
Benchmarking Real-time Distributed Object Management Systems for
Evolvable and Adaptable Command and Control Applications

Richard Freedman*, John Maurer*, Victor Wolfe**, Steve Wohlever*,
Michael Milligan***, Bhavani Thuraisingham*

* The MITRE Corporation
** The MITRE Corporation and The University of Rhode Island

*** U.S. Air Force Academy

Abstract
This paper describes benchmarking for evolvable and
adaptable real-time command and control systems

1. Introduction
MITRE’s Evolvable Real-Time C3 initiative developed

an approach that would enable current real-time systems to
evolve into the systems of the future. We designed and
implemented an infrastructure and data manager so that
various applications could be hosted on the infrastructure.
Then we completed a follow-on effort to design flexible
adaptable distributed object management systems for
command and control (C2) systems. Such an adaptable
system would switch scheduling algorithms, policies, and
protocols depending on the need and the environment. Both
initiatives were carried out for the United States Air Force.

One of the key contributions of our work is the
investigation of real-time features for distributed object
management systems. Partly as a result of our work we are
now seeing various real-time distributed object management
products being developed. In selecting a real-time distributed
object management systems, we need to analyze various
criteria. Therefore, we need benchmarking studies for real-
time distributed object management systems. Although
benchmarking systems such as Hartstone and Distributed
Hartstone have been developed for middleware systems,
these systems are not developed specifically for distributed
object-based middleware. Since much of our work is heavily
based on distributed objects, we developed benchmarking
systems by adapting the Hartstone system. This paper
describes out effort on developing benchmarks. In section 2
we discuss Distributed Hartstone. Then in section 3, we first
provide background on the original Hartstone and
DHartstone designs from SEI (Software Engineering
Institute) and CMU (Carnegie Mellon University). We then
describe our design and modification of DHartstone to
incorporate the capability to benchmark real-time
middleware in Section 4. Sections 5 and 6 describe the
design of the benchmarking systems. For more details of our
work on benchmarking and experimental results we refer to
[MAUR98] and [MAUR99]. For background information of
our work we refer to [MAUR98, BENS95]).

2. DHartstone (Distributed Hartstone)
In our effort on evolving and adapting real-time

command and control systems with distributed object
technology, we also produced a version of a synthetic
benchmark suite for real-time middleware. We obtained the
source code and documentation to the Hartstone Real-time
Benchmark from the Software Engineering Institute at
Carnegie Mellon University [WEID89]. This benchmark was
originally designed to test real-time features, such as
deadlines missed under rate-monotonic scheduling, of Ada
environments. Several subsequent papers have described
techniques to extend the Hartstone Benchmark to distributed
systems [MERC90] which is referred to as Distributed
Hartstone (DHartstone). However, these distributed systems
extensions were designed to determine the effects of network
latency, not to benchmark middleware. We modified the
design of Hartstone, while staying within the original
Hartstone guidelines, to allow it to benchmark features of
real-time middleware. The MITRE version of DHartstone not
only provides the ability to test our adaptive middleware
features, but also shows great promise in benchmarking
commercial middleware for real-time applications such as
AWACS.

We originally translated the Hartstone benchmarking
tool from Ada to C and ported it to the LynxOS and Solaris
operating systems, as described in [FREE98] to investigate
the suitability of those platforms for real-time programming.
We then ported the tool to our Chorus ClassiX testbed
system and developed a CORBA-based distributed version
(DHartstone) to test the real-time capabilities of the COOL
ORB. In addition, our DHartstone code was shared with our
collaborators at URI (university of Rhode Island). The URI
project used our DHartstone design and code, with minor
modifications, to benchmark the real-time CORBA
Scheduling Service.

3. Hartstone and Dhartstone
Hartstone was originally developed by the Software

Engineering Institute under contract to DoD (Ada Joint
Programming Office). Ada was designed to be used for
time-critical embedded applications, but it had been a matter
of speculation whether Ada implementations of the time
were capable of handling hard real-time applications. The
Hartstone benchmark [WEID98] tests "to destruction"

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 18:55:49 UTC from IEEE Xplore. Restrictions apply.

system scheduling, by constructing tests with successively
more difficult scheduling requirements until tasks miss
deadlines.

