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Comparisons of Simulation 
Methods for Motions of a Moored 
Body in Waves 
Based on the linear water wave theory, numerical simulations are carried out for 
motions in waves of a body moored by a nonlinear-type mooring system. Numerical 
results obtained by using the equation of motion described in the time domain with 
a convolution integral (C.I. method) are compared with those of the second-order 
linear differential equation with constant coefficients (C. C. method). These 
results are also compared with experimental values measured from the initial stage 
when the action of exciting forces starts and the validity of C.I. method is discussed. 

Introduction 

Since the introduction of the principle of superposition into 
the naval architecture by St. Denis and Pierson [1], the 
responses of a ship and/or offshore structure to the sea are 
usually described in terms of the frequency response func
tions. In the linear dynamic system, the responses of a ship to 
irregular waves can be represented by a linear summation of 
its responses to the components of the irregular waves. 

However, in the nonlinear dynamic system, such as a ship 
moored by a nonlinear mooring system, the responses cannot 
be expressed in the frequency domain since the linear 
superposition principle is not applicable in this case. The 
solutions are obtained by the numerical integration of the 
equations of motion with respect to time and the equations of 
motion to be used are usually classified into the following two 
types. The one is the equation of motion with a convolution 
integral (C.I. method) and the other is the second-order linear 
differential equation with constant coefficients (C.C. 
method). The C.C. method is not exact since the frequency of 
a motion cannot be determined, a priori, when the nonlinear 
terms are involved in the equation. However it has an ad
vantage with respect to the computing time compared with 
C.I. method. From the practical point of view, Shuku, et al. 
[2] studied the motions of a moored floating storage barge in 
shallow water by using C.C. method. The constant coef
ficients were assumed to be the hydrodynamic coefficients at 
some representative frequency associated with the incident 
waves. 

On the moored ship problems Oortmerssen [3] derived 
numerical results based on C.I. method and compared them 
with experimental values. Following his work Hotta [4] and 
Wichers [5] have dealt with C.I. method and compared the 
numerical results with the ones of C.C. method and/or ex
periments. However, most of these works have been con-
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cerned with the responses at stationary state and in the work 
of Oortmerssen a factor (1.0-exp(0.01/)) was introduced to 
avoid the shock force due to the wave-exciting force in a 
transient stage. 

The purpose of this paper therefore is to compare the two 
calculation methods for the motions of a moored body in 
waves from the initial stage when the action of exciting forces 
starts. For comparisons with measured values, the viscous 
damping force on a body is estimated from the free oscillation 
test and introduced in both equations of motions. In this 
paper, for simplicity, the sway motion of a two-dimensional 
body moored by a nonlinear-type mooring system is assumed 
and a significant difference between two calculation methods 
is found in the following cases. 

9 When the sway motions close to the natural frequency of 
a moored body occur. 

• When the floating body which is initially at rest with a 
loosened rope and/or chain starts its motion (i.e., in a 
transient stage under the action of wave forces). 

8 When the subharmonic sway motions appear. 

Integro-Differential Equation of Motion 

Impulse Response and Memory Effect Function. In order 
to formulate the problem for an impulse response, consider a 
two-dimensional body floating at rest in still water and the 
coordinate system illustrated in Fig. 1. Let us then consider 
the general formulation of hydrodynamic forces acting on the 
body due to an impulsive motion velocity in the kth mode. 
Here k = 1, 2 and 3 are referred to sway xx, heave x2, and roll 
motion x3, respectively. Under these assumptions, we obtain 
the following governing equation and boundary conditions 
for the velocity potential $k (x,y;t): 

[L]V2$k=0 for.y>0 (I) 

LF] **»-£**>. =0 on>< = 0 

[H\—- =nk8(t) onthebody 
an 

(2) 

(3) 
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Fig. 1 Coordinate system for Lewis form transformation 

M** = **„=« fo r /<0 (4) 
where 

dx dy dy dx 
dn dn dn dn 

and 8(t) is the usual Dirac delta function. 
Cummins [6] firstly introduced ship motion description by 

a succession of small impulsive displacements. Adachi [7], 
Yeung [8] and Ikebuchi [9] solved the time-dependent 
boundary value problem by a direct approach in which the 
time-varying Green's functions were involved. On the con
trary, the time-dependent boundary value problem can be 
converted to the problem in the frequency domain and the 
problem will be derived in a more simplified manner than the 
one of a direct approach. Ogilvie [10] reviewed the method of 
Cummins by introducing the memory effect functions and 
discussed the relation between time and frequency domain 
description of motions. Oortmerssen applied the time domain 
equation of motion to a moored ship in waves in which the 
time-dependent boundary value problem was converted into 
the frequency-dependent boundary value problem as was 
shown by Ogilvie. 

