
Grid Resource Discovery Based on Semantic P2P
Communities

Juan Li Son Vuong
University of British Columbia

2366 Main Mall, Vancouver, B.C., Canada
(1)-604-822-6366

{juanli,vuong}@cs.ubc.ca

ABSTRACT
Grid technologies enable the sharing of a wide variety of
resources. The full use of these resources requires effective
resource discovery mechanisms. However, the complicated and
dynamic characteristics of grid resources make sharing and
discovering them a challenge. In this paper, we propose a
semantic community approach to enable efficient resource
discovery in grids. The system clusters nodes into communities
according to their semantic properties. The community
construction and maintenance is fully decentralized and self-
organizing. This structure helps prune the searching space and
reduce the cost of searching. The system exhibits many desirable
properties: it supports complex queries and is fully decentralized,
scalable, and efficient. Our simulation results show how searching
the grids can take advantage of semantic communities to reduce
searching costs and improve the quality of results.

1. INTRODUCTION
Information service, one of the key services of grids, provides
resource information to users. To make information available to
users quickly and reliably, an effective and efficient resource
discovery mechanism is crucial. However, grid resources are
potentially very large in number and variety; individual resources
are not centrally controlled, and they can enter and leave the grid
systems at any time. For these reasons, resource discovery in
large-scale grids can be very challenging.

Traditionally, resource discovery in grids is based mainly on
centralized or hierarchical models. For example, in the Globus
Toolkit [6], users can get a node’s resource information by
directly querying a server application running on that node, or by
querying dedicated information servers that retrieve and publish
an organization’s resource information. Although interactions
between these information servers are supported, a general-
purpose decentralized service discovery mechanism is still
missing.

P2P techniques have been used to discover resources in more
dynamic, large-scale, and distributed environments. For example,
[30] organizes information nodes into a flat unstructured P2P

network, and random-walk based methods are used for query
forwarding. Random-walks are not efficient in response time for a
very large system. [12] proposes a hierarchical structure to
organize information nodes to reduce redundant messages.
However, a well-defined hierarchy does not always exist, and the
global hierarchy is hard to maintain in a dynamic environment.
Papers [22] and [23] present DHT-based multi-attribute resource
discovery approaches, but these may incur either a high traffic
load for result intersection or large overhead for multiple
publication and update.

In this paper, we propose a community-based P2P model to
optimize grid resource discovery. Communities are implicitly
formed based on the nodes’ resource ontology. Communities help
to prune the searching space and disseminate information only to
related nodes, thus improving the efficiency of searching. We use
a SkipNet [9] overlay to assist nodes to discover their interested
communities. The community discovery, construction, and
maintenance are manipulated in a decentralized and automatic
manner. Communities have a loose multi-layered structure that
increases the flexibility and efficiency of intra-community
searching. The system exhibits many plausible characteristics,
such as high scalability, short latency, a low bandwidth, and
support for complex queries.

2. COMMUNITIES AND ONTOLOGY
In social networks, a so-called small-world [4] structure has been
observed. The small-world networks exhibit special properties,
namely, a small average diameter and a high degree of clustering,
which make them effective and efficient in terms of spreading and
finding information. Because of the similarity between grid
networks and social networks and the fact that human users direct
grid nodes’ links, grids also exhibit small-world behavior [5]. We
use this theory to create communities — small-worlds — in grids.
We can create communities in scientific domains such as physics,
biomedicine, mathematics, and computer science. Communication
and collaboration can operate on top of the communities. With
communities, grid users can conveniently work in groups, even
though they may not always be located in geographical proximity.

To create and make use of the interest-based community structure,
we need to find the grid nodes’ underlying interests. According to
the extensive previous research in data mining and text retrieval
[25, 26], a node’s local resources reflect its interests. In addition,
to communicate and collaborate, nodes in the same community
should be able to understand each other, and speak the same
“language”. Based on these two concerns, we classify nodes by
the dominant ontology of their resource possession. Ontology is
defined as “a formal, explicit specification of a shared

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’06, April, 23-27, 2006, Dijon, France.
Copyright 2006 ACM 1-59593-108-2/06/0004…$5.00.

