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The subharmonic response of single-degree-of-freedom vibroimpact oscillator with fractional derivative damping and one-sided
barrier under narrow-band random excitation is investigated. With the help of a special Zhuravlev transformation, the system is
reduced to one without impacts, thereby permitting the applications of asymptotic averaging over the period for slowly varying
random process. The analytical expression of the response amplitude is obtained in the case without random disorder, while only
the approximate analytical expressions for the steady-statemoments of the response amplitude are obtained in the casewith random
disorder. The effects of the fractional order derivative term, damping term, random disorder, and the coefficient of restitution and
other system parameters on the system response are discussed.Theoretical analyses and numerical simulations show that fractional
derivative makes both the system damping and stiffness coefficients increase, such that it changes the system parameters region at
which the response amplitude reaches the maximum. The system energy loss in collision is equivalent to increasing the damping
coefficient of the system. System response amplitude will increase when the excitation frequency is close to the resonant frequency
and will decay rapidly when the excitation frequency gradually deviates from the resonance frequency.

1. Introduction

Vibroimapct systems, that is, vibrations systems including
impact interaction, widely exist in mechanical engineering,
ocean engineering, and civil engineering [1, 2]. Various
dynamical phenomena are observed in the vibroimpact
systems. For example, under deterministic periodical load-
ings, the stability, bifurcation, and chaos of the vibroimpact
system have been explored by the Poincare map [3, 4].
In practice, engineering structures are often subjected to
random loadings, for example, wind load, earthquakes, ocean
waves, and random disturbance or noise. The behavior of
vibroimpact systems has been widely studied in the case of
both deterministic and randomexcitations. In the case of ran-
dom excitation, many researches have been conducted and
reported. For example, Feng and He [5] explored the mean
response of impact systems by introducing themeanPoincare
map. Namachchivaya and Park [6] developed an averaging
approach to study the dynamic actions of a vibroimpact

system excited by random perturbations. With the help
of the nonsmooth transformation proposed by Zhuravlev
[7], the stochastic averaging method has been extended to
study the stochastic response of the vibroimpact systems
in [8–10]. Numerical simulation method is also used by Li
et al. [10] and Iourtchenko and Song [11]. Dimentberg and
Iourtchenko presented a comprehensive review on random
vibration with impact [12], in which the authors have tried
to review and summarize the existing methods, results,
and literatures available for solving problem of stochastic
vibroimpact systems.

On the other hand, fractional calculus is shown to be
very suitable for describing the constitutive relationship of
materials with frequency-dependent damping behaviors. In
this regard, Gemant [13] provided a pioneering work of
this field, which first uses fractional calculus to study phe-
nomenological constitutive equations for material behavior.
The fractional derivatives have a wide range of applications
in high-energy physics, anomalous diffusion, viscoelastic
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mechanical constitutive relations ofmaterials, system control,
rheology, geophysics, biomedical engineering, economics,
and other fields; the research of theory and application has
become a hot topic in recent decades [14, 15]. Rossikhin has
provided an excellent review of the research in this field.
Response problem under random excitation with fractional
derivative damping system also has many researches; some
analyses methods, for example, Laplace transform method
used byAgrawal [16], Fourier transformmethod used byYe et
al. [17], residue harmonic balancemethod proposed by Leung
et al. [18], multiple scales method proposed by Liu et al. [19],
and widely used stochastic averaging method [20–22], have
been developed.

However, the study on response of vibroimpact system
under random excitation with fractional derivative damping
has not yet been seen according to the author’s knowledge,
due to complexity of the impact, fractional derivative and
randomnoise being considered simultaneously. In this paper,
the subharmonic response of single-degree-of-freedom lin-
ear vibroimpact oscillator with fractional derivative damping
and one-sided barrier, which is slightly offset from the sys-
tem’s static equilibrium position, is investigated. The system
is excited by a sinusoidal force with disorder or randomphase
modulation. The impact considered here is an instantaneous
impact with restitution factor 𝑒. The paper is organized
as follows. In Section 2, the Zhuravlev transformation and
stochastic averaging method are used to obtain the aver-
aging equations. In Section 3, the averaged equations are
solved exactly and the analytical expression of the response
amplitude is obtained. In Section 4, the directly numerical
simulations verify the analytical result. Conclusions and
discussion are presented in Section 5.

2. System Description and Averaging Method

Considering a single-degree-of-freedom linear vibroimpact
with fractional derivative damping oscillator to random
excitations,

̈𝑦 + 2𝛼 ̇𝑦 + Ω
2
𝑦 + 𝛽𝐷

𝛾
𝑦 = 𝑓 (𝑡) , 𝑦 > −ℎ,

̇𝑦
+
= −𝑒 ̇𝑦

−
, 𝑦 = −ℎ,

(1)

where dot indicates differentiation with respect to time 𝑡; and
̈𝑦, ̇𝑦, and 𝑦 are acceleration, velocity, and displacement of the

oscillator, respectively. 𝛼 is the damping coefficient, Ω is the
natural frequency, ℎ ≥ 0 represents the distance from the
system’s static equilibrium position to the single rigid barrier,
and 0 < 𝑒 ≤ 1 is the restitution factor to be a known param-
eter of impact losses, whereas subscripts “minus” and “plus”
refer to values of response velocity just before and after the
instantaneous impact. Thus ̇𝑦