Following Oortmerssen, we also describe the problem in the 
frequency domain and for this purpose we define the Fourier 
transforms as follows: 

F*(u) 

F(t) 
2TT J -

dt exp(-mt)F(t) 

doi exp(iut)F* (u) (5) 

By taking the Fourier transforms of equations (l)-(4), we 
have 

where 

K=u2/g 

[Z,]V2*J?.=0 for ^ > 0 

[F\K<S>*k + $*ky=Q ony = 0 

d$*k 
[H\ —— = nk on the body 

on 

(6) 

(7) 

(8) 

This is the well-known boundary value problem described 
in the frequency domain and the problem is solved by taking 
into account the radiation condition in addition to the 
foregoing governing equations. Let us denote the force 
component of y'th direction due to the motion of kth mode by 
Fkj(t); then we have 

f f d^k 
FkJ(t) = -\i^pknjdc=p^ -—rijdc (9) 

And by using the hydrodynamic coefficients in the frequency 
domain, we have 

/^(«) = P\cnj i dciw$*k = {-bkj(u)-iwakj(w) (10) 

where 
akj(u) = added-mass coefficient 

bkj(io) = damping coefficient 

Hence, by use of Fourier inversion formula and equation (10), 
equation (9) can be rewritten as 

FkjU) 
2x J-

dw exp(io)t){bkJ(u) +iu akJ(u)} (11) 

Since akj(°°) has generally a finite constant value, the 
integral of equation (11) does not converge. In order to have a 
convergent integral we rewrite equation (11) as 

FkjU)-
2w J-

dw exp(iwt)[bkj (OJ) + iu{akj (u) 

1 r°° 
-«* / ( °°)}] - z - \ du> exp(/co0«t; ( ° ° )^ 27rJ-°° 

Applying the following relation [11]: 

1 
dw exp(zW) = 5(?) 

- c o 

(12) 

(13) 

N o m e n c l a t u r e 

aua} 

<>kj 

A, = 

bki = 

c = 

/ . i = 

Fkl = 

Lewis form parameters 
added-mass coefficient of 
jth mode due to motion in 
kth mode 
ratio of amplitudes of 
generated waves to those of 
swaying motions 
5 / 2 ha l f -b read th of 
cylinder 
damping coefficient in y'th 
mode due to motion in Ath 
mode 
body contour 
viscous damping coef
ficient 
mechanica l damping 
coefficient due to pulley 
restoring force resulting 
from mooring system 
force component of jth 
mode due to motion in the 
kth mode 

F* = 

g 
G 
K 

Kk 

Kkj 

M, 
n 

n, = 

Fourier transform of F 
force component of jth 
mode when motion velocity 
xk(t) is given 
Flwi +Fiw2 wave-induced 
external forces which 
consist of wave-exciting 
force FlwX and drifting 
forceFlw2 

acceleration of gravity 
Green's function 
w2/g wave number 
memory effect function in 
y'th mode due to motion in 
kth mode 
nondimensional Kkj 

Fourier transform of KkJ 

mass of body 
normal vector pointing 
outside body 
generalized direction cosine 

Pk = 

R„ = 

t = 
V = 

*k = 

8 = 
«i = 

P 

*k 

n 
CO 

hydrodynamic pressure in 
kth mode 
steady-state drifting force 
coefficients 
time 
t-JgJb nondimensional time 
motion in kth mode 
Dirac delta function 
phase difference between 
generated waves and 
swaying motions 
surface elevation of in
cident waves 
density of water 
velocity potential in kth 
mode 
Fourier transform of $k 

circular frequency of 
motion 
representative frequency of 
motion 
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Fig. 2 Two-dimensional moored body 

we obtain 

F « « > - -

r!" 