754

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357554376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

conceptualization” [7], which can refer to the shared
understanding of some domains of interests. An ontology schema
always reflects the hierarchical relationships between concepts
(e.g., “subClassOf”, “subPropertyOf”). As Herbert Simon [8]
argues, hierarchy emerges inevitably in any complex system. In
large-scale grids, simple flat structured communities cannot work
efficiently in response to the changing and growing nodes; rather,
a multilevel hierarchical structure is necessary. Therefore, we use
the ontology hierarchy to represent the nodes’ interest category.
The hierarchical design allows multilevel communities to form
and offers an optimal community size and a flexible searching
scope. The ontology domain can be a global taxonomy like the
categories defined in Yahoo, Google, and DMOZ [27], or a
general ontology that formalizes notions such as processes and
events, time and space, physical objects, and so on. Figure 1
shows an example of the ontology defined in Cyc [24]. We
assume the domain information is defined in a node’s data
ontology and each data item can be classified into one domain (or
sub-domain). We assume queries can be classified with the same
policy as well.

Figure 1. Top-level categories in Cyc [24].

3. COMMUNITY DISCOVERY
After the grid nodes’ interests have been determined, the system
can cluster them accordingly to form communities. Roughly, there
are three existing approaches to discovering and organizing
communities. The first approach is to use a centralized index
server, such as Yahoo and MSN chat rooms, to organize
communities. Centralized indexing is efficient, but the server may
become a potential bottleneck and point of failure when the
number of clients increases. Another method is to broadcast the
community advertisement. For example, in JXTA [31], a node
creates a node group by publishing group advertisements in the
network. Nodes receiving the advertisement can join the group.
The disadvantage of this approach is that nodes far from the group
initiator may not find the group. We call the third approach the
history-based friend-list approach. Many recent applications, e.g.,
[28] and [15], use this approach to improve searching
performance in unstructured networks. A node adds other nodes
that answered previous queries to a friend list (or shortcut list) and
forwards queries to them in the future. This approach is
decentralized and scalable. However, the acquired knowledge may
be inaccurate and incomplete. What is more, nodes that do not
have history experiences cannot take advantage of the
communities. In this section, we introduce a community discovery
and formation algorithm that overcomes the problems of these
existing approaches.

3.1 SkipNet Category Overlay
We use a SkipNet [9] overlay, which we also call a category
overlay, to assist nodes to find other nodes sharing similar

interests. SkipNet is a scalable overlay network. Similar to DHTs
[16–19], SkipNet can locate a data item with logarithmic steps.
Moreover, it provides controlled data placement and a guaranteed
routing locality by organizing data primarily by string names
rather than hashed identifiers. Nodes in the SkipNet are organized
into a circular distributed data structure, which contains multiple
levels of rings. Each SkipNet node has a numerical ID and a name
ID. In this paper, we generate the numerical ID by hashing the
node’s IP address, as existing DHTs have done. The name ID
adopts a hierarchical format as in the DNS system. We create the
name ID by concatenating the node’s interest and its identification.
For example, node n0 interested in Computer Science (CS) /
Artificial Intelligence (AI) has a name ID “CS.AI.n0.” Each node
in the category overlay is in charge of one category, which it is
interested in. For example, node CS.AI.n0 is in charge of domain
CS.AI. Nodes are lexicographically ordered in each SkipNet ring
according to the name ID. Paper [9] describes the algorithms for
dealing with node joining, leaving and routing in SkipNet.

3.2 Interest Registration
Nodes in the system form two layers of overlay: all nodes are in
the community overlay, and a small part of them form a SkipNet
category overlay. Now let us see how the SkipNet category
overlay can help nodes form flexible multi-layered communities.
When a node wants to join a community, it registers its interest to
the category overlay. (A node with multiple interests can register
with several communities.) Specifically, the interest of the joining
node is routed along the overlay and registers to all “related”
overlay nodes in the routing path, until up to the destination node
that manages the interest. Here, “related” nodes are nodes that are
in charge of predecessors of the registered interest. For example,
in Figure 2, a new node registers its interest CS.AI to the overlay
from a node in the EE domain. The register message is routed
through the SkipNet ring to the CS domain. Inside the CS domain,
the first node the message gets to is CS.n1. Because CS is the
predecessor of CS.AI, the new node registers to CS.n1. Finally, the
message registers to the destination node CS.AI.n0. The joining
node knows other nodes that share a similar interest from the
category nodes to which it registers. Therefore, during the
registration, the new node finds neighbors in different levels of
the interest hierarchy, and joins their community. On average
SkipNet routes a message to its destination in O(logM) hops,
where M is the number of nodes in the SkipNet overlay. In our
system, M is much smaller than N, the total number of nodes in
the system. Therefore, a node can quickly locate its community.

