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ABSTRACT 
Grid technologies enable the sharing of a wide variety of 
resources. The full use of these resources requires effective 
resource discovery mechanisms. However, the complicated and 
dynamic characteristics of grid resources make sharing and 
discovering them a challenge. In this paper, we propose a 
semantic community approach to enable efficient resource 
discovery in grids. The system clusters nodes into communities 
according to their semantic properties. The community 
construction and maintenance is fully decentralized and self-
organizing. This structure helps prune the searching space and 
reduce the cost of searching. The system exhibits many desirable 
properties: it supports complex queries and is fully decentralized, 
scalable, and efficient. Our simulation results show how searching 
the grids can take advantage of semantic communities to reduce 
searching costs and improve the quality of results. 

1. INTRODUCTION 
Information service, one of the key services of grids, provides 
resource information to users. To make information available to 
users quickly and reliably, an effective and efficient resource 
discovery mechanism is crucial. However, grid resources are 
potentially very large in number and variety; individual resources 
are not centrally controlled, and they can enter and leave the grid 
systems at any time. For these reasons, resource discovery in 
large-scale grids can be very challenging. 

Traditionally, resource discovery in grids is based mainly on 
centralized or hierarchical models. For example, in the Globus 
Toolkit [6], users can get a node’s resource information by 
directly querying a server application running on that node, or by 
querying dedicated information servers that retrieve and publish 
an organization’s resource information. Although interactions 
between these information servers are supported, a general-
purpose decentralized service discovery mechanism is still 
missing.  

P2P techniques have been used to discover resources in more 
dynamic, large-scale, and distributed environments. For example, 
[30] organizes information nodes into a flat unstructured P2P 

network, and random-walk based methods are used for query 
forwarding. Random-walks are not efficient in response time for a 
very large system. [12] proposes a hierarchical structure to 
organize information nodes to reduce redundant messages. 
However, a well-defined hierarchy does not always exist, and the 
global hierarchy is hard to maintain in a dynamic environment. 
Papers [22] and [23] present DHT-based multi-attribute resource 
discovery approaches, but these may incur either a high traffic 
load for result intersection or large overhead for multiple 
publication and update.  

In this paper, we propose a community-based P2P model to 
optimize grid resource discovery. Communities are implicitly 
formed based on the nodes’ resource ontology. Communities help 
to prune the searching space and disseminate information only to 
related nodes, thus improving the efficiency of searching. We use 
a SkipNet [9] overlay to assist nodes to discover their interested 
communities. The community discovery, construction, and 
maintenance are manipulated in a decentralized and automatic 
manner. Communities have a loose multi-layered structure that 
increases the flexibility and efficiency of intra-community 
searching. The system exhibits many plausible characteristics, 
such as high scalability, short latency, a low bandwidth, and 
support for complex queries.  

2. COMMUNITIES AND ONTOLOGY 
In social networks, a so-called small-world [4] structure has been 
observed. The small-world networks exhibit special properties, 
namely, a small average diameter and a high degree of clustering, 
which make them effective and efficient in terms of spreading and 
finding information. Because of the similarity between grid 
networks and social networks and the fact that human users direct 
grid nodes’ links, grids also exhibit small-world behavior [5]. We 
use this theory to create communities — small-worlds — in grids. 
We can create communities in scientific domains such as physics, 
biomedicine, mathematics, and computer science. Communication 
and collaboration can operate on top of the communities. With 
communities, grid users can conveniently work in groups, even 
though they may not always be located in geographical proximity.  

