On the number of latin hypercubes, pairs of orthogonal latin squares and MDS codes

Vladimir N. Potapov ${ }^{1}$
Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, Novosibirsk, Russia

Abstract

The logarithm of the number of latin d-cubes of order n is $\Theta\left(n^{d} \ln n\right)$. The logarithm of the number of pairs of orthogonal latin squares of order n is $\Theta\left(n^{2} \ln n\right)$. Similar estimations are obtained for systems of mutually strong orthogonal latin d-cubes.

Keywords: latin square, latin d-cube, orthogonal latin squares, MOLS, MDS code.

2010 MSC: 05B15

1. Introduction

A latin square of order n is an $n \times n$ array of n symbols in which each symbol occurs exactly once in each row and in each column. A d-dimensional array with the same property is called a latin d-cube. Two latin squares are orthogonal if, when they are superimposed, every ordered pair of symbols appears exactly once. If in a set of latin squares, any two latin squares are orthogonal then the set is called Mutually Orthogonal Latin Squares (MOLS).

From the definition we can ensure that a latin d-cube is the Cayley table of a d-ary quasigroup. Denote by Q the underlying set of the quasigroup. A system consisting of $t s$-ary functions $f_{1}, \ldots, f_{t}(t \geq s)$ is orthogonal, if for each

[^0]subsystem $f_{i_{1}}, \ldots, f_{i_{s}}$ consisting of s functions it holds
$$
\left\{\left(f_{i_{1}}(\bar{x}), \ldots, f_{i_{s}}(\bar{x})\right) \mid \bar{x} \in Q^{s}\right\}=Q^{s}
$$

If the system keeps to be orthogonal after substituting any constants for each subset of variables then it is called strongly orthogonal (see [4]). It is important to note that all functions in a strongly orthogonal system are multiary quasigroups. If the number of variables equals $2(s=2)$ then such system is equivalent to a set of MOLS. If $s>2$, it is a set of Mutually Strong Orthogonal Latin s-Cubes (MSOLC).

The best known estimate of the number of latin squares is $\left((1+o(1)) n / e^{2}\right)^{n^{2}}$ (see [10]). The lower bound obtained in [3] and the upper bound followed from Bregman's inequality for permanent. An upper bound $\left((1+o(1)) n / e^{d}\right)^{n^{d}}$ of the number of latin d-cubes is proved in 9 .

In this paper we find lower bounds for numbers of MOLS, latin d-cubes and MSOLC. This numbers for small orders are calculated in [11, [7.

2. MDS codes

A subset C of Q^{d} is called an $M D S$ code (of order $|Q|$ with code distance $t+1$ and with length d) if $|C \cap \Gamma|=1$ for each t-dimensional face Γ.

Proposition 1. 4] A set $C \subset Q^{t+m}$ is an MDS-code with code distance $\varrho_{C}=$ $m+1$ if and only if there exists strongly orthogonal system consisting of m t-ary quasigroups f_{1}, \ldots, f_{m} such that

$$
C=\left\{\left(x_{1}, \ldots, x_{t}, f_{1}(\bar{x}), \ldots, f_{m}(\bar{x})\right) \mid \bar{x} \in Q^{t}\right\}
$$

Let Q be a finite field. An MDS code C is called linear (affine) if it is a linear (or affine) subspace of Q^{d}. In this case the functions f_{1}, \ldots, f_{m} are linear and rank of the code is equal to $\operatorname{dim}(C)=t$. Let F be a subfield of a finite field Q and $|Q|=|F|^{k}$. Then we can consider Q as k-dimensional vector space over F. We will call $C \subset Q^{d}$ a linear code over F if it is linear (i. e. $\left.f_{i}=\alpha_{1 i} x_{1}+\ldots+\alpha_{d i} x_{d}\right)$ and all coefficients $\alpha_{j i}(j=1, \ldots, d, i=1, \ldots, m)$ are
in F. For $a, v \in Q$ denote by $L(a, v)=\{a+\alpha v \mid \alpha \in F\}$ an 1-dimensional affine subspace in Q.

The following criterion for MDS codes is well-known.

Proposition 2. A subset $M \subset Q^{d}$ is an MDS code if and only if $|M|=$ $|Q|^{d-\varrho+1}$, where ϱ is a code distance of M.

By using a well-known construction of a linear MDS code (5]) with matrix over prime subfield $G F(p)$ we can conclude that the following proposition is true.

Proposition 3. (a) For each prime number p, integers d, k and $\varrho \in\{2, d\}$ there exists a linear over $G F(p) \mathrm{MDS}$ code $C \subset\left(G F\left(p^{k}\right)\right)^{d}$ with code distance ϱ.
(b) For each prime number p and integers $d \leq p+1, k$ there exists a linear over $G F(p)$ MDS code $C \subset\left(G F\left(p^{k}\right)\right)^{d}$ with code distance $\varrho, 3 \leq \varrho \leq p$.

