
Copyright © 2011 by IEEE

Lean as a Scrum Troubleshooter

Carsten Ruseng Jakobsen
Systematic

Århus, Denmark
e-mail: crj@systematic.com

Tom Poppendieck
Poppendieck LLC

Eden Prairie, MN, USA
e-mail: tom@poppendieck.com

Abstract— Systematic works at CMMI level 5 and uses Lean

Software Development as a driver for optimizing software

processes. Many of the optimizations described in this paper

are the result of using A3 problem solving. What makes the

Systematic experience unique, is the larger focus of the

problem solving effort, at an organizational level, in which

individual projects are used as experiments to try out

countermeasures to address root causes. This is possible

because Systematic, based on a CMMI focus, already employs

a level of standard work across project and product

engagements so that we can apply learning from an experiment

on one project to future projects. Experience from the past five

years has resulted in significant improvements to our processes

including our Scrum implementation, and has revealed insight

into five key measures to monitor projects. The experiences

also show important lessons learned on how to combine team

retrospective learning with organizational learning.

Keywords: A3, continuous improvement, Lean, Scrum

I. INTRODUCTION

Since 2005, Systematic has used Lean principles and
Lean Software Development to optimize how projects are
executed. Initially this led to the adoption of Scrum and an
agile development process with a focus on early testing.
Since then a number of other larger improvements have been
completed.

This paper presents through four case studies how the A3
problem solving tool from Lean, drives the thinking behind
these improvements and how Systematic has established this
learning in a combination of project retrospective and
organizational learning.

II. SYSTEMATIC – SIMPLIFY CRITICAL DECISIONS

Systematic was established in 1985 and employs more
than 450 people with offices in Denmark, Finland, US and
the UK. It is an independent software and systems company
focusing on complex and critical IT solutions within
information and communication systems. Often these
systems are mission critical with high demands on reliability,
safety, accuracy, and usability.

Customers are typically professional IT-departments in
public institutions and large companies with longstanding
experience in acquiring complex software and systems.
Solutions developed by Systematic are used by tens of
thousands of people in the defense, healthcare, police, public
sector, finance and service industries. Systematic was found
to be compliant with CMMI level 5 for the first time in

November 2005. In 2005 Systematic decided future
improvements were to be built on CMMI practices combined
with a lean culture and mindset.

A. Lean Culture and Agile Practices

The first major improvements inspired from Lean
included working in shorter iterations to get more feedback
from customers and a focus on early test and immediate
repair in development activities. This improvement resulted
in the adoption of Scrum and a new feature-driven software
development method with a focus on early test. It also
demonstrated that disciplined work fulfilling CMMI
practices is possible while at the same time being adaptive
using agile methods. This was confirmed when Systematic
were routinely re-assessed to CMMI level 5 in 2009.
Systematic has demonstrated how it is possible to implement
the CMMI disciplines within a Lean culture. Our processes
are non-bureaucratic and are a transparent natural part of
daily routines.

III. A3 PROBLEM SOLVING TOOL

A. PDCA with an A3

We develop software to help our customers solve
problems. Along the way we need to avoid introducing
problems created by the way we choose to pursue our
software development. We strive to mistake-proof our
process by paying attention to how well our work is going
and repairing both code and practices as soon as possible.
We keep our code clean using continuous integration to
discover as many problems as we can as early as we can and
fixing them immediately while the cost of fixing issues is
low.

The cycle for improving practices is a bit slower. We
repeatedly apply the plan, do, check, adjust (PDCA) cycle
popularized by Deming and used extensively in Lean
organizations. Specifically, we employ the A3 process
described by Jon Shook in Managing to Learn [6]. The
name A3 comes from the discipline of communicating the
entire PDCA process on one side of a single A3 sheet of
paper. This constraint forces us to present our thinking
concisely so that it can serve as an effective discussion
vehicle among everyone who can contribute to
understanding or whose behavior needs to change to
ameliorate the problem.

The A3 process focuses on the PLAN part of the PDCA
cycle by addressing two questions. First, why does the
problem we are addressing matter to the organization and to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357554482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © 2011 by IEEE

those who need to change the way they think and work. If
the people involved do not really care, we cannot expect
their participation in helping to understand causes of the
problem and in changing the way they work to make it go
away. The second question of planning is to discover the
root cause of the problem. This involves creating a mental
model of cause and effect, perhaps using a 5-whys analysis, a
fishbone analysis, or a causality network diagram. A
candidate root cause is reached when we identify faulty
thinking, false assumptions, or incorrect reasoning that
produced decisions that caused the problem.