To create and make use of the interest-based community structure, 
we need to find the grid nodes’ underlying interests. According to 
the extensive previous research in data mining and text retrieval 
[25, 26], a node’s local resources reflect its interests. In addition, 
to communicate and collaborate, nodes in the same community 
should be able to understand each other, and speak the same 
“language”. Based on these two concerns, we classify nodes by 
the dominant ontology of their resource possession. Ontology is 
defined as “a formal, explicit specification of a shared 
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conceptualization” [7], which can refer to the shared 
understanding of some domains of interests. An ontology schema 
always reflects the hierarchical relationships between concepts 
(e.g., “subClassOf”, “subPropertyOf”). As Herbert Simon [8] 
argues, hierarchy emerges inevitably in any complex system. In 
large-scale grids, simple flat structured communities cannot work 
efficiently in response to the changing and growing nodes; rather, 
a multilevel hierarchical structure is necessary. Therefore, we use 
the ontology hierarchy to represent the nodes’ interest category. 
The hierarchical design allows multilevel communities to form 
and offers an optimal community size and a flexible searching 
scope. The ontology domain can be a global taxonomy like the 
categories defined in Yahoo, Google, and DMOZ [27], or a 
general ontology that formalizes notions such as processes and 
events, time and space, physical objects, and so on. Figure 1 
shows an example of the ontology defined in Cyc [24]. We 
assume the domain information is defined in a node’s data 
ontology and each data item can be classified into one domain (or 
sub-domain). We assume queries can be classified with the same 
policy as well. 

 
Figure 1. Top-level categories in Cyc [24]. 

3. COMMUNITY DISCOVERY 
After the grid nodes’ interests have been determined, the system 
can cluster them accordingly to form communities. Roughly, there 
are three existing approaches to discovering and organizing 
communities. The first approach is to use a centralized index 
server, such as Yahoo and MSN chat rooms, to organize 
communities. Centralized indexing is efficient, but the server may 
become a potential bottleneck and point of failure when the 
number of clients increases. Another method is to broadcast the 
community advertisement. For example, in JXTA [31], a node 
creates a node group by publishing group advertisements in the 
network. Nodes receiving the advertisement can join the group. 
The disadvantage of this approach is that nodes far from the group 
initiator may not find the group. We call the third approach the 
history-based friend-list approach. Many recent applications, e.g., 
[28] and [15], use this approach to improve searching 
performance in unstructured networks. A node adds other nodes 
that answered previous queries to a friend list (or shortcut list) and 
forwards queries to them in the future. This approach is 
decentralized and scalable. However, the acquired knowledge may 
be inaccurate and incomplete. What is more, nodes that do not 
have history experiences cannot take advantage of the 
communities. In this section, we introduce a community discovery 
and formation algorithm that overcomes the problems of these 
existing approaches. 

3.1 SkipNet Category Overlay  
We use a SkipNet [9] overlay, which we also call a category 
overlay, to assist nodes to find other nodes sharing similar 

interests. SkipNet is a scalable overlay network. Similar to DHTs 
[16–19], SkipNet can locate a data item with logarithmic steps. 
Moreover, it provides controlled data placement and a guaranteed 
routing locality by organizing data primarily by string names 
rather than hashed identifiers. Nodes in the SkipNet are organized 
into a circular distributed data structure, which contains multiple 
levels of rings. Each SkipNet node has a numerical ID and a name 
ID. In this paper, we generate the numerical ID by hashing the 
node’s IP address, as existing DHTs have done. The name ID 
adopts a hierarchical format as in the DNS system. We create the 
name ID by concatenating the node’s interest and its identification. 
For example, node n0 interested in Computer Science (CS) / 
Artificial Intelligence (AI) has a name ID “CS.AI.n0.” Each node 
in the category overlay is in charge of one category, which it is 
interested in. For example, node CS.AI.n0 is in charge of domain 
CS.AI. Nodes are lexicographically ordered in each SkipNet ring 
according to the name ID. Paper [9] describes the algorithms for 
dealing with node joining, leaving and routing in SkipNet.  

3.2 Interest Registration  
Nodes in the system form two layers of overlay: all nodes are in 
the community overlay, and a small part of them form a SkipNet 
category overlay. Now let us see how the SkipNet category 
overlay can help nodes form flexible multi-layered communities. 
When a node wants to join a community, it registers its interest to 
the category overlay. (A node with multiple interests can register 
with several communities.) Specifically, the interest of the joining 
node is routed along the overlay and registers to all “related” 
overlay nodes in the routing path, until up to the destination node 
that manages the interest. Here, “related” nodes are nodes that are 
in charge of predecessors of the registered interest. For example, 
in Figure 2, a new node registers its interest CS.AI to the overlay 
from a node in the EE domain. The register message is routed 
through the SkipNet ring to the CS domain. Inside the CS domain, 
the first node the message gets to is CS.n1. Because CS is the 
predecessor of CS.AI, the new node registers to CS.n1. Finally, the 
message registers to the destination node CS.AI.n0. The joining 
node knows other nodes that share a similar interest from the 
category nodes to which it registers. Therefore, during the 
registration, the new node finds neighbors in different levels of 
the interest hierarchy, and joins their community. On average 
SkipNet routes a message to its destination in O(logM) hops, 
where M is the number of nodes in the SkipNet overlay. In our 
system, M is much smaller than N, the total number of nodes in 
the system. Therefore, a node can quickly locate its community.  