The Hartstone benchmark consists of a number of
periodic tasks at harmonic frequencies, requiring a certain
fraction of system capacity. The scheduling requirements
vary for successive tests in one of several ways, each
designated as a particular experiment number. Experiment 1
consists of successively increasing the frequency of the
highest-frequency task. Experiment 2 increases the
frequency of all tasks. Experiment 3 increases the
computational requirement (workload) of all tasks.
Experiment 4 increases the number of tasks.

The Hartstone includes a “mini-Whetstone,” a small
subroutine of computationally-intensive code based
originally on the Whetstone benchmark [WEID98]. The
Whetstone is a synthetic benchmark, which means that rather
than performing any useful function, it is constructed based
on the instruction frequencies of a representative set of
programs. The Hartstone uses a sequence of operations
similar to the “official” Whetstone as a “load” for its suite of
tests. It calculates the theoretical work capacity of the
platform by running this subroutine a large number of times
and recording the elapsed time. This, in a sense, normalizes
the workload so that a faster CPU does not necessarily give a
better Hartstone performance.

A test consists of a set of tasks that the main process
spawns, each with an assigned period and workload. The
workload is given in terms of a number of calls to the mini-
Whetstone subroutine. Each task makes operating system
calls to schedule itself with an assigned frequency and
priority. In accordance with rate-monotonic scheduling
theory, the desired frequency determines the priority, in that
the higher a task’s frequency, the higher its scheduling
priority is. The deadline for each task is that time at which it
should begin processing its next workload. Thus, upon
completion of its workload, each task determines whether it
has met its deadline and tallies the number of deadlines met
and missed. In addition, when a deadline is missed, there is
less than a full period available in which to perform the next
workload. Therefore, a task will “shed load” by skipping the
next one or more (if it has missed its deadline by more than a
single period) workload assignment(s). Each task keeps a
tally of deadlines skipped as well. The tasks keep track of,
and report back to the main process at the end of a test run,
their success at meeting assigned deadlines [SCHI98].
The Hartstone benchmark had been ported to the Lynx and
Solaris operating systems, and translated from Ada to C, as
described in [FREED98] to investigate the suitability of
those platforms for real-time programming. Hartstone was
also ported to the Chorus ClassiX testbed as part of the
MOIE in FY98.

4. MITRE’s Middleware DHartstone
 In the years since the original Hartstone work was done,
other investigators have extended the concept to distributed
versions, providing tests with successively more difficult
networking requirements. [FREE98] defines a series of
requirements for a Hartstone Distributed Benchmark (HDB)

which would integrate the processor scheduling domain with
the communication scheduling domain. Those requirements
were met and extended by Mercer, et al. [MERC90]. Tests
were designed to increase the number, frequency, or length
of messages sent among processes, until communications
difficulties occurred. Thus, the effects of queuing priority,
preemptability, communication latency, communication
bandwidth, and packet priority could be measured.
However, all such work on Hartstone for distributed
computing environments had preceded the development of
ORBs. Realizing we needed some measure of effectiveness
for whatever CORBA-based adaptability mechanisms we
would develop, we constructed a CORBA-based distributed
benchmark based on the Hartstone called DHartstone
(Distributed Hartstone). Our current design is a simple
variation of the classic Hartstone. The tasks spawned by the
main process are the standard periodic harmonic tasks with
workloads inversely related to their assigned frequencies,
and the main program controls the same set of “experiments”
with their respective emphasis on different aspects of the
scheduler. The only difference is that instead of the tasks
calling a subroutine to perform the workload, they make
synchronous CORBA calls to a mini-Whetstone “server.”
The server spawns a thread running at the same priority as
the requesting task thread. The server-side thread then
executes the requested workload using the Whetstone
mechanism. Once the workload is complete, the CORBA
method call returns, and the client thread continues its
execution.
One of the results from scheduling theory is that in a rate-
monotonic system, failures will occur in a particular fashion
as the system becomes overloaded. If the system is
overloaded and cannot meet all deadlines, deadlines will first
be missed in the lowest priority tasks. If the load increases,
the failures will “work their way up” in an orderly fashion
through the priority hierarchy. This is the behavior observed
in the conventional Hartstone tool running on a Chorus
ClassiX machine. Experiments with the DHartstone tool
demonstrated that using a CORBA ORB (e.g., Chorus
COOL) that is not cognizant of priorities impacts the
distributed system’s ability to support predictable, real-time
computing. Our tests revealed that when the DHartstone test
used the mini-Whetstone CORBA server for the workload,
the various tasks would not fail in a predictable fashion (i.e.,
the highest frequency task would not be the last task to miss
deadlines). This occurs even though the client-side and
server-side threads are scheduled with priorities based on
rate-monotonic scheduling (RMS). The fact that the
distributed communication mechanism employed by COOL
does not take the priorities of the requesting clients into
account when scheduling the transmission of requests and
replies is enough to undermine the predictable nature of
RMS in DHartstone. (more details in section 6).