+
and ̇𝑦

−
are actually rebound

and impact velocities of the mass, respectively. They have the
same magnitude whenever 𝑒 = 1; therefore, this special case
is that of elastic impacts, whereas in case 𝑒 < 1, some impact
losses are observed. 𝛽𝐷𝛾𝑦 (𝛽 > 0) is the viscoelastic damping
which has the characteristics of memory, in which 𝐷

𝛾
𝑦

denotes the fractional derivative. For fractional derivative
[14, 15], there are many kinds of definitions. From a physical
point of view Caputo’s fractional derivative may be more

suitable than a Riemann-Liouville one, since it appears for
the viscoelastic component of the oscillator. However, from a
mathematical point of view the two definitions coalesce each
other for the cases, the steady-state solutions and quiescent
systems at 𝑡 = 0, and the Riemann-Liouville definition is
more easy to do mathematical derivation and therefore is
chosen in this investigation, which can be written as

𝐷
𝛾
𝑦 (𝑡) =

1

Γ (1 − 𝛾)

𝑑

𝑑𝑡

∫

𝑡

0

𝑦 (𝑡 − 𝜏)

𝜏
𝛾

𝑑𝜏, 0 < 𝛾 ≤ 1. (2)

𝑓(𝑡) is a random process governed by the following equation:

𝑓 (𝑡) = 𝑔 sin𝜓 (𝑡) ,

�̇� (𝑡) = Ω
1
+ 𝜎𝜉 (𝑡) ,

(3)

where 𝑔 > 0 and Ω
1
> 0 are the amplitude and frequency

of the random excitation, respectively, and 𝜉(𝑡) is a stationary
Gaussian white noise of unit intensity, which describes ran-
dom temporal deviations of the excitation frequency from its
expected or meanΩ

1
. 𝑓(𝑡) is a boundary noise since |𝑓(𝑡)| ≤

𝑔. Compared with the classical white noise, boundary noise
is an ideal model of the actual noise and has attracted many
scholars’ attention. The process 𝑓(𝑡) has the following power
spectral density [23]:

𝑆
𝑓
(𝜔) =

1

4𝜋

ℎ
2
𝜎
2
(Ω
2

1
+ 𝜔
2
+ 𝜎
4
/4)

(Ω
2

1
− 𝜔
2
+ 𝜎
4
/4)
2

+ Ω
2

1
𝜎
4

. (4)

Obviously, if 𝜎 → 0, the power spectrum 𝑆
𝑓
(𝜔) vanishes in

the entire frequency range except at the singular frequency
𝜔 = ±Ω

1
, where 𝑆

𝑓
(𝜔) goes to infinity, and thus this process

will be assumed to be narrow-band in this case. In this paper,
we restrict our attention to the case when 𝜎 is sufficiently
small so that𝑓(𝑡) is bound to a narrow-band randomprocess.

Following Zhuravlev [7], the nonsmooth transformation
of state variables is introduced as follows:

𝑦 = |𝑥| − ℎ,

̇𝑦 = �̇� sgn𝑥,

̈𝑦 = �̈� sgn𝑥,

(5)

where sgn𝑥 is the signum function and

sgn𝑥 =
{
{
{
{

{
{
{
{

{

−1, 𝑥 < 0

0, 𝑥 = 0

1, 𝑥 = 1.

(6)

Obviously, this transformationmakes the transformed veloc-
ity �̇� continuous at the impact instants (i.e., 𝑥 = 0) in the
special case of elastic impact (i.e., 𝑒 = 1), thereby reducing
the problem to one without velocity jumps. However, this is
not the case with a general vibroimpact system with impact
losses; the jump of the transformed velocity �̇� becomes
proportional to 1 − 𝑒 instead of 1 + 𝑒 for the jump of original
velocity ̇𝑦. This jump may be included in the transformed
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differential equation of motion by using the Dirac delta
function 𝛿(𝑥). Since 𝑥(𝑡

∗
) = 0 at the impact instant 𝑡

∗
and

𝛿(𝑡 − 𝑡
∗
) = |�̇�|𝛿(𝑥), the impulsive term can be obtained as

(�̇�
+
− �̇�
−
) 𝛿 (𝑡 − 𝑡

∗
) = (1 − 𝑒) �̇� |�̇�| 𝛿 (𝑥) . (7)

The transformed equation of motion can be written by
substituting (5) into (1) as

�̈� + Ω
2
𝑥 = −2𝛼�̇� − (1 − 𝑒) �̇� |�̇�| 𝛿 (𝑥) + ℎΩ

2 sgn𝑥

+ 𝑔 sgn𝑥 sin𝜓 − 𝛽𝐷
𝛾
𝑥.