2TT J -

do> io) exp(io)t) = 5'(t) (14) 

du> exp(io>t)[bkj{o) 

+ iw{aki(o>)-akj(<x>)\]-akj(°°)5'(t) (15) 
By taking into account the causality of potential, it follows 
that 

Fkj(t) = dw cos(wt)bkj(u) -akJ{a>)5' (t) (16) 

Therefore, the memory effect function Kkj (t) is given by the 
following expression: 

Kkj(t) = -Fkj(t)-akj(oo)d'(t) 

2 ("" 
= - l dco cos(o)t)bki(u) (17) 

IT Jo 

For the calculation of memory effect functions by using 
equation (17), the damping coefficients must be known for all 
frequencies and this is done by connecting the exact values in 
a medium frequency range with the asymptotic values in high 
frequencies. The damping coefficients in a medium frequency 
range are obtained by using Ursell-Tasai's method [12] for a 
Lewis form section. Oortmerssen obtained iteratively the 
asymptotic values of the damping coefficients in high 
frequencies. In this paper they are derived analytically by 
solving the boundary value problem formulated on the high-
frequency assumption. 

Integro-Differential Equation of Motion. Substituting 
equation (17) into equation (16) the impulsive response is 
expressed with the memory effect function as follows: 

Fkj(t) = -K.kjU)-akJ(oo)8'(t) (18) 

Let us assume that Fjk) is the force component of y'th 
direction when the motion velocity xk (t) is given from t = 0. 
Then it is given by the convolution integral of impulse 
response and motion velocity. 

F}kHt) = -\'QKkj(t-T)xk(T)dT 

~akj(oo)^Xk(T)8'(t-T)dT (19) 

By considering the initial condition, we have 

\>oXk(T)b'(t-T)dT = Xk(t) (20) 

and equation (19) reduces to 

F}k) ( 0 = - j ^ Kkj (t-T)xk(T)dT-akJ(o°)xkV) (21) 

In addition to the hydrodynamic force given by equation 
(21), a floating body in waves is subjected to the inertial 
reaction force, hydrostatic restoring force and the external 
force due to waves. Applying Newton's second law of motion 
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Fig. 3 Load deflection curve for fender-type mooring system 

the differential equations which describe the body motions in 
waves are given. In this paper, as shown in Fig. 2, only sway 
motion of a moored body is considered, and the equation of 
motion results in the following expression: 

lMl+ail(co)}xl(t) + \oKu(t-T)xl(r)dT 

+fuixm=Flw(t) (22) 

where 

Mx = mass of body, xx (t) = swaying motion 
ff n (°°) = added mass at infinite frequency 
Ku (t) = memory effect function for swaying motion 
f\\{x\ (0 i - restoring force resulting from the mooring system 

and it is the function of x{ (t) 
F\w(t) =FUv[(t) + Flw2{t) = wave-induced external forces 

which consist of wave-exciting force and drifting 
force 

Since equation (22) involves the convolution integral term, we 
will refer it as "C.I . equation of motion." 

Second-Order Linear Differential Equation With 
Constant Coefficients 

If a body is forced in a simple harmonic motion and the 
stationary conditions are attained, the hydrodynamic force 
acting on a body is expressed by the following equation: 

F}"> {t) = -bkj(w0)xk(t) -akj(w0)xk«) (23) 

where 

co0 = circular frequency of motion 
xk (t) = motion velocity in kth mode 

Let us assume that hydrodynamic forces acting on a body 
can be given in equation (23) by using a representative 
frequency even when irregular waves and/or nonlinear 
mooring system are concerned. Then the equation of motion 
of the body at any instant can be written in the form: 

(Af, +a11(o)0))x1(0 + 6n (w0)*i(0 

+ / I I U I ( 0 ) = ^ I W ( 0 (24) 

A suitable representative frequency has to chosen for u0 

and thus the coefficients of the equation of motion become 
constant. Hence we will refer equation (24) as "C.C. equation 
of motion." 