The second step in the PDCA cycle is the DO step. For
each candidate root cause some experiments are devised to
verify them as root causes. The goal is to observe the effect
of correcting the faulty thinking we believe is the root cause
of the problem. If the hypothesis reflected in our model is
good, we should have a clear definition of what will change
when we do our experiments and by how much.

The third step in the PDCA cycle is CHECK that the
experiments confirm our root cause hypothesis. If our
predictions of anticipated impact are significantly wrong we
do not really understand well enough to make changes in our
work practices and we need to go back to planning.

The fourth step in the PDCA cycle is to ADJUST our
practices or policies or standards or checklists or guidelines
to reflect what we have learned from the cycle. The full
PDCA cycle can take a few hours within a team to months
for issues affecting many teams or multiple projects and
customers which intrinsically have much slower feedback.

B. Application at Systematic

Systematic, like many other organizations routinely
compares actual performance to business objectives to create
a list of important improvement opportunities or problems
affecting many teams that it needs to solve. Prior to our
adoption of Lean we attempted to assign a small group of the
brightest people in the organization to tackle these problems.
This did not work well. Even when we thought we identified
good solutions, we were unable to get development teams
and their leaders to buy-in and adopt our answers.

Significant progress began when we adopted the A3
process to engage people, particularly in the planning step
focused on understanding the consequences and root causes.
The typical pattern is that a VP or senior management
identifies issues that impact many delivery teams to many
customers. We then hold a workshop involving people from
all the affected teams to work through the A3 steps starting
with appreciating the impact and identifying candidate root
causes. The workshop sessions collectively identify
countermeasures, experiments that will tell them if their
understanding is correct. After the initial workshops they try
the experiments and get back together to analyze the results
to see how they all can adjust their practices. We re-
discovered that „all of us are smarter than any of us.‟

Systematic has introduced Lean-inspired practices like
A3 problem solving and fish-bone analysis as part of
implementing CMMI level 5 processes for optimization:

Causal Analysis and Resolution (CAR) and Organizational
Performance Management (OPM).

Systematic applies A3 problem solving at all levels.
People, project teams or senior management solve significant
problems or pursue opportunities when they are identified
using the A3 problem solving tool.

Senior managers gain insight into the challenges within
all projects and any significant deviation from business or
project objectives through monthly project reviews. When
they see that several projects are struggling with the same
problem, this may trigger a management driven A3 problem
solving involving a subset of the projects facing the issue.

Problem solving is always done by the people involved in
the process being improved, and in the context where the
process is used. This typically means by people on a project
performing a work flow within that project. The managers
role is to mentor the teams to ensure the completeness of
their investigation, modeling, counter-measures and
assessments [6].

When senior management initiates an improvement, the
first step is to verify the existence of the problem or
opportunity within the projects involved.

When senior management assigns an A3 problem solving
effort and starts working with teams on the problem, senior
managers will facilitate the problem identification and root-
cause analysis among the projects. The different projects
establish project-specific counter measures in response to
their cross-project analysis of the problem or opportunity.
Subsequently they check what worked and what didn‟t in the
different projects and practices are adjusted for future
projects based on this learning.

For a default standard process to be updated, at least one
project must have shown the improved process to be better
while executed in the improved project context. The people
who use the process are responsible for seeing that the
process works and improves.

IV. SYSTEMATIC EXPERIENCES

We present four examples of how we applied A3 at a cross-
team level to improve our practices.

A. Continuous Integration – Stop and Fix immediately

During 2006 Systematic adopted Scrum and a new
development method with a focus on early testing. These
improvements were identified by matching business needs
for shorter cycle time and improved defect containment with
Lean Software Development tools.

1) Problem Impact
By the end of 2006 some projects occasionally found that
they were unable to deliver as planned due to unexpected
problems in the building or testing environment or due to
fixing unanticipated problems with integration. The result
was unhappy customers and excess costs due to late
delivery created by late identification of integration issues.

Copyright © 2011 by IEEE

2) Root cause

 Why do we have unanticipated integration

problems?
We identify issues related to build, test and
integration too late.

 Why do we identify these problems late?
Integration is both done too late and some issues
discovered during development are postponed.

 Why do we postpone?
All projects have their own build server, but it is not
monitored. New developed code is checked in at the
discretion of the developers, perhaps on a daily basis.
Some projects do nightly builds but most don‟t.