(8)

Thus, the original impact system (1) is reduced to the
“common” vibration system (8) without impact. The term
(1 − 𝑒)�̇�|�̇�|𝛿(𝑥) on the right hand side of (8) describes
the impact losses of system, which can be regarded as an
impulsive damping term. For simplicity it is assumed that
system (1) approximates elastic impact system (i.e., 𝑒 ≈ 1),
and all coefficients 𝛼, 𝛽, 𝑔, ℎ, 1 − 𝑒 in the right hand side
of (8) are small and proportional to a small parameter,
such that the transformed equation (8) permits rigorous
analytical study by the asymptotic method of averaging over
the period. Moreover, only subharmonic resonant responses
will be considered; that is, frequency Ω

1
of the random

excitation is near the subharmonic resonant responses 2𝑛Ω,
Ω
1

≈ 2𝑛Ω, where 𝑛 is an arbitrary positive integer. The
detuning parameter 𝜇 is defined according to 𝜇 = Ω

1
− 2𝑛Ω,

and 𝜇 is also assumed to be small and proportional to a small
parameter. Then the response of (8) can be approximated,
represented as

𝑥 (𝑡) = 𝐴 (𝑡) sinΦ (𝑡) ,

�̇� (𝑡) = Ω𝐴 (𝑡) cosΦ (𝑡) .

(9)

By introducing a new slowly varying phase shift 𝜑(𝑡) = 𝜓(𝑡)−

2𝑛Φ(𝑡), (8) can be transformed into the following pair of first-
order equations:

�̇� =

cosΦ
Ω

[−2𝛼Ω𝐴 cosΦ

− (1 − 𝑒)Ω
2
𝐴
2 cosΦ |cosΦ| 𝛿 (𝐴 sinΦ)

+ ℎΩ
2 sgn (sinΦ) + 𝑔 sgn (sinΦ) sin𝜓

− 𝛽𝐷
𝛾
(𝐴 sinΦ)] ,

�̇� = 𝜇 +

2𝑛 sinΦ
Ω𝐴

[−2𝛼Ω𝐴 cosΦ

− (1 − 𝑒)Ω
2
𝐴
2 cosΦ |cosΦ| 𝛿 (𝐴 sinΦ)

+ ℎΩ
2 sgn (sinΦ) + 𝑔 sgn (sinΦ) sin𝜓

− 𝛽𝐷
𝛾
(𝐴 sinΦ)] + 𝜎𝜉,

Φ̇ = Ω −

sinΦ
Ω𝐴

[−2𝛼Ω𝐴 cosΦ

− (1 − 𝑒)Ω
2
𝐴
2 cosΦ |cosΦ| 𝛿 (𝐴 sinΦ)

+ ℎΩ
2 sgn (sinΦ) + 𝑔 sgn (sinΦ) sin𝜓

− 𝛽𝐷
𝛾
(𝐴 sinΦ)] .

(10)

Under the foregoing assumption that 𝛼, 𝛽, 𝜇, 𝜎, 𝑔, ℎ, (1−𝑒) are
small parameters, it can be known from (10) that Φ̇ ≈ Ω, �̇� ≈

0, and �̇� ≈ 0, then Φ is a fast varying random process with
respect to time 𝑡, and𝐴 and 𝜑 are two slowly varying random
processes. By averaging over the fast state variableΦ [24], the
shortened equations of the slowly varying random processes
𝐴 and 𝜑 can be obtained. One now discusses the averaging
of the first formula in (10). The averaging over the first three
terms in the right hand side of the first formula in (10) is

1

2𝜋

∫

2𝜋

0

cosΦ
Ω

[−2𝛼Ω𝐴 cosΦ

− (1 − 𝑒)Ω
2
𝐴
2 cosΦ |cosΦ| 𝛿 (𝐴 sinΦ)

+ ℎΩ
2 sgn (sinΦ)] 𝑑Φ = −(𝛼 +

1 − 𝑒

𝜋

Ω)𝐴.

(11)

The averaging of fourth term is

1

2𝜋

∫

2𝜋

0

cosΦ
Ω

𝑔 sgn (sinΦ) sin𝜓𝑑Φ

=

1

2𝜋

∫

2𝜋

0

cosΦ
Ω

𝑔 sgn (sinΦ) sin (𝜑 + 2𝑛Φ) 𝑑Φ

=

4𝑛𝑔 cos𝜑
(4𝑛
2
− 1) 𝜋Ω

.

(12)

The averaging of fifth term is

1

2𝜋

∫

2𝜋

0

cosΦ
Ω

(−𝛽𝐷
𝛾
(𝐴 sinΦ)) 𝑑Φ = −

𝛽

Ω

lim
𝑇→∞

1

𝑇

⋅ ∫

𝑇

0

cosΦ (𝑡)𝐷
𝛾
(𝐴 sinΦ (𝑡)) 𝑑𝑡 = −

𝛽

ΩΓ (1 − 𝛾)

⋅ lim
𝑇→∞

1

𝑇

⋅ ∫

𝑇

0

cosΦ (𝑡) [

𝑑

𝑑𝑡

∫

𝑡

0

𝐴 sinΦ (𝑡 − 𝜏)

𝜏
𝛾

𝑑𝜏] 𝑑𝑡.

(13)

By using the subsection integral method (13) can be trans-
formed into the following equation:

1

2𝜋

∫

2𝜋

0

cosΦ
Ω

(−𝛽𝐷
𝛾
(𝐴 sinΦ)) 𝑑Φ = −

𝛽𝐴

ΩΓ (1 − 𝛾)

⋅ lim
𝑇→∞

1

𝑇

{cosΦ∫

𝑡

0

sinΦ (𝑡 − 𝜏)

𝜏
𝛾

𝑑𝜏










𝑇

0

+ ∫

𝑇

0

[Ω cosΦ (𝑡) ∫

𝑡

0

sinΦ (𝑡 − 𝜏)

𝜏
𝛾

𝑑𝜏] 𝑑𝑡}
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= −

𝛽𝐴

Γ (1 − 𝛾)

lim
𝑇→∞

1

𝑇

⋅ {∫

𝑇

0

sinΦ (𝑡) ∫

𝑡

0

sinΦ (𝑡 − 𝜏)

𝜏
𝛾

𝑑𝜏}𝑑𝑡.