Model Experiments 

In order to verify the numerical results obtained from the 
two different equations of motion for a moored body in 
waves, model experiments were conducted by using a small 
tank (L x B X D=14m x 0.3m X 0.75m) in the Naval 
Architectural Department of Osaka University. The model 
was a half-immersed circular cylinder with a 0.1075-m radius. 
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Fig. 6 Experimental setup for the second series tests with a rope-type 
mooring system 

Fig. 4 Load deflection curve for rope and/or chain-type mooring 
system 
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Fig. 5 Mooring system used for model tests 

The width of cylinder was 0.297 m and the clearance between 
the one side wall of model and the tank wall was 1.5 mm. The 
model experiments were divided into two series according to 
the type of mooring system, although both are nonlinear 
types. The first series of experiments was concerned with a 
mooring system as shown in Fig. 3 and the second one was 
with a mooring system as shown in Fig. 4. Hereafter, for 
convenience, we will refer to the former system as a fender-
type and the latter one as a rope-type mooring system. For a 
fender type, the nonlinear characteristic for the restoring 
force of the mooring system was simulated by means of a 
composite of a bar spring and a coil spring as shown in Fig. 5; 
its characteristic curve is given in Fig. 3. For a rope-type 
mooring system, bar springs are set at a short distance from 
both sides of a floating body and the nonlinear characteristic 
curve is given in Fig. 4. In these experiments the roll motion 
has been restricted by strings and only the sway motion has 
been measured by means of a potentiometer. The restoring 
forces were measured by strain gages on bar springs. The 
irregular waves were generated from the up and down 
motions of the plunger of wave maker controlled by the 
electrical signals. These signals were obtained as follows. 
Firstly, the time histories of the digital signals were calculated 
from the given wave spectrum by dividing into a finite number 
of discrete rectangulars. Secondly, these signals were con
verted into analogue signals through the D-A converter and 
recorded on a magnetic tape of data recorder [13]. All signals 
were simultaneously recorded both on magnetic tape recorder 
and paper chart recorder. The sketch of the test setup is shown 
in Fig. 6. The experimental results are shown in the following 
chapter along with the numerical results. 

Comparisons Between Calculations and Experiments 

Calculation of Memory Effect Function. As was men
tioned before, the memory effect function results in the 
following expression: 

1.0 

- 1 . 0 

Fig. 7 Memory effect functions for three Lewis form cylinders with 
H0 = 1.0 in swaying motion 

Kki(t) 
2 r 
IT JO 

do) cos(wt)bkj(oo) (25) 

The damping force coefficient for a two-dimensional body 
oscillating with the circular frequency o is given by 

bu{w) = pg2/^-A](o1) (26) 

where A x (co) = ratio of amplitudes of the generated waves to 
those of the swaying motions. 

Putting equation (26) into equation (25), the memory effect 
function for sway motion can be expressed as 

*„(/) = 
2pg2 f» , V ( « ) 

cosutdui (27) 
f J» co

in order to perform the integration of equation (27), the 
asymptotic values of the wave amplitude ratio in the high-
frequency range are derived as follows (for details see Ap
pendix of reference [14, pp. 219-220]): 

F 
1 + 

K 
for u—co (28) 

where 

(1+0,-1-03) 

6 ( l - « , - 3 a 3 ) 2 

v-* ot„ ( l+a, +9(73") 

x E -7r(-i)m2/n« 2W+-:—-^r-\ 
JZix U <- l-a{-3a3) 

The memory effect function is nondimensionalized as 
follows: 

Ku(t') = Ku(t)/pg(B/2) (29) 
and the memory functions for Lewis form sections are shown 
in Fig. 7 as a function of nondimensionalized time t' = t^fgjb. 

Incident Waves and External Forces on the Body due to 
Waves. The incident waves at the location of the body were 
assumed to be obtained from the waves measured by 
removing the body out of the experimental tank and the 
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IftA'AAAUffAAAA îA/iilfl ipvvyvwvvyv,/vVV|/| k f 

Exciting Forces (predicted) 

- ^ A A A A A M A MftftffiiAAnAlWAAAflV MM 

Drifting Forces (predicted) 

k f 

A /\ A A 
.JV/^A.^ ^ _y\ 
i i i 

o 10 20 t (sec) so 

Fig. 8 Incident irregular waves and wave forces for fender-type 
mooring system 

o 10 20 t (Sec) 30 sec 
Fig. 9 Incident irregular waves and wave forces for rope-type mooring 
system 

reproducibility of waves was checked by a wavemeter installed 
at the location between the model and the wave maker. 