 Why do we not always keep the build working?
There is no policy or objective for how fast failed
builds should be resolved.

 Why do we not pay attention to always having a

good mainline codebase?
We have the wrong fix-it-later mindset to integration
problems instead of a mindset that any integration
problem is real-time information on issues that must
be resolved immediately.

3) Countermeasures
Aha, the crucial insight is that we need to change our
mindset to integration problems. The negative effect of
a wrong mindset is a process out of control. We started
the improvement by defining a metric for fix time of
failed builds, and we worked with the improvement,
until the measure was used by all projects. The metric
for fix-time of failed builds were plotted into statistical
control charts, showing whether the process of fixing
failed builds were in statistical control and the variation
of the process. Our hypothesis is that the right mindset,
stop and fix immediately, leads to a process in control.
We looked at the data points making the process out of
control, to better understand how to change our
mindset.
 To establish a new mindset we decided to

implement a new metric for the projects – fix time

for failed builds. All projects were using
CruiseControl. We established a central database to
collect information from CruiseControl in all
projects. Whenever a build is completed on the
build server, the results are stored automatically in
this database. This data collection allows project
specific measures of actual average fix-time of
failed builds. We immediately established a
baseline for that metric. The baseline (presented
and calculated as control charts) showed that the
process was not in control.

 We expected that by making this metric visible to
the teams, they would adjust their efforts to get it
under control and make it shorter. We chose two
ways to make the measure visible:

1. We set up CruiseControl to make build status
immediately available for all on the project.

2. We showed the fix time status from all projects
on a computer next to the coffee machine in the
hallway providing daily opportunities to discuss
with random people from projects why this
mindset is important.

 An analysis of causes to long fix-times revealed
that in most cases simple criteria for when code can
be checked in to the build server would catch many
defects earlier: Have you rebased locally, have you
recompiled locally, did the unit test succeed locally
… OK you may now proceed to the build server.
We automated code standards checking with
standard tools like FxCop at code check-in.

4) What did we learn from the results?

 In contrast to other project management metrics,
we learned that the time it takes to fix a broken
build is a number that most developers can
immediately relate to.

 Sharing the real time numbers in the hallway next
to the coffee machine was a great way to call
attention to the topic. Within few months the
mindset had changed in the projects. This could be
observed from the metric. The number of builds
with a fix-time of several days gradually
disappeared.

 However, the mindset did not make it happen
alone, but it gave people a good understanding of
why they needed to change other practices, like
criteria for when to check in code.

5) How did we adjust our way of working?

The major impact of this improvement was that people
achieved a mindset that problems must be addressed
immediately. The build scripts in all projects were
standardized to support either a java setup or a .NET
setup. A standard setup to collect the build status was
established for each. Today the metric is mandatory for
all projects, and the process is statistically managed
with control charts. We know that if the largest fix-time
is less than seven hours, then the process is most likely
in control. The average fix-time will be somewhere
between one- and-a-half to three hours.
Another important learning from statistical
management of time-to-fix failed builds, is that long
fix-times are almost always related to impediments for
the team. Therefore extra attention is paid to the reasons
for long fix-times of failed builds, on a daily basis, and
during project reviews.

B. Ready-Ready and Story Flow concepts

The following is an example of an improvement initiated by
an opportunity as opposed to a problem.

Copyright © 2011 by IEEE

1) Opportunity impact

Senior management analysis of productivity in projects in
Systematic in August of 2008 showed that some sprints in
two projects achieved at least two times better
performance than projects on average. Our opportunity
was to determine if there were lessons learned from these
high performing sprints that could be copied and
sustained across all projects. In order to verify and
understand the opportunity we conducted a series of
interviews with eight people from the two projects and
senior management.

2) Root cause

 Why is such high performance not achieved on

other projects?
Other projects have insufficient time allocated for
product owner (PO) work.

 Why is enough time not allocated?

Status and progress on PO work is not measured.
 Why do we not measure PO Work?

The responsibility and organization of the PO role is
unclear to most projects.

 Why is PO work unclear?

Insufficient focus on readiness of work on Product
Backlog.

 Why do we not have ready criteria for PO work?

Sprint delivery has strong code focus, and this causes
inexperienced projects to sacrifice activities to
prepare product backlog.

 Why is this not just a question of organizing the

PO role in the projects?
The successful project sprints did not care about who
is the product owner. They carefully designed what
activities were to be carried out by who and when.
This way they not only appointed the PO, they also
described how the team collaborated with the PO.
The successful projects did this to achieve a stable
flow of activities within sprints.