(14)

Since Φ is a fast varying random process with respect to
time 𝑡, Φ̇ ≈ Ω, we can obtain the approximate relation if 𝜏 is
small; that is,

Φ (𝑡 − 𝜏) ≈ Φ (𝑡) − Φ̇ (𝑡) 𝜏 ≈ Φ (𝑡) − Ω𝜏. (15)

Substituting (15) into (14), one obtains

1

2𝜋

∫

2𝜋

0

cosΦ
Ω

[−𝛽𝐷
𝛾
(𝐴 sinΦ)] 𝑑Φ ≈ −

𝛽𝐴

Γ (1 − 𝛾)

⋅ lim
𝑇→∞

1

𝑇

{∫

𝑇

0

sinΦ (𝑡) [sinΦ (𝑡) ∫

𝑡

0

cosΩ𝜏
𝜏
𝛾

𝑑𝜏

− cosΦ (𝑡) ∫

𝑡

0

sinΩ𝜏
𝜏
𝛾

𝑑𝜏] 𝑑𝑡} .

(16)

To simplify (16), the following approximation of integrals [25]
are proposed:

∫

𝑡

0

cosΩ𝜏
𝜏
𝛾

𝑑𝜏 = Ω
𝛾−1

[Γ (1 − 𝛾) sin
𝛾𝜋

2

+

sin (Ω𝑡)
Ω𝑡

]

+ 𝑂 (𝑡
−𝛾−1

) ,

∫

𝑡

0

sinΩ𝜏
𝜏
𝛾

𝑑𝜏 = Ω
𝛾−1

[Γ (1 − 𝛾) cos
𝛾𝜋

2

−

cos (Ω𝑡)
Ω𝑡

]

+ 𝑂 (𝑡
−𝛾−1

) .

(17)

Substituting (17) into (16), (16) can be simplified as follows:

1

2𝜋

∫

2𝜋

0

cosΦ
Ω

[−𝛽𝐷
𝛾
(𝐴 sinΦ)] 𝑑Φ

≈ −

𝛽

2

Ω
𝛾−1 sin

𝛾𝜋

2

𝐴.

(18)

Then the averaging of the first formula in (10) can be
obtained by adding (11), (12), and (18). The averaging of the
second formula in (10) can also be obtained by using similar
derivation. This leads to a pair of “shortened” equations:

�̇� = −𝛼𝐴 + 𝑞 cos𝜑,

�̇� = 𝜇 −

𝑞

𝐴

sin𝜑 + 𝛿

𝐴

+ 𝜎𝜉 (𝑡) ,

(19)

where

𝛼 = 𝛼 +

1 − 𝑒

𝜋

Ω +

𝛽

2

Ω
𝛾−1 sin

𝛾𝜋

2

,

𝜇 = 𝜇 − 𝑛Ω
𝛾
𝛽 cos

𝛾𝜋

2

,

𝑞 =

4𝑛𝑔

(4𝑛
2
− 1) 𝜋Ω

,

𝛿 =

4𝑛Ωℎ

𝜋

.

(20)

The Krylov-Bogoliubov average method [24] is used in
the derivation from (10) to (19), and similar skill is used by
Dimentberg et al. [26] and the authors of this paper [27] in the
studying of the response of the vibroimpact system. Equation
(19) becomes a Markovian one, where the presence of the
fractional operator in (1) destroys the Markovianity. In fact,
all coefficients 𝛼, 𝛽, 𝑔, ℎ, 1 − 𝑒 in the right hand side of (8) are
assumed to be small and proportional to a small parameter, so
(1) can be taken approximately as aMarkovian one. However,
when these coefficients are not small, much effort should be
done.

It can be seen from (19) and (20) that the difference
between elastic impact (𝑒 = 1) and inelastic impact (𝑒 < 1) is
that inelastic impact increases the damping of the system in
the term ((1 − 𝑒)/𝜋)Ω. The effects of the fractional derivative
𝛽𝐷
𝛾
𝑦 are embodied in two aspects: first it increases the

damping of the system in term (𝛽/2)Ω
𝛾−1 sin(𝛾𝜋/2) > 0 (0 <

𝛾 ≤ 1), and the second one is that it decreases the detuning
parameter from 𝜇 = Ω

1
− 2𝑛Ω to 𝜇 = 𝜇 − 𝑛Ω

𝛾
𝛽 cos(𝛾𝜋/2);

therefore it increases natural frequency of the system in term
(1/2)Ω

𝛾
𝛽 cos(𝛾𝜋/2) according to the definition of 𝜇. Namely,

the fractional order derivative term increases both damping
and stiffness of the system, which is consistent with the
results on the fractional derivative action obtained by Chen
et al. [21] in studying the response of a Duffing oscillator
with fractional derivative by using the stochastic averaging
method. In fact, consider two extreme cases 𝛾 = 0, 1, and
in these cases the fractional derivative 𝛽𝐷𝛾𝑦 changes to the
traditional derivative 𝛽𝐷0𝑦 = 𝛽𝑦, 𝛽𝐷