5. URI’s Benchmarking of Real-Time CORBA Scheduling
Service
 URI used the basic design of MITRE’s DHartstone for
real-time middlware and focused on two suites of tasks based
on the original Hartstone: Periodic Synchronized Harmonic

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 18:55:49 UTC from IEEE Xplore. Restrictions apply.

(PSH) and Periodic Synchronized Non-harmonic (PSN).
Only the synchronized suites are appropriate for client/server
systems like middleware. URI’s Scheduling Service (see
Appendix B) does not handle aperiodic tasks, so the PSH
and PSN suites, which are the synchronous suites that do not
include aperiodic tasks, are appropriate.
This section first specifies the parameters and describes
URI’s preliminary implementation of their baseline Fixed
Priority RT CORBA Distributed Hartstone benchmark,
which consists of four periodic clients and one server. Note
that this report focuses on the baseline set of clients and the
server, various experiments allow variations from the
baseline of the number of clients and servers and parameters
of those clients and servers. Experimental resulrs are given in
[MAUR98] and [MAUR99].
 We conduncted a schedulability analysis of this system
using the PERTS-like schedulability analyzer under
deadline-monotonic scheduling with distributed priority
ceiling resource management. The output of the analysis
includes global priority assignment for each of the clients in
the system – often two priorities per client to reflect that
clients have pre-period deadlines that require increased
priority regions within the client. The output of the analysis
also includes a global priority ceiling for each server method.
In [MAUR98] we describe pseudo-code for the RT CORBA
clients and servers of URI’s baseline Fixed Priority RT
CORBA Distributed Hartstone benchmark. This client and
server code utilizes the CORBA IDL for the Scheduling
Service interface that was proposed in the response to the
Object Management Group (OMG) Request For Proposals
(RFP) for fixed priority real-time CORBA that was
submitted by Tri-Pacific/SPAWAR/ MITRE/URI (described
in detail in [MAUR99]. All Clients are periodic. The current
Scheduling Service prototype implementation does not yet
support aperiodic clients, so they were not tested. Server
tasks are executed in response to a request from a client task.
Each client in the benchmark will make one method call
which triggers a server task. Each client will have one pre-
period deadline in addition to its period constraint
 The Fixed Priority RT CORBA Distributed Hartstone
benchmark contains two suites of tasks based on the original
Hartstone benchmark suite: Periodic Synchronized Harmonic
(PSH) and Periodic Synchronized Non-harmonic (PSN). As
suggested in the original Distributed Hartstone specification,
for PSH, the client period ratios are 2:4:8; and for PSN they
are 3:5:7. We use client periods 2000ms, 4000ms and
8000ms for PSH; and 3000ms, 5000ms and 7000ms for
PSN. Each suite has one low frequency client (8000ms in
PSH and 7000ms in PSN) and one high frequency client
(2000ms in PSH and 3000ms in PSN) and a variable number
or medium frequency clients (4000ms in PSH and 5000ms in
PSN). In the baseline there are two medium frequency
clients.
The workload of both client tasks and server tasks are in
even numbered kilowhetstones. A Whetstone is a canonical
unit of floating point work [WEID89]. The number of
kilowhetstones workload for both client tasks and server
tasks will vary in the experiments. We use even numbers of
kilowhetstones because each client workload will be split