3) Countermeasures

Aha, the key is to ensure that sufficient focus is on the
activities to prepare the product backlog.
 To create focus, we decided to establish a

management pull and metric to indicate if the product
backlog is prepared sufficiently. Project managers
were asked to define the metric, and they suggested a
sprint readiness metric. The metric is the percentage
of stories allocated to a sprint that is ready, and is
supported by a checklist. We expected other teams
adopting ready practices would double their flow as
the high performing teams had.

 We measured the sub-flow for story implementation.
The reason for ensuring that work allocated to a
sprint is ready is to ensure that once a developer
starts a story, the story can be developed in a smooth

flow. Assume a story is estimated to be three
workdays of effort. However, for various reasons it
takes nine workdays to implement the story. The flow
of this story implementation is then defined as three
days calendar time of work implemented over nine
calendar days, a flow of 3/9 or 33%.

4) What did we learn from the results?

 The Ready check list was piloted and resulted in the
timely execution of preparation activities that
otherwise often were postponed to a few days before
sprint planning.

 Due to the timely execution of activities, it became
easier to conduct estimation workshops with a broad
representation of the team well ahead of Sprint
Planning.

 Planning Poker was integrated as part of the
estimation workshop, and this has proven to be an
efficient way of establishing consensus on scope and
estimation of stories.

 As a result, the Sprint Planning meetings are now
much more efficient, because the team knows what
the features and stories are about, a topic that
otherwise took a lot of time during Sprint Planning.

 When we started measuring flow it was around 30%.
In Q4 2008 it had increased to 59%. Efficient flow
eliminates the waste associated with context shifts
and handovers. In addition the team members find it
more satisfying that work initiated in a sprint is
sufficiently clarified to allow for a smooth
implementation during the sprint.

5) How did we adjust our way of working?

Our policy now requires monthly reporting measures of
%READY and flow by each project. The organizational
objective is that at least 100% of stories selected for a
sprint must be ready, and the implementation flow of each
story must be at least 60%. These measures are good
indicators that drive behaviors to let teams go twice as
fast as they could before.

C. Project initiation

In December 2008 we observed that the past four projects
spent two to three months to establish project foundations.
This is significantly longer than our business objective of
one month.

1) Problem impact

We observed that all project managers found it difficult to
establish a project foundation in a timely manner after
project initiation. In particular, planning project startup
and good elicitation and management of requirements are
very challenging. Sessions to analyze the root cause were
conducted in three separate sessions with senior
management, project managers, and key roles as
participants.

Copyright © 2011 by IEEE

2) Root cause

 Why is the project foundation not established in a

timely manner for new projects?

Project managers feel that initiating the project is like
hitting a wall, and find no easy way to get through
and no clear direction. Some activities done by the
project manager during project initiation are not
formalized or often done ad hoc. Examples on such
activities include: how knowledge from a bid team
writing a proposal is transferred to the project team
executing it, how the appropriate competences are
ensured in the project team, how initial setup with
shared functions like Finance are established, and
how to establish the initial product backlog.

 Why is the initiation process difficult?

 Our project start-up process is unclear. It has a focus
on initiation inputs and outputs, but it lacks both
essential milestones and the notion of co-ordinated
support from shared functions. Furthermore, team
competence needs are identified and met too late.

 Why don’t we have a usable process?

The project manager is typically under time pressure
during project startup and has not had the opportunity
to improve their process.

 Why are project managers under such time

pressure?

Often the project manager will close the previous
project at the same time a new project is started.
Project managers start a project every one or two
years, and may not remember how the last project
started or know what has changed. Starting a project
involves substantial tasks: building a new team,
learning a new customer, and involvement with most
shared functions while at the same time establishing
the foundation for the project. Without proper
guidance and support, tasks to establish the project
foundation are easily sacrificed.

 Why are the project managers unable to handle

these tasks efficiently?

There is a lack of essential milestones to report
against so necessary support from shared functions
during project start up is not triggered. Project
managers and senior management discuss the staffing
assigned to project for too long at the expense of late
initiation of responses to competence gaps in the
staffing assigned.

3) Countermeasures

Hmm, several candidate causes have surfaced: clear
essential milestones, unified support from shared
functions, and timely resolution of competence gaps in
staffing provided. We decided to establish counter
measures for all three.

 We established a project workflow checklist where
work products are laid out in time to visualize what
work products were due when and in what state.