If $2<\varrho<d$ and $p \neq 2$ then the length of a linear MDS code of order p^{k} with code distance ϱ does not exceed $p^{k}+1$ or $p^{k}+2$ for $p=2$ (see [1], [2]).

3. MDS subcodes and lower bounds

A subset T of MDS code $M \subset Q^{d}$ is called a subcode or a component of the code if T is an MDS code in $A_{1} \times \ldots \times A_{d}$ with the same code distance as M and $T=M \cap\left(A_{1} \times \ldots \times A_{d}\right)$ where $A_{i} \subset Q, i \in\{1, \ldots, d\}$. Obviously $\left|A_{1}\right|=\ldots=\left|A_{d}\right|$ and $\left|A_{1}\right|$ is the order of the subcode T.

Let us now consider possible orders of subcodes. The following proposition is well-known for case of pairs of orthogonal latin squares (a case of MDS code with distance $\varrho=3$).

Proposition 4. If an MDS code $M \subset Q^{d}$ with code distance ϱ contains a proper subcode of order m then $\varrho \leq m \leq|Q| / \varrho$.

Proof. By definition every strongly orthogonal system consisting of $t=\varrho-1$ functions includes a system f_{1}, \ldots, f_{t} of t MOLS. A system of MOLS of order
m consists of not more than $m-1$ latin squares. Therefore $t \leq m-1$. Without loss of generality we can assume that the subcode includes a system of t MOLS of order m over the alphabet B. Denote by b the symbols of B and by a the other symbols. By the definition of orthogonal system, for any pair a, b and any $i, j \in\{1, \ldots, t\}$, there exists $\left(u_{1}, u_{2}\right) \in(Q \backslash B)^{2}$ such that $f_{i}\left(u_{1}\right)=a$ and $f_{j}\left(u_{2}\right)=b$. Thus $\left|(Q \backslash B)^{2}\right|=(|Q|-m)^{2} \geq t m(|Q|-m)$.

From the definition of an MDS code and Proposition 5 we obtain:

Proposition 5. Let $C \subset Q^{d}$ be a linear code over $F,\left(a_{1}, \ldots, a_{d}\right) \in C, v \in$ $Q \backslash\{0\}$. Then $C \cap\left(L\left(a_{1}, v\right) \times \ldots \times L\left(a_{d}, v\right)\right)$ is a subcode of C of order $|F|$.

Proposition 6. Assume C is a code with a subcode C_{1} of order m and a code C_{2} has the same parameters as C_{1}. Then it is possible to exchange C_{1} by C_{2} in C and to obtain the code C^{\prime} with the same parameters as C.

It is said the codes C and C^{\prime} obtained from each other by switching [12. If a code has nonintersecting subcodes then it is possible to apply switching independently to each of the subcodes.

For example consider a pair of orthogonal latin squares of order 9 below. A subcode (orthogonal subsquares) is marked by boldface.

$\mathbf{0}$	1	2	3	$\mathbf{4}$	5	6	7	$\mathbf{8}$
1	2	0	4	5	3	7	8	6
2	0	1	5	3	4	8	6	7
3	4	5	6	7	8	0	1	2
$\mathbf{4}$	5	3	7	$\mathbf{8}$	6	1	2	$\mathbf{0}$
5	3	4	8	6	7	2	0	1
6	7	8	0	1	2	3	4	5
7	8	6	1	2	0	4	5	3
$\mathbf{8}$	6	7	2	$\mathbf{0}$	1	5	3	$\mathbf{4}$

$\mathbf{0}$	1	2	3	$\mathbf{4}$	5	6	7	$\mathbf{8}$
2	0	1	5	3	4	8	6	7
1	2	0	4	5	3	7	8	6
6	7	8	0	1	2	3	4	5
$\mathbf{8}$	6	7	2	$\mathbf{0}$	1	5	3	$\mathbf{4}$
7	8	6	1	2	0	4	5	3
3	4	5	6	7	8	0	1	2
5	3	4	8	6	7	2	0	1
$\mathbf{4}$	5	3	7	$\mathbf{8}$	6	1	2	$\mathbf{0}$

Below we can see a result of switching.

$\mathbf{0}$	1	2	3	$\mathbf{4}$	5	6	7	$\mathbf{8}$
1	2	0	4	5	3	7	8	6
2	0	1	5	3	4	8	6	7
3	4	5	6	7	8	0	1	2
$\mathbf{4}$	5	3	7	$\mathbf{8}$	6	1	2	$\mathbf{0}$
5	3	4	8	6	7	2	0	1
6	7	8	0	1	2	3	4	5
7	8	6	1	2	0	4	5	3
$\mathbf{8}$	6	7	2	$\mathbf{0}$	1	5	3	$\mathbf{4}$

$\mathbf{0}$	1	2	3	$\mathbf{8}$	5	6	7	$\mathbf{4}$
2	0	1	5	3	4	8	6	7
1	2	0	4	5	3	7	8	6
6	7	8	0	1	2	3	4	5
$\mathbf{4}$	6	7	2	$\mathbf{0}$	1	5	3	$\mathbf{8}$
7	8	6	1	2	0	4	5	3
3	4	5	6	7	8	0	1	2
5	3	4	8	6	7	2	0	1
$\mathbf{8}$	5	3	7	$\mathbf{4}$	6	1	2	$\mathbf{0}$

Let $N(n, d, \varrho)$ be the number of MDS codes of order n with code distance ϱ and length d.