1
𝑦 = 𝛽 ̇𝑦 according to

[14]. Therefore the fractional derivative 𝛽𝐷𝛾𝑦 increases the
damping of the system in term 𝛽/2 = (𝛽/2)Ω

𝛾−1 sin(𝛾𝜋/2) >
0, 𝛾 = 1 in the case 𝛾 = 1, while increasing stiffness of
the system from Ω

2 to Ω2 + 𝛽, that is, increasing the natural
frequency of the system from Ω to √Ω2 + 𝛽 ≈ Ω + 𝛽/2Ω =

Ω+(1/2)Ω
𝛾−1

𝛽 cos(𝛾𝜋/2), 𝛾 = 0 in the case 𝛾 = 0. In general,
the fractional derivative will influence the system damping
more when 𝛾 increases and tends to 1 and will influence the
system stiffness more when 𝛾 decreases and tends to 0.

3. The Steady-State Moments of the Response

In this section the steady-state response of system (19) will
be discussed. Consider first the steady-state response for the
case without random disorder as 𝜎 = 0, and (19) becomes

�̇� = −𝛼𝐴 + 𝑞 cos𝜑,

�̇� = 𝜇 −

𝑞

𝐴

sin𝜑 + 𝛿

𝐴

.

(21)
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The steady-state solutions of (21) can be found by putting𝐴 =

𝐴
0
, 𝜑 = 𝜑

0
and �̇� = 0, �̇� = 0, which leads to the following

result:
𝛼𝐴
0
= 𝑞 cos𝜑

0
,

𝛿 + 𝜇𝐴
0
= 𝑞 sin𝜑

0
.

(22)

Squaring and adding (22) yields the frequency-response
equation:

𝐴
0
=

−𝜇𝛿 ± √(𝛼
2
+ 𝜇
2
) 𝑞
2
− 𝛼
2
𝛿
2

𝛼
2
+ 𝜇
2

.
(23)

There are two steady-state responses corresponding to upper
and lower signs in (23), and the stability of these steady-state
responses can be examined by introducing someperturbation
terms as

𝐴 = 𝐴
0
+ 𝐴
1
,

𝜑 = 𝜑
0
+ 𝜑
1
,

(24)

where 𝐴
0
and 𝜑

0
are governed by (22) and (23) and 𝐴

1
and

𝜑
1
are perturbation terms. Substituting (24) into (21) and

neglecting the nonlinear terms, one obtains the following
linearization of the modulation equations (21) at 𝐴

0
and 𝜑

0
:

�̇�
1
= −𝛼𝐴

1
− 𝑞 sin𝜑

0
𝜑
1
,

�̇�
1
= (

𝑞

𝐴
2

0

sin𝜑
0
−

𝛿

𝐴
2

0

)𝐴
1
−

𝑞 cos𝜑
0

𝐴
0

𝜑
1
.

(25)

Substituting (22) into (25), one obtains

�̇�
1
= −𝛼𝐴

1
− (𝛿 + 𝜇𝐴

0
) 𝜑
1
,

�̇�
1
=

𝜇

𝐴
0

𝐴
1
− 𝛼𝜑
1
.

(26)

The eigenvalues of the coefficient matrix of system (25) are

𝜆
1,2

= −𝛼 ± √−(𝜇
2
+

𝜇𝛿

𝐴
0

). (27)

From (20) it can be known that 𝛿 > 0, and therefore
the necessary and sufficient condition of the stability of the
steady-state solutions 𝐴

0
and 𝜑

0
is that the real parts of the

eigenvalues 𝜆
1,2

are less than zero; that is, 𝜇 ≥ 0, or

𝛼
2
+ 𝜇
2
> −

𝜇𝛿

𝐴
0

, 𝜇 < 0. (28)

Calculation shows that the steady-state response correspond-
ing to upper sign in (23) satisfies the stability condition (28)
and thus is stable, while the response corresponding to lower
sign is unstable.

Next, one determines the steady-state response of system
(19) in the stochastic case as 𝜎 > 0. Introducing another new
pair of state variables

𝑢 = 𝐴 cos𝜑,

V = 𝐴 sin𝜑.
(29)

Equation (19) can be transformed into

�̇� = −𝛼𝑢 − 𝜇V −
𝛿V

√𝑢
2
+ V2

+ 𝑞 − 𝜎V𝜉 (𝑡) ,

V̇ = −𝛼V + 𝜇𝑢 +
𝛿𝑢

√𝑢
2
+ V2

+ 𝜎𝑢𝜉 (𝑡) .