 We established a project start up service, where a
second project manager assists the project manager
during startup, and acts as the point of contact to all
other shared functions. This person has the latest
information regarding best practices.

 Policies were installed to ensure that handover from
sales is done formally within two weeks.

 Initial staffing can be discussed during the first week.
From this point the discussion focuses on how to
close competence gaps on the assigned staff.

4) What did we learn from the results?

 In January 2011 the latest six project start ups have
established their project foundations within three to
four weeks.

 The startup service concept is a huge success. All
shared functions now provide a startup service, and
project managers greatly appreciate the more
coordinated service.

 Finally the experiments have contributed to the
introduction of a competence gap score to support
discussion of how well specific staffing fulfills the
project‟s competence needs, and adjust project
objectives accordingly.

5) How did we adjust our way of working?

The project startup workflow checklists, the unified start up
service and policies are now a mandatory part of the
processes in Systematic.

D. Feature clarification with customer

The following is an example on an improvement initiated by
a problem identified in several projects across all business
units in Systematic.

1) Problem impact

During 2008 the Vice Presidents observed many projects
struggling with clarifying features in collaboration with
the customer. Clarifications from the customer were late,
leading to a decrease in flow, which we know causes
schedule and cost overrun. The problems were expressed
verbally by project managers during periodic project
review meetings, and supported by the a drop in the Story
Implementation Flow metric. Initially fifteen people from
five projects were invited to a shared root cause analysis.

2) Root cause

 Why are feature clarifications from customer late

and causing low flow in story implementation?

In some cases, we ask the customer to clarify too
much work in too much technical detail in areas
where the customers have little competence. In other

Copyright © 2011 by IEEE

cases, the project depends on a technical
infrastructure provided by the customer.

 Why do we ask customers to clarify too much

technical detail?

The IT-infrastructure provided by the customer may
be documented insufficiently or we may try to isolate
work in a sprint from customer changes. However,
we do not separate decisions regarding needs from
decisions regarding solutions, but ask the customer to
clarify both.

 Why are upfront needs for documentation not

identified and why do we try to avoid customer

interaction for work in progress?

We trust that if we have questions about the
customer‟s IT infrastructure, the customer can
provide quick clarification. The customer wants to
clarify or change work in progress, which causes a lot
of rework. We would like to clarify work for sprints
after the current sprint. We would like to get
information from the customer to fit our needs using
our internal development processes, but the customer
would like to comment on the solution as it emerges.

 Why are these needs for clarification not aligned

and why are concerns for needs and solutions not

separated?

We have not established a shared process with the
customer regarding feature clarification. A shared
process would describe the who, what, when, and
how for feature clarification activities. For some
projects the initial setup of the project resulted in an
insufficient foundation causing more decisions to be
postponed than can be achieved within agreed
timeframes. Weak implementations of the product
owner role, cause projects to ask for technical
clarifications the customers are unable to provide, as
opposed to clarification of needs. In other words, we
are not establishing customer commitment for the
desired collaboration. At the same time the
implementation of the product owner role is unclear.

 Why is customer commitment and

implementation of the product owner weak?
Contracts increasingly depend on timely clarification
and delivery from the customer to the project. Often
the customer is unable or unaware of these
expectations. The impact of this has not been visible to
those negotiating and setting up project agreements
with our customers. Different aspects of the product
owner role are handled by different people on the
project teams, but the teams have not explicitly
clarified how the responsibility of the product owner
role is allocated to the people on the team.

3) Countermeasures

The first understanding of the root cause focused on
defining a shared process with the customer on feature
clarification. The five projects involved executed counter

measures to this understanding of the root cause as it was
formulated in January 2011. When the effects of these
counter measures were evaluated in March 2011, it was
clear that the desired effect had not been achieved. The
projects got together and re-evaluated the root-causes.
The result of this reflection was that the root cause is
related to building customer commitment to the close
collaboration needed and to ensure that all projects
establish a clear understanding of how the product owner
role is implemented. Based on this new understanding of
the root-cause it seems that what Systematic can do is to
improve the product owner role with a stronger focus on:

 Aligned expectations on customer involvement
and deliveries, for example by ensuring that the
steering group meets shortly after contracting for
a workshop to discuss the vision of the contract,
and house rules for collaboration, like timely,
open honest communication.

 Clear mutual understanding and agreement of
who is involved and when on the customer side
regarding specific clarifications.

 Clear mutual understanding and agreement
regarding time frames for responses needed for
efficient decision making.