equally, with half occurring before the CORBA call and the
intermediate deadline, and the other half occurring after the
intermediate deadline. The baseline set of clients and servers
that we implemented and executed on the prototype
Scheduling Service is summarized in [MAUR98]:
 URI performed a PERTS-like analysis using deadline-
monotonic priority assignments and the Distributed Priority
Ceiling resource management protocol. Due to the presence
of an intermediate deadline, each client is split into two
PERTS tasks; one task representing the portion of the client
before the intermediate deadline, and one task for after the
deadline. This split allows different priority assignments to
portions of the client, which should occur in the presence of
intermediate deadlines. Analysis details are given in
[MAUR98] and [MAUR99].
 The prototype implementation of the Scheduling Service
was done on an Intel 80486 PC running the Chorus ClassiX
r3.1 operating system and the Chorus COOL ORB v5 – the
target real-time middleware environment of the FY98 MOIE
work. The Scheduling Service is implemented as library code
linked into clients and servants; there is no active daemon
component to the Scheduling Service. The Scheduling
Service maps the global (PERTS-generated) priorities to the
priorities on the local operating system (256 local real-time
priorities on ClassiX) and enforces priority ceiling semantics
for dispatching execution of the server method. Each client
and server implementation file is required to include a header
file with definitions for the priority information used by that
client or server.

6. Exploratory Experiments with Trading Object Services
and DHartstone
 In order to gauge the relative performance of the MITRE
ClassiX/COOL Trading Object and the Real-Time Trading
Object Service (for a discussion of real-time trader service,
see [MAUR98]), we performed some initial experimentation.
This comparison was based on the results of running
versions of the DHartstone benchmarking tool that used the
two types of Traders to establish client bindings to a CORBA
mini-Whetstone server. That is, rather than hardcoding
which CORBA server the various DHartstone client threads
would use, the standard Trader or the Real-Time Trading
Object Service made this decision.
 As we discovered in our earlier experiments with
DHartstone running on the ClassiX/COOL testbed, since the
underlying CORBA infrastructure is not cognizant of the
priorities the clients making CORBA requests, the
DHartstone client threads’ requests and replies were not
scheduled based on their respective priorities. As a result,
rate-monotonic behavior was not observed when either
Trader is used. This is the same behavior that was seen when
the client (DHartstone) was connected directly to the mini-
Whetstone server (i.e., no trading object service is used). The
tasks did not fail in the correct low to high priority order
even when the periods and workloads were increased in an
attempt to nullify the effects of the network delay and
priority inversion introduced by CORBA. As a result, we
were not able to demonstrate any discernable difference in

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 18:55:49 UTC from IEEE Xplore. Restrictions apply.