Theorem 1. For each prime number p and
(a) $d \leq p+1$ if $3 \leq \varrho \leq p$ or
(b) arbitrary $d \geq 2$ if $\varrho=2$
it holds

$$
\ln N\left(p^{k}, d, \varrho\right) \geq(k+m) p^{(k-2) m} \ln p(1+o(1))
$$

as $k \rightarrow \infty, m=d-\varrho+1$.

Proof. Consider a linear MDS code C over a prime field with rank m and length d (see Proposition 3). The number of its subcodes determined in Proposition 5 is equal to $p^{k(1+m)} / p^{m}$ where p^{m} is the cardinality of subcodes. Each vertex of the code lies in $p^{k}-1$ subcodes. Consequently, each subcode intersects with not more than p^{m+k} other subcodes. Thus we can choose $t=$ $(1-\varepsilon(k))\left(p^{k(1+m)} / p^{2 m+k}\right)$ times one of subcodes so that a new subcode is not intersected with subcodes choosing early. For each subcode we have more than $w=\varepsilon(k)\left(p^{k(1+m)} / p^{m}\right)$ alternatives, where $\varepsilon(k)=o(1)$ and $\ln \varepsilon(k)=o(k)$. By Proposition 6 the code obtained by switchings of this mutually disjoint subcodes has the same parameters as the origin code C. Then $N\left(p^{k}, d, \varrho\right)$ is greater than $w^{t} / t!$. Applying Stirling's formula, we get the lower bound on $N\left(p^{k}, d, \varrho\right)$.

Proposition 7. 8] For every integers $n, m, d, m \leq n / 2$, there exists a latin d-cube of order n with a latin d-subcube of order m.

Corollary 1. The logarithm of the number of latin d-cubes of order n is $\Theta\left(n^{d} \ln n\right)$ as $n \rightarrow \infty$.

The lower bound comes from Theorem and Proposition 7, the upper bound is trivial.

Proposition 8. 6] For every integers $n, \ell \notin\{1,2,6\}, \ell \leq n / 3$, there exists a pair of orthogonal latin squares of order n with orthogonal latin subsquares of order ℓ.

Corollary 2. The logarithm of the number of pairs of orthogonal latin squares of order n is $\Theta\left(n^{2} \ln n\right)$ as $n \rightarrow \infty$.

The lower bound follows from Theorem and Proposition 8, the upper bound is trivial.

References

[1] Ball S. On sets of vectors of a finite vector space in which every subset of basis size is a basis, J. Eur. Math. Soc. 2012. V. 14, N. 3. P. 733-748.
[2] Ball S., De Beule J. On sets of vectors of a finite vector space in which every subset of basis size is a basis II, Des. Codes Cryptogrophy. 2012. V. 65, N. 1-2. P. 5-14.
[3] Egorichev G. P. Proof of the van der Waerden conjecture for permanents, Siberian Math. J. 22 (1981), 854-859.
[4] Ethier J. T., Mullen G. L. Strong forms of orthogonality for sets of hypercubes, Discrete Math. 2012. V. 312, N 12-13. P. 2050-2061.
[5] Handbook of combinatorial designs. Edited by Charles J. Colbourn and Jeffrey H. Dinitz. Second edition. Discrete Mathematics and its Applications (Boca Raton). Chapman \& Hall/CRC, Boca Raton, FL, 2007. xxii+984 pp.
[6] Heinrich K., Zhu L. Existence of orthogonal Latin squares with aligned subsquares, Discrete Math. 59 (1986), no. 1-2, 69-78.
[7] Kokkala J. I., Krotov D. S., Ostergard P. R. J. On the Classification of MDS Codes, IEEE Transactions on Information Theory, 2015 (Published online)
[8] Krotov D. S., Potapov V. N., Sokolova P. V. On reconstructing reducible n-ary quasigroups and switching subquasigroups, Quasigroups and Related Systems. 2008. V. 16. P. 55-67.
[9] Linial N., Luria Z. An upper bound on the number of high-dimensional permutations, Combinatorica. 2014. V. 34, N 4. P. 471-486.
[10] van Lint J. H., Wilson R. M. A Course in Combinatorics, Cambridge U.P., 1992.
[11] McKay B. D., Wanless I. M. A census of small Latin hypercubes, SIAM J. Discrete Math. 2008. V. 22, N 2. P. 719-736.
[12] Ostergard P. R. J. Switching codes and designs, Discrete Math. 2012. V. 312, N 3. P. 621-632.

[^0]: Email address: vpotapov@math.nsc.ru (Vladimir N. Potapov)
 ${ }^{1}$ The work was funded by the Russian Science Foundation (grant No 14-11-00555).