(30)

In general, the noise 𝜉(𝑡) in the right hand side of (30) is
taken as physical noise; then (30) should be transformed to
Ito ones by adding Eugene and Moshe [28] correction terms
to the Ito-type stochastic differential equations as follows:

𝑑𝑢 = [−(𝛼 +

𝜎
2

2

)𝑢 − 𝜇V −
𝛿V

√𝑢
2
+ V2

+ 𝑞] 𝑑𝑡

− 𝜎V𝑑𝑊 (𝑡) ,

𝑑V = [−(𝛼 +

𝜎
2

2

) V + 𝜇𝑢 +
𝛿𝑢

√𝑢
2
+ V2

]𝑑𝑡

+ 𝜎𝑢𝑑𝑊 (𝑡) ,

(31)

where𝑊(𝑡) is a unit Wiener process.
An exact analytical study of system (31) seems impossible

due to nonlinear nature. Thus, approximate solutions of the
second-order moments of the subharmonic response are
proposed. For the case 𝛿 = 0, (31) can be written as

𝑑𝑢 = [−(𝛼 +

𝜎
2

2

) 𝑢 − 𝜇V + 𝑞]𝑑𝑡 − 𝜎V𝑑𝑊 (𝑡) ,

𝑑V = [−(𝛼 +

𝜎
2

2

) V + 𝜇𝑢]𝑑𝑡 + 𝜎𝑢𝑑𝑊 (𝑡) .

(32)

Whilst the response moments of any order can be predicted
easily, only the mean square amplitude 𝐸[𝐴2] = 𝐸[𝑢

2
+ V2]

will be considered here, where 𝐸 denotes the mathematics
expectation. For steady-state responses 𝐸[𝑢] and 𝐸[V], one
has 𝑑𝐸[𝑢]/𝑑𝑡 = 0 and 𝑑𝐸[V]/𝑑𝑡 = 0. Taking mathematical
expectation on both sides of (32), one obtains the following
equations of 𝐸[𝑢] and 𝐸[V]:

−(𝛼 +

𝜎
2

2

)𝐸 [𝑢] − 𝜇𝐸 [V] + 𝑞 = 0,

−(𝛼 +

𝜎
2

2

)𝐸 [V] + 𝜇𝐸 [𝑢] = 0.

(33)

Equations (33) have the following solutions:

𝐸 [𝑢] =

(𝛼 + 𝜎
2
/2) 𝑞

(𝛼 + 𝜎
2
/2)
2

+ 𝜇
2
,

𝐸 [V] =
𝜇𝑞

(𝛼 + 𝜎
2
/2)
2

+ 𝜇
2
.

(34)

For the second-order moment of the steady-state response
𝐸[𝐴
2
] = 𝐸[𝑢

2
+ V2], one has 𝑑𝐸[𝐴2]/𝑑𝑡 = 0. From (32),

applying the Ito rule [29] and expectation operator yields

𝑑𝐸 [𝐴
2
]

𝑑𝑡

= −2𝛼𝐸 [𝐴
2
] + 2𝑞𝐸 [𝑢] = 0.

(35)
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Substituting (34) into (35), one obtains

𝐸 [𝐴
2
] =

𝑞

𝛼

𝐸 [𝑢] =

(𝛼 + 𝜎
2
/2) 𝑞
2

[(𝛼 + 𝜎
2
/2)
2

+ 𝜇
2
] 𝛼

. (36)

The more general case ℎ > 0 will be taken into account
in the following discussion, and the approximate expression
of the second order will be proposed. Substituting two terms
𝑢
2
+ V2 in (31) by its steady-state moment 𝐸𝐴2, (31) can be

reduced to the following equations:

𝑑𝑢 = [−(𝛼 +

𝜎
2

2

)𝑢 − (𝜇 +

𝛿

𝐴
∗
) V + 𝑞]𝑑𝑡

− 𝜎V𝑑𝑊 (𝑡) ,

𝑑V = [−(𝛼 +

𝜎
2

2

) V + (𝜇 +
𝛿

𝐴
∗
)𝑢]𝑑𝑡

+ 𝜎𝑢𝑑𝑊 (𝑡) ,

(37)

where 𝐴∗ = √𝐸[𝐴
2
]. Equations (37) can be solved in the

same way as (32), and one obtains

(𝐴
∗
)
2

=

(𝛼 + 𝜎
2
/2) 𝑞
2

[(𝛼 + 𝜎
2
/2)
2

+ (𝜇 + 𝛿/𝐴
∗
)
2

] 𝛼

. (38)

Equation (38) has the following solutions:

𝐴
∗

=

−𝜇𝛿 ± √(1 + 𝜎
2
/2𝛼) [(𝛼 + 𝜎

2
/2)
2

+ 𝜇
2
] 𝑞
2
− (𝛼 + 𝜎

2
/2)
2

𝛿
2

(𝛼 + 𝜎
2
/2)
2

+ 𝜇
2

.

(39)

It can be seen clearly that with ℎ → 0, that is, 𝛿 → 0,
the squared quantity (𝐴∗)2 approaches the exactmean square
amplitude as governed by (36) and with 𝜎 → 0 the squared
quantity (𝐴∗)2 approaches the exact one as governed by (23).

Similar technique has been used in [27] in solving the
steady-state response. However, more efforts have been done
in the derivation of the fractional derivatives.

4. Monte-Carlo Simulations Results

In this section, the analytical results will be shown and
compared with the directly numerical results. All the directly
numerical simulations using Monte-Carlo method are based
on the original system dominated by (1) and can give
powerful validation with analytical results. For the method
of numerical simulation, readers can refer to Zhu [29], Xu et
al. [30], and Shinozuka and Jan [31]. In this paper, the power
spectrum of 𝜉(𝑡) is taken as

𝑆
𝜉
(𝜔) =

{

{

{

1

2𝜋

, 0 < 𝜔 ≤ 2Ω

0, 𝜔 > 2Ω.