the performance of the two Traders due to the unpredictable
scheduling introduced by CORBA.
 As an initial effort to identify alternative mechanisms for
enabling distributed, real-time computing, we modified the
DHartstone tool to use ClassiX’s socket mechanism, rather
than the COOL ORB, to communicate between the client
threads and the remote mini-Whetstone server. We
configured these versions of DHartstone in a number of
different ways with the goal of eventually developing an
implementation similar to that used by the COOL ORB,
which multiplexes all the client process’s CORBA requests
and replies through one communication channel e.g., a
socket. See [WEID89] establishes separate request and reply
sockets for each of the five client threads (see [WEID89]).
This version has the most suitable design for real-time
computing since using sockets per priority level greatly
reduces the priority inversion in the communication
mechanism. Each thread is allocated a socket to send
requests to the server, and the server is allocated five unique
sockets for sending replies back to the client threads. The
client threads send a request to the server and then wait on
their associated reply socket (i.e., clients make synchronous
requests to the server). This version is designed to
demonstrate that in a simple socket implementation, the tasks
fail in the correct order.
With short periods (62.5msec to 1sec), the tasks do not fail
in strictly rate-monotonic order (i.e., lowest to highest
priority order), though it performs much more predictably
than an equivalent test using CORBA. The unpredictability
that does arise is most likely due to some small amount of
priority inversion that still occurs in the underlying network
infrastructure. Also, the server used by DHartstone is
running at priority higher than any of the five client threads.
This means that a high priority request that is being handled
by the server may be interrupted while the server creates a
new server-side thread to handle a lower priority client’s
request. When longer periods are used (1sec to 16secs), the
tasks do fail in rate-monotonic order. We have not been able
to obtain similar results using CORBA, even when we used
the longer periods of execution. Details of our experiments
are given in [MAUR98] and [MAUR99].

7. Summary and Directions
 In this paper we have described our approach to evolving
and adapting real-time distributed object management
systems for command and control applications. The aspect of
our work addressed in this paper is benchmarking distributed
object management systems. We used the Hartstone system
as our basis for developing a benchmarking system. In
particular we modified the distributed hartstone system for
real-time distributed object management. We discussed some
experimental results for trader as well as scheduling service
conducted at the MITRE Corporation and at the University
of Rhode Island.
 The work described in this paper is just the beginning for
developing benchmarks for real-time distributed object

management systems. We need to develop benchmarks to
handle all of the services being specified by OMG.
Subsequently we need to conduct experiments for other
services also. The goal of such work is to use the
benchmarks developed to determine the appropriateness of a
real-time distributed object management system for various
applications.

References
 [BENS95] Bensley, E. et al., September 1995,

Evolvable Systems Initiative for Real-time C3:
Volume 2, Technical Report, The MITRE
Corporation, Bedford, MA.

[MAUR98] Maurer, J. et al., September 1998,
Adaptable Real-time Distributed Object
Management Systems: Volume 2, Technical Report,
The MITRE Corporation, Bedford, MA.

[MAUR99] Maurer, J. et al., September 1999, Adaptable
Real-time Distributed Object Management
Systems: Volume 3, Technical Report, The MITRE
Corporation, Bedford, MA.

[WEID89] Weiderman, Nelson, June 1989,
Hartstone: Synthetic Benchmark Requirements for
Hard Real-Time Applications, Technical Report
CMU/SEI-98-TR-23, Carnegie-Mellon University,
Pittsburgh, PA.

[MERC90] Mercer, C. W., Y. Ishikawa, and H
Tokuda, 28 May-1 June, 1990, “Distributed
Hartstone : A Distributed Real-Time Benchmark
Suite,” Proceedings of the 10th International
Conference on Distributed Computing Systems,
Paris, France

[WICH98] Wichmann, B. A., March 1988,
Validation code for the Whetstone Benchmark,
DITC 107/88, National Physical Laboratory,
Teddington, Middlesex.

[FREE98] Freedman, R., R. Baldwin, P. Wallace,
and T. Wheeler, June 1998, Real Time
Benchmarking of the Solaris and Lynx Operating
Systems, Technical Report 98B0000043, The
MITRE Corporation, Bedford, MA.

[KAME91] Kamenoff, N. I., and N. H. Weiderman,
4-6 December, 1991, “Hartstone Distributed
Benchmark: Requirements and Definitions,”
Proceedings of the Twelfth Real-Time Systems
Symposium, San Antonio, TX., pp. 199-208.

 [SCHI98] Schmidt, Doug et al., 3-5 June, 1998,
“Alleviating Priority Inversion and Non-
determinism in Real-time CORBA ORB Core
Architectures,” Proceedings of the Fourth IEEE
Real-Time Technology and Applications
Symposium, Denver, Colorado.

Acknowledgements: We thank MITRE’s Air Force MOIE
Project for supporting this work.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 18:55:49 UTC from IEEE Xplore. Restrictions apply.