 Clear understanding of how the different product
owner responsibilities are allocated within the
team.

 Shared process with customer for collaboration
with the product owner and the team so that
clarification needs are highly visible to
responsible parties on both sides and so failure to
perform is not ignored.

4) What did we learn from the results?

At the time of this writing, the effect of the revised
countermeasures is unknown. However, this case study
shows the importance of evaluating the effect of counter
measures and to readjust if desired outcomes are not
observed.

5) How did we adjust our way of working?
How this improvement will change our way of working is
yet to be seen.

V. LESSONS LEARNED

The application of A3 problem solving is a powerful tool for
an individual project, which is amplified when used across
projects with the involvement of senior management. In the
first case study, projects identified the need for an
integration tool but senior management identified the need
for a standard setup across projects. In the third case study,
projects observed that part of the problem was related to
how initial staffing was handled. This is difficult to change
for a project but senior management could facilitate
adjustments to the staffing policy.

Copyright © 2011 by IEEE

Several years of Lean motivated improvements have created
significant adjustments to our processes and identified these
key metrics for monitoring projects:
1. Fix time of failed build must be less than a workday.
2. Development of stories must have a flow of at least

60% (Flow = estimated implementation time/actual
implementation time.)

3. Defects must be found and fixed early so that final test
and release for a typical sprint delivery takes less than
10% of the iteration (three calendar days for iterations
of one month duration)

4. Delivery teams must be co-located, empowered and
organized to achieve a size of five plus or minus two.

5. The velocity of elaboration of features (making them
READY) must be at least the same as the velocity of
implementing features (making them DONE).

Experiences from Systematic indicate that these five
objectives have the following properties:

 Successful projects will achieve all the objectives.
 Troubled projects will fail on at least one of the

objectives.
 Objectives are meaningful to the team the and team can

relate to them.

This list of objectives represents five years of learning, but
will change over time as new learning is created to improve
performance further.
The disciplined use of A3 problem solving has helped
Systematic to improve flow in its processes. The first
improvements of flow were initiated in the release activities.
Once flow was established in release activities, the A3
process was used to improve flow in test activities,
development activities, project startup activities, and in
customer activities related to contracting and ongoing
clarification. These improvements have required a sustained
focus over longer time, and have in return gained major
benefits for Systematic.

VI. CONCLUSION

Many of the adjustments implemented are characterized by
being desired but beyond the control of the projects. Had the
projects driven these improvements on their own, they

might have discarded the ideas for adjustments because of
the need to involve senior management or VP‟s in the
decision. When the problem solving is initiated by senior
management, the negative impact of the problem is viewed
both from the project perspective and also from the business
unit or company perspective. In this larger perspective
larger problems build high management commitment,
because the impact of the problem and the benefit of the
solution is visible in a larger scale.
Furthermore, such improvements are backed with more
factual data, for example “We can see that the flow of story
implementation increases from 30% to 60% when customers
are able to clarify features on time, and all work allocated to
a sprint is READY”.
The most important learning from the improvements during
the past five years, is the Lean concept of jidoka. Respect
that those who do a particular part of work, are those who
are best qualified to improve how this work is done. In
essence do not ask people to speculate on a solution to a
problem of someone else. Make people responsible for
solving their own problems and ensure that management
supports it. When management and senior management
engage in helping people do their job better, instead of just
asking them to do it better, it is soon evident to senior
management what problems are shared among projects.
Solving such problems will often create a change in the
environment, where business is improved and customers
and employees are more satisfied.

REFERENCES

[1] J. Sutherland, C.R. Jakobsen and K.A. Johnson, "CMMI and

Scrum - a magic potion for code warriors" in Agile
2007,Washington D.C., 2007

[2] C. R. Jakobsen and K. A. Johnson, “Mature Agile – with a twist of
CMMI”, in Agile 2008, Toronto, 2008

[3] C. R. Jakobsen, J. Sutherland, "CMMI and Scrum – going
from Good to Great” in Agile 2009, Chicago, 2009

[4] C. R. Jakobsen, J. Sutherland, "Mature Scrum at Systematic”
published in “Methods and Tools” in 2009

[5] Steve Denning, The Leaders Guide to Radical Management,
Published by Jossey-Bass, 2010, ISBN 0-470-54868-1, 2011,

[6] Jon Shook, “Managing to Learn: Using the A3 Management
Process”, Lean Enterprise Institute, Inc.; 1 edition (January
2008), ISBN 1934109207.