 
Figure 2. Interest registration. 
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There are several special cases for a node’s registration: (1) If a 
new node cannot get enough neighbors from the registration path, 
it explicitly routes to the upper- and lower-level categories to 
register and get more neighbors. (2) If a node cannot find its 
interested category in the overlay, i.e., it is the first node 
registering this interest, and if it satisfies the qualification 
requirements for a category node, it joins to the SkipNet overlay 
and takes charge of this category. 

3.3 Remarks  
Readers may wonder where the SkipNet nodes come from. In fact, 
they are also user nodes. We use the heterogeneity of grid nodes, 
and promote those stable and powerful ones to join the SkipNet 
overlay. Excluding ephemeral nodes from the SkipNet overlay 
avoids unnecessary maintenance costs. A node joins the SkipNet 
only when three conditions are satisfied: (1) It satisfies the 
capacity requirements, i.e., it is powerful enough. (2) It is stable 
for a threshold time period. (3) It is the first node that registers 
this interest, or it is not but the load of this interest is high inside 
the category overlay.  

SkipNet is not chosen arbitrarily; its locality properties make it a 
good implementation for the category overlay. DHTs are an 
alternative, but they cannot provide the advantages SkipNet 
provides: First, a node has no incentive to store unrelated nodes’ 
information, so it is necessary to guarantee that a node is in charge 
of only interested information. We add a node’s interest in its 
name ID, and routing is based on the name ID. Therefore, a 
SkipNet category node stores only the information of nodes that 
share the same interest as its own. In addition, the naming and 
routing schemes guarantee that interests in the same branch of the 
ontology tree remain in the same arc of the SkipNet ring. For 
example, domains CS.AI.neural-nets and CS.AI.nat-lang are both 
inside domain CS.AI. In this way, a node can quickly locate nodes 
sharing similar interests. This property is very useful for the 
category overlay. As we explain in the following section, nodes 
need to register to different hierarchies of an interest domain to 
form multi-layered communities.  

Unlike super-peers in Gnutella [11], SkipNet category nodes do 
not deal with detailed content searching; therefore, the load of the 
overlay is not that high. Its load comes from the nodes’ register, 
update, and community lookup operations. Both the register and 
update messages are lightweight, basically only the node’s IP 
address and its interested domain. Besides, only the most 
representative interests, usually only a few, are registered for each 
node. To control the update overhead, the update period can be 
adaptively adjusted. To reduce the community lookup overhead, 
nodes will first check their local and neighboring cache before 
they lookup the SkipNet overlay. 

4. VIRTUAL COMMUNITIES  
4.1 Community Topology 
From the category overlay, registering nodes know neighbors 
from different levels of the interest hierarchy. Then they connect 
with each other, forming a multi-layered community. The 
community is an unstructured network like the Gnutella network, 
except that nodes discriminate neighbors from different levels.  

Figure 3 illustrates the center node’s neighborhood topology. All 
other nodes are the center node’s neighbors. The center node’s 
interest is closer to the inner neighbors’ interests than to those of 

the outer neighbors. In Figure 3, the center node and its neighbors 
in the white ring are interested in domain a.b.c; neighbors in the 
light gray ring are interested in domain a.b, and neighbors in the 
dark gray ring are interested in a. Inside the community, nodes 
may use the Gnutella Ping/Pong protocol to update their neighbor 
tables. A node contacts inner neighbors more frequently than it 
contacts outer ones. Therefore, each node gets accurate 
information about nearer neighbors, and coarse information for 
further ones. This approach scales well to a large-scale community 
as the overhead is controlled.  