(40)

For numerical simulation it is more convenient to use the
pseudorandom signal given by [29]:

𝜉 (𝑡) = √
2Ω

𝑁𝜋

𝑁

∑

𝑘=1

cos [Ω
𝑁

(2𝑘 − 1) 𝑡 + 𝜑
𝑘
] , (41)

where 𝜑
𝑘
’s are independent and uniformly distributed in

(0, 2𝜋] and 𝑁 is a larger integer number. For the simulation
method of the fractional derivative, readers can refer toKilbas
et al. [14] and Samko et al. [15]. For a fractional derivative of
the Riemann-Liouville definition, the first-order difference is
used:

𝐷
𝛾
𝑦 (𝑡)
𝑖
=

𝑦 (0)

Γ (1 − 𝛾)

𝑡
−𝛾

𝑖
+

1

Γ (2 − 𝛾) Δ𝑡
2

⋅

𝑖−1

∑

𝑗=0

[(𝑗 + 1)
1−𝛾

− 𝑗
1−𝛾

] (𝑦
𝑖−𝑗+1

− 𝑦
𝑖−𝑗
) .

(42)

The time step is taken as Δ𝑡 = 0.01 here. Monte-Carlo
simulations are focused on the first-order subharmonics (𝑛 =
1, Ω ≈ 2), although the higher-order subharmonics (Ω ≈

2𝑛, 𝑛 = 2, 3, 4, . . .) simulations should be of the same impor-
tance. In the numerical simulation, the parameters in system
(1) are chosen as 𝑔 = 3.5, 𝑒 = 0.95, ℎ = 0.1, 𝑛 = 1, Ω =

1. The governing equation (1) is numerically integrated by
the first-order difference method between impacts, which
is valid until the first encounter with the barriers, that is,
until the equality 𝑦 = −ℎ is satisfied. The impact condition
̇𝑦
+
= −𝑒 ̇𝑦

−
is then imposed, using the numerical solution

̇𝑦
−
. This results in the rebound velocity ̇𝑦

+
, thereby providing

the initial values for the next step numerical calculation. The
numerical results are shown in Figures 1–6.

The case 𝜎 = 0 will be considered firstly. The variations
of the steady-state response𝐴

0
withΩ

1
are shown in Figure 1

in case as 𝛼 = 0.2, 0.3, 𝛽 = 0.1, 𝛾 = 0.6, and the theoretical
results of (23) are also shown in Figure 1. From (5), one has
𝐴
2
= 𝑥
2
+ �̇�
2
= (𝑦 + ℎ)

2
+ ̇𝑦
2, and therefore the mean

square response amplitude will be calculated as 𝐴2
0
= 𝐴
2

∗
=

⟨(𝑦 + ℎ)
2
⟩ + ⟨( ̇𝑦)

2
⟩ in numerical simulation, where angular

brackets denote common time averaging for the response
sample. It can be seen from Figure 1 that the response
predicted by the averaging method is accurate in comparing
the numerical simulations. It is clearly seen from Figure 1
that the response amplitude will decrease when the damping
𝛼 increases. The response amplitude will increase when the
excitation frequencyΩ

1
reaches the resonant frequency 2Ω =

2. However, the peak response amplitude is not reached at
Ω
1
= 2Ω = 2 but has some deviation on Ω

1
≈ 2.04 in

Figure 1. From the theoretical analysis in Section 2 one knows
that the fractional derivative increases the natural frequency
of the system fromΩ = 1 toΩ + (1/2)Ω

𝛾
𝛽 cos(𝛾𝜋/2) ≈ 1.03,

and then the peak response amplitude should be reached at
Ω
1
= 2(Ω + (1/2)Ω

𝛾
𝛽 cos(𝛾𝜋/2)) ≈ 2.06, which is in good

agreement with the numerical result (Ω
1
≈ 2.04) as shown

in Figure 1. The response amplitude will decrease strongly
when Ω

1
departs from the resonant frequency 2Ω, and the

accuracy of the analytical solution is seen to be reduced a little
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Figure 1: Frequency response of system (𝛼 = 0.2, 0.3, 𝛽 = 0.1, 𝛾 =

0.6, 𝜎 = 0).

in the case of large detuning comparing with the numerical
solution; this may be partly due to some inaccuracy of the
Krylov-Bogoliubov averaging method at large detuning.

The response time history of system (1) and the phase plot
are shown in Figure 2 in the case 𝛼 = 0.3, 𝛽 = 0.1, 𝛾 =

0.6, 𝜎 = 0, Ω
1
= 2.1, where 𝑧(𝑡) = ̇𝑦(𝑡) denotes the velocity

of the mass. Clearly, the response is a period one while the
phase trajectory is a limit cycle.

Now the effect of the random disorder 𝜎𝜉(𝑡) on the
response amplitude 𝐴

0
of the system is considered. The

variations of the steady-state response 𝐴
0
withΩ

1
are shown

in Figure 3 in case as 𝛼 = 0.2, 0.3, 𝛽 = 0.1, 𝛾 = 0.6, 𝜎 =

0.25, and the theoretical results of (39) are also shown in
Figure 3.