Figure 2. Interest registration.

755

There are several special cases for a node’s registration: (1) If a
new node cannot get enough neighbors from the registration path,
it explicitly routes to the upper- and lower-level categories to
register and get more neighbors. (2) If a node cannot find its
interested category in the overlay, i.e., it is the first node
registering this interest, and if it satisfies the qualification
requirements for a category node, it joins to the SkipNet overlay
and takes charge of this category.

3.3 Remarks
Readers may wonder where the SkipNet nodes come from. In fact,
they are also user nodes. We use the heterogeneity of grid nodes,
and promote those stable and powerful ones to join the SkipNet
overlay. Excluding ephemeral nodes from the SkipNet overlay
avoids unnecessary maintenance costs. A node joins the SkipNet
only when three conditions are satisfied: (1) It satisfies the
capacity requirements, i.e., it is powerful enough. (2) It is stable
for a threshold time period. (3) It is the first node that registers
this interest, or it is not but the load of this interest is high inside
the category overlay.

SkipNet is not chosen arbitrarily; its locality properties make it a
good implementation for the category overlay. DHTs are an
alternative, but they cannot provide the advantages SkipNet
provides: First, a node has no incentive to store unrelated nodes’
information, so it is necessary to guarantee that a node is in charge
of only interested information. We add a node’s interest in its
name ID, and routing is based on the name ID. Therefore, a
SkipNet category node stores only the information of nodes that
share the same interest as its own. In addition, the naming and
routing schemes guarantee that interests in the same branch of the
ontology tree remain in the same arc of the SkipNet ring. For
example, domains CS.AI.neural-nets and CS.AI.nat-lang are both
inside domain CS.AI. In this way, a node can quickly locate nodes
sharing similar interests. This property is very useful for the
category overlay. As we explain in the following section, nodes
need to register to different hierarchies of an interest domain to
form multi-layered communities.

Unlike super-peers in Gnutella [11], SkipNet category nodes do
not deal with detailed content searching; therefore, the load of the
overlay is not that high. Its load comes from the nodes’ register,
update, and community lookup operations. Both the register and
update messages are lightweight, basically only the node’s IP
address and its interested domain. Besides, only the most
representative interests, usually only a few, are registered for each
node. To control the update overhead, the update period can be
adaptively adjusted. To reduce the community lookup overhead,
nodes will first check their local and neighboring cache before
they lookup the SkipNet overlay.

4. VIRTUAL COMMUNITIES
4.1 Community Topology
From the category overlay, registering nodes know neighbors
from different levels of the interest hierarchy. Then they connect
with each other, forming a multi-layered community. The
community is an unstructured network like the Gnutella network,
except that nodes discriminate neighbors from different levels.

Figure 3 illustrates the center node’s neighborhood topology. All
other nodes are the center node’s neighbors. The center node’s
interest is closer to the inner neighbors’ interests than to those of

the outer neighbors. In Figure 3, the center node and its neighbors
in the white ring are interested in domain a.b.c; neighbors in the
light gray ring are interested in domain a.b, and neighbors in the
dark gray ring are interested in a. Inside the community, nodes
may use the Gnutella Ping/Pong protocol to update their neighbor
tables. A node contacts inner neighbors more frequently than it
contacts outer ones. Therefore, each node gets accurate
information about nearer neighbors, and coarse information for
further ones. This approach scales well to a large-scale community
as the overhead is controlled.

Figure 3. A node’s neighborhood topology in the community.

4.2 Query
Various strategies can be used for query forwarding inside the
community overlay. For example, if controlled flooding such as
the Gnutella searching protocol is used, the query is forwarded to
neighbors until the time-to-live (TTL) value reaches zero. We do
not focus on how queries are routed within a community overlay,
since it has been well studied in the literature [2, 5, 11, 14].

With this layered community architecture, searching can be
focused on the small region most related to the querying node’s
interest, but it will not be restricted to this region. Searching can
break through the small region to a wider yet related world by
forwarding through the outer neighbors. Since nodes with similar
interests are in the same community overlay, we can expect that
most queries will be satisfied within the local community.