 
Figure 3. A node’s neighborhood topology in the community. 

4.2 Query 
Various strategies can be used for query forwarding inside the 
community overlay. For example, if controlled flooding such as 
the Gnutella searching protocol is used, the query is forwarded to 
neighbors until the time-to-live (TTL) value reaches zero. We do 
not focus on how queries are routed within a community overlay, 
since it has been well studied in the literature [2, 5, 11, 14]. 

With this layered community architecture, searching can be 
focused on the small region most related to the querying node’s 
interest, but it will not be restricted to this region. Searching can 
break through the small region to a wider yet related world by 
forwarding through the outer neighbors. Since nodes with similar 
interests are in the same community overlay, we can expect that 
most queries will be satisfied within the local community.  

It is possible, though infrequent, that a node may want to search 
content in different communities. The category overlay facilitates 
query forwarding among communities, just as it helps nodes join 
their interested communities. To alleviate the lookup overhead on 
the category overlay, a node first checks its own local host cache 
to see whether it has cached nodes falling into the target 
community. Moreover, it also queries neighboring nodes on their 
local host caches. Only after all these attempts fail will the lookup 
request be forwarded to the category overlay. 

5. EXPERIMENTS 
We performed extensive simulations to evaluate the performance 
of our searching scheme. To make comparisons, we simulate our 
SkipNet-assisted multi-level (SAML) community in conjunction 
with the learning-based friend-list (LFL) community [28] and a 
randomly connected Gnutella network. We use Gnutella protocol 
as the basic searching protocol for all the three approaches. 
Initially, nodes are connected in a random manner. A SAML node 
registers its interests when it joins the network. (In practice, this is 
not necessary.) For the LFL community, as the simulation 
continues, each node updates its neighbors based on query 
experience. The resource set includes 500,000 resources falling 
into 8 big domains. Every domain has 3 to 8 sub-domains, and 
there are up to 5 levels of hierarchy. Every node keeps 10 to 50 
resources. Requesters are randomly chosen from the network. 
Queries created by a node with interest i have a 70% possibility of 
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falling into domain i, 20% possibility into ancestor (or descendent) 
domains of i, and 10% into any arbitrary domains. The dynamic 
network behaviors are simulated as follows: in every unit 
simulation session, an active node has a 20% possibility of 
creating a query, a 1% possibility of updating its resources, a 1% 
possibility of leaving the system, and the same number of offline 
nodes join the system, starting functioning without any prior 
knowledge. Our evaluation metrics are (1) The recall rate, which 
is defined as the number of results returned divided by the number 
of results actually available in the network. (2) The clustering 
coefficient of a node, which is the ratio of the number of existing 
edges and the maximum number of possible edges connecting its 
neighbors. (3) The scope of a query, which is defined as the 
fraction of nodes involved in the query processing and the total 
nodes in the system.  

First, we ran the simulation on a network with 10,000 nodes. The 
average node degree is 5 for all these three schemes. The TTL 
value is set to 5. Results are collected when all nodes join the 
network. Figures 4 compares the three routing strategies in terms 
of query recall rate. We can see that SAML outperforms both of 
the other two searching schemes. The recalls of our SAML 
searching and the Gnutella searching are constant over the 
simulation period. The recall of LFL increases as a result of the 
nodes’ learning, and then it becomes stable and remains constant. 
Because new joining nodes have no knowledge to forward the 
query, and the knowledge learned from experiences is not as 
comprehensive as the community category knowledge in SAML, 
the recall of the LFL is not as good as that of SAML.  

Figure 5 plots the time-evolution of clustering coefficient (cc). 
The same as the recall rate in Figure 4, the cc of SAML and 
Gnutella (its value is too small to see in the figure) remains 
constant, and the cc of the LFL increases at first and then it 
converges to a constant value. Unlike the recall rate in Figure 4, 
the constant cc value of LFL is higher than that of SAML. 
Generally speaking, a higher value of cc means a well connected 
cluster and a good searching performance. Therefore, random 
Gnutella’s small cc value (around 0.0003) can explain its poor 
recall rate. However, LFL’s cc is high, even higher than that of 
SAML. Then why is its recall lower than SAML’s? To answer this 
question, we looked into the communities created by LFL. We 
found that nodes tend to form very small and tight communities. 
Communities with similar interests may be distributed in the 
network like small scattered islands. This deteriorates the 
searching performance. 
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Figure 4. Time evolution of the recall rate. 
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Figure 5. Time evolution of the clustering coefficient. 