From Figure 3, high accuracy of the analytical method
can also be claimed for the case with random disorder.
Once again, strong reduction of the peak response amplitude
due to large damping and large detuning can be seen, and
the response amplitude will increase when the damping 𝛼

decreases or Ω
1
is close to resonant frequency 2Ω = 2. The

fractional derivative also makes the peak response amplitude
reaching at Ω

1
≈ 2.04 rather than Ω

1
= 2. Noting that the

parameters of system (1) corresponding to Figure 1 (𝜎 = 0)

and Figure 3 (𝜎 = 0.25) are the same except for 𝜎, a rather
drastic reduction of peak response amplitudes due to random
disorder 𝜎𝜉(𝑡) in the excitation can be seen from Figure 3
in comparison with Figure 1. Such phenomena can also be
illustrated in Figure 4, where the parameters of system (1) are
𝛼 = 0.3, 𝛽 = 0.1, 𝛾 = 0.6, 𝜎 = 0.25, Ω

1
= 2.1, which are

the same corresponding to Figure 2 (𝜎 = 0) except for 𝜎.
In comparison with Figure 2, it can be seen from Figure 4

that random disorder 𝜎𝜉(𝑡) will reduce the peak response
amplitude and change the steady-state response of system
(1) from a periodic solution to a quasiperiodic one such
that it changes the phase trajectory from a limit cycle to a
diffused limit cycle. Further numerical simulations show that
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Figure 2: Numerical results of (1) (𝛼 = 0.3, 𝛽 = 0.1, 𝛾 = 0.6, 𝜎 =

0, Ω
1
= 2.1).
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Figure 3: Frequency response of system (𝛼 = 0.2, 0.3, 𝛽 = 0.1, 𝛾 =
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Figure 4: Numerical results of (1) (𝛼 = 0.3, 𝛽 = 0.1, 𝛾 = 0.6, 𝜎 =

0.25, Ω
1
= 2.1).

the width of the diffused limit cycle will be large when the
intensity of the random disorder increases.

Finally the effect of the fractional derivative 𝛽𝐷𝛾𝑦 on the
response of the system will be discussed. The variations of
the steady-state response 𝐴

0
with 𝛾 are shown in Figure 5

for a representative case as 𝛼 = 0.3, 𝜎 = 0.25, Ω
1

=

2.1, 𝛽 = 0.1, 0.2, and the theoretical results given by (39) are
also shown in Figure 5 for comparison. It can be seen from
Figure 5 that the response amplitude will decrease when 𝛽 or
𝛾 increases.

However, the effect of fractional derivative 𝛽𝐷𝛾𝑦 on the
response of the system is more complex. The variations of
the steady-state response 𝐴

0
with 𝛾 are shown in Figure 6

for another representative case as 𝛼 = 0.3, 𝜎 = 0.25, Ω
1
=

1.9, 𝛽 = 0.1, 0.2, and the theoretical results given by (39)
are also shown in Figure 6 for comparison. It can be seen
from Figure 6 that the response amplitude will decrease
when 𝛽 increases, which is consistent with the conclusion of
Figure 5. But the response of the system will decrease first
and then increase when 𝛾 increases, which is not consistent
with the conclusion of Figure 5. Noting that the parameters
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Figure 5: Numerical results of (1) (𝛼 = 0.3, 𝜎 = 0.25, Ω
1
= 2.1).
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Figure 6: Numerical results of (1) (𝛼 = 0.3, 𝜎 = 0.25, Ω
1
= 1.9).

of system (1) corresponding to Figure 5 (Ω
1

= 2.1) and
Figure 6 (Ω

1
= 1.9) are the same except for Ω

1
, it can be

known that the effects of 𝛾 on the system response are not the
same for different case. In fact from the theoretical analysis in
Section 2 one knows that the fractional derivative increases
both the natural frequency and damping coefficient of the
system and therefore effects the response of the system in
a more complicated way. High precision of the analytical
expression given by (39) can also be seen in Figures 5 and
6, in comparison with the numerical results. Small system
parameters are required in the theoretical derivation above;
however numerical simulations show that the response values
predicated by (23), (36), and (39) have high precision even if
the system parameters are appropriately large; for example,
𝑔 = 3.5 is not small in the numerical simulation here; of
course the high precision of the theoretical solution will also
be observed when 𝑔 is small.
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5. Conclusions

In this paper, the subharmonic response of single-degree-of-
freedom linear vibroimpact oscillator with fractional deriva-
tive damping and one-sided barrier under narrow-band
random excitation is investigated.Themain advantage of this
paper is that the analytical expressions for the steady-state
moments of the response amplitude are obtained, such that
the effects of the fractional order derivative term, damping
term, random disorder, and the coefficient of restitution and
other system parameters on the system response can be
discussed theoretically. The basic conclusion of the analysis
may be that the fractional derivative makes both the system
damping and stiffness coefficients increase, such that it
changes the system parameters region at which the response
amplitude reaches the maximum, thus effecting the system
response in a more complicated way; the system energy
loss in collision is equivalent to increasing the damping
coefficient of the system; the system response amplitude will
increase when the excitation frequency is close to the reso-
nant frequency, and the system response will decay rapidly
when the excitation frequency gradually deviates from the
resonance frequency; the steady-state solution may change
from a limit cycle to a diffused limit cycle when intensity of
the random disorder increases; numerical simulations show
that the proposed method is effective.
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