It is possible, though infrequent, that a node may want to search
content in different communities. The category overlay facilitates
query forwarding among communities, just as it helps nodes join
their interested communities. To alleviate the lookup overhead on
the category overlay, a node first checks its own local host cache
to see whether it has cached nodes falling into the target
community. Moreover, it also queries neighboring nodes on their
local host caches. Only after all these attempts fail will the lookup
request be forwarded to the category overlay.

5. EXPERIMENTS
We performed extensive simulations to evaluate the performance
of our searching scheme. To make comparisons, we simulate our
SkipNet-assisted multi-level (SAML) community in conjunction
with the learning-based friend-list (LFL) community [28] and a
randomly connected Gnutella network. We use Gnutella protocol
as the basic searching protocol for all the three approaches.
Initially, nodes are connected in a random manner. A SAML node
registers its interests when it joins the network. (In practice, this is
not necessary.) For the LFL community, as the simulation
continues, each node updates its neighbors based on query
experience. The resource set includes 500,000 resources falling
into 8 big domains. Every domain has 3 to 8 sub-domains, and
there are up to 5 levels of hierarchy. Every node keeps 10 to 50
resources. Requesters are randomly chosen from the network.
Queries created by a node with interest i have a 70% possibility of

756

falling into domain i, 20% possibility into ancestor (or descendent)
domains of i, and 10% into any arbitrary domains. The dynamic
network behaviors are simulated as follows: in every unit
simulation session, an active node has a 20% possibility of
creating a query, a 1% possibility of updating its resources, a 1%
possibility of leaving the system, and the same number of offline
nodes join the system, starting functioning without any prior
knowledge. Our evaluation metrics are (1) The recall rate, which
is defined as the number of results returned divided by the number
of results actually available in the network. (2) The clustering
coefficient of a node, which is the ratio of the number of existing
edges and the maximum number of possible edges connecting its
neighbors. (3) The scope of a query, which is defined as the
fraction of nodes involved in the query processing and the total
nodes in the system.

First, we ran the simulation on a network with 10,000 nodes. The
average node degree is 5 for all these three schemes. The TTL
value is set to 5. Results are collected when all nodes join the
network. Figures 4 compares the three routing strategies in terms
of query recall rate. We can see that SAML outperforms both of
the other two searching schemes. The recalls of our SAML
searching and the Gnutella searching are constant over the
simulation period. The recall of LFL increases as a result of the
nodes’ learning, and then it becomes stable and remains constant.
Because new joining nodes have no knowledge to forward the
query, and the knowledge learned from experiences is not as
comprehensive as the community category knowledge in SAML,
the recall of the LFL is not as good as that of SAML.

Figure 5 plots the time-evolution of clustering coefficient (cc).
The same as the recall rate in Figure 4, the cc of SAML and
Gnutella (its value is too small to see in the figure) remains
constant, and the cc of the LFL increases at first and then it
converges to a constant value. Unlike the recall rate in Figure 4,
the constant cc value of LFL is higher than that of SAML.
Generally speaking, a higher value of cc means a well connected
cluster and a good searching performance. Therefore, random
Gnutella’s small cc value (around 0.0003) can explain its poor
recall rate. However, LFL’s cc is high, even higher than that of
SAML. Then why is its recall lower than SAML’s? To answer this
question, we looked into the communities created by LFL. We
found that nodes tend to form very small and tight communities.
Communities with similar interests may be distributed in the
network like small scattered islands. This deteriorates the
searching performance.

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50 60 70 80 90 100 s es sion

re
ca

ll

SAML

LFL

Random

Figure 4. Time evolution of the recall rate.

0

0.1

0.2

0.3

10 20 30 40 50 60 70 80 90 100 s ess ion

C
C SAML

LFL

Random

Figure 5. Time evolution of the clustering coefficient.

