eji, i, j E { 1, ..,a}. The matrices D and D+ are the duplica- 
tion matrix and inverse duplication matrix (cf. Magnus and Neudecker, 1994). 
These matrices ‘remove and restore’ redundant upper triangular parts of the (sym- 
metric) positive definite Riccati matrix X and the function G(X). As a result the 
matrix X is transformed to a p = in(n + 1) vector z. Consequently, Hk is a 
(p x p) matrix of second derivatives of the kth element gk of the vector g(z) 
with respect to the vector z, k being (j - 1)n + i. 

The problem here is to solve the multidimensional fixed-point problem g(z) = 
0. There are several types of numerical methods to solve such a problem. With 
the help of Eq. (7) it is simple to construct an iterative scheme to solve our 
fixed-point problem, viz. 

zti+l) = z(j) - @g/i%‘)-‘g, (9) 

with z(O) = D+vec W as an initial condition. This updating scheme is quite robust 
and will generally lead to a rapid solution up to some machine precision level. 
However, this method will in some particular cases not converge. This can be 
shown by transforming our problem to a nonlinear least-squares problem of the 
form (see Press et al., 1986) 

min : t4z) = &wm 

which has the first derivative 

(10) 

a+/az’ = g’(ag/az’) (11) 

and the second derivative 

a’$/aZaZ’ = (ag/aZ’)‘( ag/aZ’) + 2 2 gkHk, k=(j- l)n+i, (12) 
j=] i=j 

which is the Hessian matrix of $(z) with respect to z, k,gk, and Hk as previously 
defined. Clearly, the Hessian matrix is positive (semi)definite in the neighbour- 
hood of the optimal solution g(z) = 0, As such Eq. (12) serves as a diagnostic on 
convergence of our multidimensional fixed-point algorithm. Furthermore, if the 
initial value of g(z(‘)) deviates substantially from zero, nonconvergence may oc- 
cur. This convergence issue can be fixed to a large extent by adding a relaxation 
factor il to equation (9), which leads to 

z(i+l) = .(j) - n(ag/az’pg. (13) 

The relaxation factor Iz is chosen such that Eq. (10) is globally optimized. There 
are several strategies described in Press et al. (1986) for choosing A efficiently. 
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3. Two examples 

Let us assume we have the following matrices that belong to a simple control 

model with n = 5 and m = 1 (see Amman, 1995): * 

1 

0 
B= 0 

ij 

, F=O, W=I, R=l, 
1 

0 

which leads to the solution of Eq. (5): 

i 

2.2069 0 0 0 -1.1976 
0 1 00 0 

X= 0 0100 . 

0 001 0 
-1.1976 0 0 0 2.3115 

1 

Clearly, this example could not be solved by using Vaughan’s (1970) nonrecur- 

sive method due to the fact that the A matrix is sin lar. 

Table 1 3 gives the norm 11 g(zu)) II= J+ g(zb)) g(zb)) at each iteration step 

for the above model when we use the Newton method of Eq. (9). As expected 
the Newton method converges in a small number of iterations. 

Table 1 

i II SW)) II 

1 l.l921E-01 

2 2.7930E-05 

3 5.3938E-13 

4 7.6919E-16 

00 2.2404E-16 

* A GAUSS implementation of the algorithms can be obtained through email from the corresponding 
author. 

3 Calculations were done in GAUSS on a 486 computer. 



368 H. hf. Amman, H. Neudecker I Journal of Economic Dynamics and Control 21 (1997) 363-369 

However, if the matrix A has the form4 

-0.5208 0.5999 -0.4380 -0.3014 -0.0562 
0.9405 - 1.7373 -1.5401 -2.1367 -1.2417 

A= 0.1110 -0.8929 -0.5187 - 1.8992 -2.1634 , 
0.0058 0.9553 -0.8661 -0.7301 1.7773 
1.0474 0.57 14 0.3946 1.1376 -0.4130 1 

the Newton method of Eq. (9) will not converge. The eigenvalues of the Hessian 
matrix in (12) for the initial value X = W are in descending order (430.343, 
104.7753, 36.3720, 15.4705, 8.8303, 7.8615, 4.7562, 1.3750, 1.1323, 0.1360, 
-0.1124, - 1.2031, -5 877, -24.2595, -384.95902. Evidently, the Hessian ma- 
trix is not positive definite, which causes the nonconvergence. In this case we 
will need to apply the relaxation method of Eqs. (lo)-( 13) to get the solution 

-3.0208 -0.9591 2.1478 2.2488 0.9963 
-0.9591 -0.8385 1.0214 0.6773 0.0265 

x= 2.1478 1.0214 -2.4771 -2.0446 -1.1554 
2.2488 0.6673 -2.0446 -2.3064 -1.3623 
0.9963 0.0265 -1.1554 - 1.3623 -1.5591 

4. Summary 

In this note we have presented a fast numerical method for solving the al- 
gebraic Riccati matrix equation. In the example we investigated, the Newton 
method converged within a maximum of five iteration steps whatever the initial 
conditions. The merit of our method lies in the fact that it does not require addi- 
tional assumptions for the underlying linear-quadratic control model and therefore 
is capable of solving a wide range of applications. Furthermore, the derivative 
information used in the method will generally ensure fast convergence. 
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