In order to compare the numerical results with the ex
perimental ones, the external forces acting on the body were 
estimated by the following procedure. Firstly, the measured 
incident waves were decomposed by the method of Fourier 
analysis and expressed as follows: 

120 

r=Ufl/Cos(«,-f + iM (30) 
1 = 1 

Secondly, the wave-exciting forces were predicted by linear 
summation of the wave forces to the components of the in
cident waves as follows [12]: 

/= 1 <°i 
(31) 

where 
/ i , (oj,) = ratio of amplitudes of the generated waves to those 

of the swaying motions at the frequency of «,-
e,- («,•) = phase difference between the generated waves and 

the swaying motions 
In addition to the aforementioned linear wave forces, 

higher order wave forces can be considered. For the usual ship 
motion prediction, higher order wave forces are neglected 
since the magnitudes of forces are small compared with the 
ones of linear wave forces. However, when the moored body 
is considered, long period motions close to natural frequency 
of the mooring system may occur and the damping forces in 
this frequency region are small. Therefore, in this case, higher 
order wave forces with near the natural frequency will play an 
important roll for the occurrence of large motions even if the 
magnitudes of the forces are small. These forces correspond 
to the second-order slow drift forces and they should be taken 
into account in this study. The prediction methods for the 
forces are already mentioned by several researchers, such as in 
[15-19] and here only the final expression for the forces will 
be shown. Based on the Hsu's assumption [15], the wave-
drifting forces are expressed as [16] 
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Fig. 10 Wave spectrums of incident irregular waves 

^1*2.(0 = rPg£D/?</a/ayCOS[(w,-w/)f+ Wi-fj)] (32) 

This is the same expression as the one of Pinkster [17]. Rv is 
the steady-state drifting force coefficient [18] and can be 
obtained when the reflecting coefficients of the body are 
known [19]. 

Figure 8 shows the measured incident waves in the first 
series experiments and the predicted external forces due to 
waves. Figure 9 shows the same results for the second series 
experiments. Figure 10 shows the incident wave spectrums 
corresponding to Figs. 8 and 9. 
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Fig. 11 Measured and predicted sway motions of a body with fender-
type mooring system 

Comparisons Between Calculations and Experiments. In 
order to assess the validity of the calculation methods of C.C. 
and C.I., the simulation results are compared with the values 
of experiments mentioned in the former chapter. The 
numerical calculations were performed by Euler's method 
with a time step At'( = Atx •Sg/b) = 0.1. For the com
parisons with experiments, the effects of viscous damping and 
mechanical damping due to a pulley on the results were 
considered by introducing the terms C*D] i , Ix, I + C*M i , on 
the L.H.S. of equation of motion. The coefficients 
Cf,l and C*Mx were estimated from free sway oscillation 
experiments which were conducted separately from the ex
periments in waves, 

Fender-Type Nonlinear Mooring System. In Fig. 11, the 
measured and calculated time histories of the sway motions of 
the moored body in a train of irregular waves are compared. 
It is found that there exists a fairly good agreement between 
the results of C.I. method and experiments with respect to the 
low frequency motion of the moored body. However the 
results of C.C. method (the third curve in the figure), in which 
the hydrodynamic coefficients are assumed to be the values at 
the peak frequency of the irregular waves, does not give such 
a low frequency motion of the moored body. 

The following reason may be considered for the difference 
between the results of C.I. and C.C. methods. In a transient 
stage, free oscillation components of the motion are more 
dominant compared with the wave-forced oscillation com
ponents particularly when the restoring forces are small. The 
former components, in this stage, will cause large motions 
different from the wave-excited motions and the large 
motions will continue due to small wave damping. In C.I. 
method, the hydrodynamic forces can be selected 
automatically depending on the instantaneous motions. On 

X1 
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(predicted) (c- c- Pret,icls zer0 

iX. I. V restoring lorce 

o 10 20 t (sec)3 0 

Fig. 12 Measured and predicted sway motions of a body with rope-
type mooring system 

the contrary, in C.C. method, it is difficult to predict exact 
body motions in a transient stage when the hydrodynamic 
coefficients are given at the peak frequency of the wave 
spectrum. 

From the foregoing fact, C.C. method can be corrected by 
assuming the hydrodynamic coefficients at the natural 
frequency of the moored body instead of the peak frequency 
of the wave spectrum and the results of corrected C.C. 
method (the bottom curve in the figure) show a better 
agreement with measured ones. 