We also compared the three searching schemes in different sized
networks. The results in Figures 6–8 are average values during the
whole simulation period. Figure 6 compares the three routing
strategies in terms of query recall rate. With the same TTL,
Gnutella and LFL’s recall rates decrease substantially as the
network size increases, but SAML is not directly affected by the
network size. We can see that our routing scheme achieves a very
high recall rate even when the network size is large. As Figure 7
shows, SAML and LFL have a large clustering coefficient, much
larger than that of the random network (too small to see in the
figure) with the same number of nodes and edges. Figure 8 shows
the average query searching scope for each query strategy. The
scope for a query is the fraction of nodes that see the query. It is
closely related to the load of the system. A smaller query scope
increases system scalability. For example a scope of 100% means
that all nodes see the query, and the load caused by the query is
high. The result shows that SAML achieves load reduction by
forwarding queries to only a small number of nodes. Figures 6
and 8 indicate that with a network size of 150,000, SAML can
achieve about a 93% recall rate with only 1% scope. (Note: the
recall and scope is achieved with TTL=5).

0
0.2
0.4
0.6
0.8

1

5000 10000 15000 #of nodes

re
ca

ll

SAML
LFL
Random

Figure 6. Recall vs. network size.

0

0.1

0.2

0.3

0.4

5000 10000 15000 #of nodes

C
C

SAML
LFL
Random

Figure 7. Clustering coefficient vs. network size.

0

0.05

0.1

0.15

5000 10000 15000 # of nodes

se
ar

ch
 sc

op
e

SAML
LFL
Random

Figure 8. Searching scope vs. network size.

6. RELATED WORK
Many recent P2P-based searching techniques relate to our
research. Flooding is the predominant search method in
unstructured P2P networks. This method, though simple, does not
scale well in terms of message overhead. There have been
numerous attempts [1–3] to enhance its scalability. Random walks
[14, 20] are an alternative to flooding for unstructured searches.
They can reduce network traffic but at the cost of query latency.
Recently, hierarchical super-peer systems [13] have been
proposed to improve searching efficiency. DHTs [16–19] have
received a lot of attention in the last few years. These systems are
scalable and efficient. However, a missing feature of DHTs is
support for rich queries. Another hurdle to DHTs’ deployment is
their tight control of both data placement and network topology,
which makes them sensitive to failures and less likely to keep
content and path locality [9]. More recently, a few studies [10, 21,
22] extend the DHT scheme to support keywords or multi-

757

attribute queries. The basic idea is to map each keyword to a key.
A query with multiple keywords then uses the DHT to lookup
each keyword and returns the intersection. To do that, large
amounts of data must be transferred from one node to another,
and the traffic load may be high. Systems like [23] avoid this
multiple lookup and intersection by storing an object’s complete
keyword list on each node, but this may incur more overhead from
publishing and storing the keywords.

Much of this paper draws upon the structure and evolution of
small-world networks as presented by Watts and Strogatz [4].
They picture a small-world as a loosely connected set of highly
connected sub-graphs, having a small average path length and a
large clustering coefficient. There are various applications that use
the small-world idea and partially overlap with this paper’s main
idea. Sripanidkulchai et al. [28] propose a mechanism that
improves Gnutella’s flooding-based search by adding interest-
based shortcuts between nodes. A node adds shortcuts to other
nodes that replied to its queries. In FLASK [15], two nodes
maintain an open connection if they request at least a number of
common files during a fixed time period. In [29], nodes push the
advertisement of one’s expertise to other nodes, and they select
neighbors according to semantic properties.

7. CONCLUSION
Grid technology is receiving increasing attention from research
communities, industries, and governments. As more and more
resources appear in grids, there is an increasing need to find an
effective and efficient way to discover and query these resources.
This paper presents an ontology-based community architecture to
optimize searches in grids. This architecture adopts a
decentralized technique for identifying groups of nodes with
common interests and for building overlays that mirror shared
interests. It combines the efficiency and scalability of structured
P2P networks with the connection flexibility of unstructured P2P
networks.

8. REFERENCES
[1] Chawathe, Y., Ratnasam, S., Breslau, L. Lanhan, N. Shenker,

S. “Making Gnutella-like P2P Systems Scalable,” In
Proceedings of ACM SIGCOMM’03.

[2] B.Yang, H.Garcia-Molina, “Efficient search in peer-to-peer
networks,” Proc. of CDCS’02, Vienna, Austria, July.

[3] Banaei-Kashani, F. and C. Shahabi. “Criticality-based
analysis and design of unstructured peer-to-peer networks as
complex systems”. Proc. of the 3rd IEEE/ACM CCGrid.

[4] Watts, D.J., Strogztz,S,: Collective dynamics of ‘small-
world’ networks. Nature 393 (1998).