We also compared the three searching schemes in different sized 
networks. The results in Figures 6–8 are average values during the 
whole simulation period. Figure 6 compares the three routing 
strategies in terms of query recall rate. With the same TTL, 
Gnutella and LFL’s recall rates decrease substantially as the 
network size increases, but SAML is not directly affected by the 
network size. We can see that our routing scheme achieves a very 
high recall rate even when the network size is large. As Figure 7 
shows, SAML and LFL have a large clustering coefficient, much 
larger than that of the random network (too small to see in the 
figure) with the same number of nodes and edges. Figure 8 shows 
the average query searching scope for each query strategy. The 
scope for a query is the fraction of nodes that see the query. It is 
closely related to the load of the system. A smaller query scope 
increases system scalability. For example a scope of 100% means 
that all nodes see the query, and the load caused by the query is 
high. The result shows that SAML achieves load reduction by 
forwarding queries to only a small number of nodes. Figures 6 
and 8 indicate that with a network size of 150,000, SAML can 
achieve about a 93% recall rate with only 1% scope. (Note: the 
recall and scope is achieved with TTL=5). 
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Figure 6. Recall vs. network size. 
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Figure 7. Clustering coefficient vs. network size. 
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Figure 8. Searching scope vs. network size. 

6. RELATED WORK 
Many recent P2P-based searching techniques relate to our 
research. Flooding is the predominant search method in 
unstructured P2P networks. This method, though simple, does not 
scale well in terms of message overhead. There have been 
numerous attempts [1–3] to enhance its scalability. Random walks 
[14, 20] are an alternative to flooding for unstructured searches. 
They can reduce network traffic but at the cost of query latency. 
Recently, hierarchical super-peer systems [13] have been 
proposed to improve searching efficiency. DHTs [16–19] have 
received a lot of attention in the last few years. These systems are 
scalable and efficient. However, a missing feature of DHTs is 
support for rich queries. Another hurdle to DHTs’ deployment is 
their tight control of both data placement and network topology, 
which makes them sensitive to failures and less likely to keep 
content and path locality [9]. More recently, a few studies [10, 21, 
22] extend the DHT scheme to support keywords or multi-
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attribute queries. The basic idea is to map each keyword to a key. 
A query with multiple keywords then uses the DHT to lookup 
each keyword and returns the intersection. To do that, large 
amounts of data must be transferred from one node to another, 
and the traffic load may be high. Systems like [23] avoid this 
multiple lookup and intersection by storing an object’s complete 
keyword list on each node, but this may incur more overhead from 
publishing and storing the keywords.  

Much of this paper draws upon the structure and evolution of 
small-world networks as presented by Watts and Strogatz [4]. 
They picture a small-world as a loosely connected set of highly 
connected sub-graphs, having a small average path length and a 
large clustering coefficient. There are various applications that use 
the small-world idea and partially overlap with this paper’s main 
idea. Sripanidkulchai et al. [28] propose a mechanism that 
improves Gnutella’s flooding-based search by adding interest-
based shortcuts between nodes. A node adds shortcuts to other 
nodes that replied to its queries. In FLASK [15], two nodes 
maintain an open connection if they request at least a number of 
common files during a fixed time period. In [29], nodes push the 
advertisement of one’s expertise to other nodes, and they select 
neighbors according to semantic properties.  

7. CONCLUSION 
Grid technology is receiving increasing attention from research 
communities, industries, and governments. As more and more 
resources appear in grids, there is an increasing need to find an 
effective and efficient way to discover and query these resources. 
This paper presents an ontology-based community architecture to 
optimize searches in grids. This architecture adopts a 
decentralized technique for identifying groups of nodes with 
common interests and for building overlays that mirror shared 
interests. It combines the efficiency and scalability of structured 
P2P networks with the connection flexibility of unstructured P2P 
networks.  
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