Kobayashi, et al. [20] also showed a technique for an 
improvement of C.C. method. In their method the numerical 
calculation is divided into two parts. The one is related to the 
higher frequency of incident waves. The other is related to the 
slow drift oscillation corresponding to the natural frequency 
of the moored body. The numerical results gave a good 
agreement with the measured ones. 

Rope-Type Nonlinear Mooring System. In Fig. 12, the 
measured and calculated time histories of sway motions of the 
moored body in irregular waves are shown. In a transient 
stage when the body starts its motion under the effect of 
waves, a significant difference between two calculated results 
is found. According to the results of C.C. method, in which 
the hydrodynamic coefficients are assumed to be the values at 
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Fig. 14 Measured sway motions and restoring forces 

peak frequency of irregular waves, the body did not reach the 
point where it is subjected to the effect of restoring force. On 
the contrary, the results of C.I. method showed the effect of 
restoring force quickly after the action of external force 
began. The C.I. method gave the results which are close to the 
experiments than those of C.C. method. 

Rope-Type Nonlinear Mooring System With the Effect of 
Simulated Wind Forces. The present calculations may be 
compared with corresponding results obtained by Shoji's 
experiments [21] for a circular cylinder. Figure 13 shows the 
restoring force characteristic curve for the wire rope mooring 
system used in the experiments. Figure 14 illustrates the time 
histories of sway motion and restoring force. In his ex
periments a wind force was given by suspending a horizontal 
force on the cylinder. The calculations were performed using 
a sinusoidal regular wave with the same amplitude 
corresponding to Shoji's experiments and on the R.H.S. of 
equation of motion a wind force was added besides wave 
forces. The calculated results are shown in Fig. 15 and a better 
agreement between the results of C.I. method and ex
periments are revealed. Particularly, the C.I. method is 
superior to the C.C. method, in which the hydrodynamic 
coefficients are given by the values at the frequency of regular 
waves, with respect to the subharmonic sway motions. The 
following reason for the occurrence of subharmonic motions 
may be considered. As was mentioned before, free oscillation 
components of the motions will cause large body motions in a 
transient stage and sometimes subharmonic motions appear 
due to the action of the strong nonlinear restoring force on the 
body. Therefore the precise estimation of motions in a 
transient stage is very important when nonlinear effects of the 
mooring system are concerned. In C.C. method it is difficult, 
in general, to predict exact body motions in a transient stage 
and to show subharmonic motions coming from transient 
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Fig. 15 Predicted sway motions and restoring forces 

phenomena. Further investigations are needed to ascertain the 
foregoing discussions. 

From the foregoing three comparisons it may be said that 
the results of C.I. method agree better with the experiments 
than the ones of C.C. method. In a transient stage and/or 
when the resonant phenomena occurred, large sway motions 
close to the natural frequency of a mooring system are 
dominant and precise estimation for the damping forces is 
very important for the prediction of such motions. In C.C. 
method, the hydrodynamic forces are estimated by assuming 
the expected frequency of motion, a priori, and it is generally 
difficult to predict reasonable damping forces for all ex
perienced motions. On the contrary, in C.I. method, the 
hydrodynamic forces can be selected automatically depending 
on the instantaneous motions. This fact can explain the 
reason why C.I. method is able to estimate more precise 
damping forces at near-resonant frequency than in the case of 
C.C. method and it will give good results compared with the 
experimental ones. With respect to C.C. method, some im
provements may be expected when the hydrodynamic coef
ficients are estimated at the natural frequency of the mooring 
system rather than at the wave frequency for a fender-type 
nonlinear mooring system. 

Conclusions 

The numerical simulations using the integro-differential 
equation of motion are compared with the second-order 
differential equation of motion and the former results show a 
good agreement with measurements in the following cases: 

1 when the sway motions close to the natural frequency of a 
moored body occur; 
2 when a floating body at rest with a loosened rope and/or 
chain starts its motion (i.e., in a transient stage under the 
action of wave forces); 
3 when the subharmonic sway motions appear. 

One reason for this might be the fact that the former equation 
of motion can select suitable hydrodynamic coefficients 
automatically depending on an instantaneous motion while in 
the latter case the hydrodynamic coefficients are fixed. 
Similar discussions as 1 and 3 are found in the work of 
Oortmerssen. 

With respect to C.C. method some improvements may be 
expected by the selection of the suitable representative 
frequency depending on the motion characteristics. 
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