[5] Iamnitchi, A., Foster, I., Nurmi, D.: A Peer-to-Peer
Approach to Resource Location in Grid Environments. In:
Symp. on High Performance Distributed Computing. 2002.

[6] Globus Toolkit: http://www.globus.org/toolkit/.
[7] T. R. Gruber, “Toward principles for the design of ontologies

used for knowledge sharing,” in Formal Ontology in
Conceptual Analysis and Knowledge Representation, 1993.

[8] H. Simon, The Sciences of the Artificial, MIT pres, 1996.
[9] N. J.A. Harvey, M.B. Jones, S. Saroiu, M. Theimer, and A.

Wolman. “SkipNet:A Scalable Overlay Network with
Practical Locality Properties”. In Proc. of the Fourth
USENIX USITS ’03.

[10] S. Shi, Y. Guanwen, D. Wang, J. Yu, S. Qu and M. Chen
“Making Peer-to-Peer Keyword Searching Feasible Using
Multi-level Partitioning”. Proc. Of the 3rd International
Workshop on Peer-to-Peer Systems.

[11] Gnutella website. http://gnutella.wego.com/.
[12] H. Lican, W. Zhaohui, and P. Yunhe. “A scalable and

effective architecture for Grid Services discovery”. In Proc.
of the First Workshop on Semantics in Peer-to-Peer and
Grid Computing. 2003.

[13] B.Yang and H.Garcia-Molina, “Designing a Super-Peer
Ntrwork,” Proc. 19th Int’l Conf. Data Engineering, Los
Alamitos, CA, March 2003.

[14] Lv, C., Cao, P., Cohen, E., Li, K., Shenker, S. “Search and
replication in unstructured peer-to-peer networks”. In: ACM,
SIGMETRICS 2002.

[15] Iamnitchi, A., Resource Discovery in Large Resource
Sharing Environments, PhD Thesis, Department of
Computer Science, The University of Chicago, 2003.

[16] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. “Tapestry:
An Infrastructure for Fault-Tolerant Wide-Area Location and
Routing,” Technical Report, UCB/CSD-01-1141, April 2000.

[17] A. Rowstron and P. Druschel. “Pastry: Scalable, Distributed
Object Location and Routing for Large-Scale Peer-to-Peer
Systems,” Proceedings of the IFIP/ACM Middleware, 2001.

[18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H.Balakrishnan. “Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications,” ACM SIGCOMM, 2001

[19] S. Ratnasamy, P.Francis, M.Handley, R.Karp, and S.
Shenker. “A Scalable Content-Addressable Network,” ACM
SIGCOMM, August 2001.

[20] Adamic, L., Huberman, B., Lukose, R., Puniyani, A.:
“Search in power law networks”. Physical Review (2001)

[21] P.Reynolds and A. Vahdat. “Efficient Peer-to-Peer Keyword
Searching”. In Proceedings of ACM/IFIP/USENIX
Middleware, June 2003.

[22] M. Cai, M. Frank, J. Chen and P. Szekely, “ MAAN: A
Multi-Attribute Addressable Network for Grid Information
Services”The 4th International Workshop on Grid Computing,
2003.

[23] C.Tang and S.Dwarkadas. “Hybrid Gloablal-Local Indexing
for Efficient Peer-to-Peer Information Retrieval”. In
Proceedings of USENIX NSDI, March 2004.

[24] Lenat, D., and R. V. Guha, (1990), Building Large
Knowledge Based Systems, Addison Wesley, NY.

[25] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
and R. Harshman. Indexing by latent semantic indexing.
Journal of the American Society for Information Science,
1990.

[26] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, S.R.
Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins.
Hypersearching the web. Scientific American, 1999.

[27] DMOZ website. http://www.dmoz.org.
[28] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient

content location using interest-based locality in peer-to-peer
systems, In INFOCOM’03.

[29] Haase, P., Siebes, R.: Peer selection in peer-to-peer networks
with semantic topologyies. In: Proc. WWW2003.

[30] Iamnitchi A, Foster I, “On Fully Decentralized Resource
Discovery in Grid Environments,” Proc. The 2nd IEEE/ACM
International Workshop on Grid Computing, 2001.

[31] JXTA website. http://www.jxta.org/.

758

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

